室内空气与大气中污染物的存在、归趋及迁移
Polysaccharides─Important Constituents of Ice-Nucleating Particles of Marine Origin
多糖类——海洋源冰核粒子的重要组分Click to copy article link
点击复制文章链接Article link copied!
点击复制文章链接Article link copied!
- Susan Hartmann* 苏珊·哈特曼*Susan Hartmann*Email: susan.hartmann@tropos.deDepartment of Atmospheric Microphysics (AMP), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, GermanyMore by Susan Hartmann
- Roland Schrödner* 罗兰·施罗德纳*Roland Schrödner*Email: roland.schroedner@tropos.deDepartment of Modeling Atmospheric Processes (MOD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, GermanyMore by Roland Schrödner
- Brandon T. Hassett 布兰登·T·哈塞特Brandon T. HassettDepartment of Arctic and Marine Biology, UiT − The Arctic University of Norway, Tromsø 9019, NorwayMore by Brandon T. Hassett
- Markus Hartmann 马库斯·哈特曼Markus HartmannDepartment of Atmospheric Microphysics (AMP), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, GermanyMore by Markus Hartmann
- Manuela van Pinxteren 曼努埃拉·范·平克斯特伦Manuela van PinxterenAtmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, GermanyMore by Manuela van Pinxteren
- Khanneh Wadinga Fomba 卡内·瓦丁加·丰巴Khanneh Wadinga FombaAtmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, GermanyMore by Khanneh Wadinga Fomba
- Frank Stratmann 弗兰克·斯特拉特曼Frank StratmannDepartment of Atmospheric Microphysics (AMP), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, GermanyMore by Frank Stratmann
- Hartmut Herrmann 哈特穆特·赫尔曼Hartmut HerrmannAtmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, GermanyMore by Hartmut Herrmann
- Mira Pöhlker 米拉·珀尔克Mira PöhlkerDepartment of Atmospheric Microphysics (AMP), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, GermanyMore by Mira Pöhlker
- Sebastian Zeppenfeld 塞巴斯蒂安·泽彭费尔德Sebastian ZeppenfeldAtmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, GermanyMore by Sebastian Zeppenfeld
Article Views
Altmetric
Citations
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Abstract 摘要
点击复制章节链接Section link copied!
Remote marine regions are characterized by a high degree of cloud cover that greatly impacts Earth’s radiative budget. It is highly relevant for climate projections to represent the ice formation in these clouds. Therefore, it is crucial to understand the sources of ice-nucleating particles (INPs) that enable primary ice formation. Here, we report polysaccharides produced by four different aquatic eukaryotic microorganisms (Thraustochytrium striatum, Tausonia pullulans, Naganishia diffluens, Penicillium chrysogenum) as responsible ice-nucleating macromolecules (INMs) in these samples originating from the marine biosphere. By deriving a classical nucleation theory-based parametrization of these polysaccharidic INMs and applying it to global model simulations, a comparison to currently available marine atmospheric INP observations demonstrates a 44% contribution of polysaccharides to the total INPs of marine origin within −15 to −20 °C. The results highlight the relevance of biological INMs as part of the INP population in remote marine regions.
偏远海域以高云量为特征,这对地球辐射收支具有重大影响。准确表征这些云层中的冰晶形成过程对气候预测极为重要。因此,理解促成初始冰晶形成的冰核粒子(INPs)来源至关重要。本研究首次报道了四种不同水生真核微生物(裂殖壶菌、普鲁兰陶松菌、流散长孢酵母、产黄青霉)产生的多糖作为海洋生物圈样本中具有冰核活性的生物大分子(INMs)。通过建立基于经典成核理论的多糖类 INMs 参数化方案,并将其应用于全球模型模拟,与现有海洋大气 INP 观测数据的对比表明,在-15 至-20°C 温度区间内,多糖对海洋源 INPs 总量的贡献率达 44%。研究结果凸显了生物源 INMs 作为偏远海域 INP 群体组成部分的重要性。
This publication is licensed under
本出版物采用知识共享许可协议
知识共享署名 4.0 许可协议
License Summary* 许可证摘要*
You are free to share(copy and redistribute) this
article in any medium or format and to adapt(remix,
transform, and build upon) the material for any purpose, even commercially
within the parameters below:
您可以自由地以任何媒介或格式分享(复制和重新分发)本文,并基于以下条款为任何目的改编(混编、转换和二次创作)该材料,包括商业用途:
Creative Commons (CC): This is a Creative Commons license.
知识共享(CC):这是一份知识共享许可协议。Attribution (BY): Credit must be given to the creator.
署名(BY):必须向创作者署名致谢。
*Disclaimer *免责声明
This summary highlights only some of the key features and terms of the
actual license. It is not a license and has no legal value. Carefully
review the actual license before using these materials.
本摘要仅概述了实际许可协议中的部分关键条款和特征,其本身并非许可协议,也不具备法律效力。在使用相关材料前,请务必仔细审阅完整的实际许可协议内容。
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
版权所有 © 2025 作者。由美国化学会出版
Synopsis 摘要
The ability of aquatic fungi and protists to form ice is caused by polysaccharides. In the remote marine atmosphere, these macromolecules can be as important as mineral dust ice-nucleating particles in the temperature range relevant for mixed-phase clouds.
水生真菌和原生生物形成冰的能力是由多糖引起的。在远洋大气中,这些大分子在与混合相云相关的温度范围内,其重要性可与矿物尘埃冰核粒子相媲美。
1. Introduction 1. 引言
点击复制章节链接Section link copied!
冰核颗粒(INPs)能够引发云中冰晶的形成,进而影响地球大气的辐射平衡和降水形成,对理解气候敏感性具有重要意义。(1) 在偏远海域的大部分区域,特别是 INP 浓度较低的南大洋,(2,3) 由于大气模式辐射效应变量的强烈偏差,云相态的观测数据存在显著差异。(4) 通过更好地理解 INP 来源(如矿物粉尘或海浪气溶胶 SSA)(5−7)、INP 传输以及分子尺度上的冰核形成机制,将极大提升气候模拟能力——这对南大洋和北极等敏感却仍待探索的气候热点区域尤为重要。(8−13) 通常认为海洋是 INPs 的来源之一,因其含有冰活性微生物(及其组分或代谢产物),这些物质可通过 SSA 进入大气。(6,14−19) 例如在藻华期间,海水生物活性的增强会为可气溶胶化的 INPs 提供更丰富的储备。 (6,15−17,20−23)已有迹象表明,海洋微生物产生的有机化合物可能是观测到冰核活性的原因(15−17,24),并且这些物质会在海洋表面微层中富集。(15,25−28)多种海洋微生物已被证实具有冰核活性,包括细菌(16,29−33)、藻类(14,33−35)、海洋硅藻(29,32,33,36−39)、嗜盐古菌(40)、病毒(41)和真菌(31,42)。虽然藻类和细菌作为生物量生产与降解的主要贡献者,但海洋真菌在碳循环中的重要作用正逐渐被认识。(43,44)然而,关于真菌和假真菌的地理分布与年度变化仍存在显著认知空白。由于数据库缺失导致环境调查中这些生物的代表性不足(45),其作为冰核粒子的潜在作用也基本未被探索。后者正是本研究的主题。
冰核大分子(INMs)是生物源冰核颗粒(INPs)活性的关键因素。(46) 尽管陆地微生物和花粉的冰核活性(INA)已分别被归因于特定蛋白质或多糖(47−51),但迄今为止对源自海盐气溶胶(SSA)的生物源海洋 INMs 的化学特性仍知之甚少。Wolf 等人(52)在研究浮游微生物时发现有力证据,表明蛋白质和糖类成分决定了 SSA 中有机物的 INA。Alpert 等人(24)在含浮游微生物分泌物的环境及实验室生成的 INPs 中均检测到蛋白质和多糖。此外,根据北极表层海水中 INA 与非冰活性单糖(多糖降解产物)游离葡萄糖的相关性,海洋 INMs 可能具有多糖特性(53)。为识别和量化特定冰核活性成分对海洋 INP 群体的贡献,需开展针对这些化学物质的定向测量(16,17)。
为对偏远海域大气冰核颗粒(INP)浓度进行高预测性建模,通常需考虑两大主要来源:矿物尘埃和源自海盐气溶胶(SSA)的海洋有机物。(54−56)因此,当前最先进的 INP 参数化方案主要采用两种方法:或考虑未分类的 INP 浓度,或使用气溶胶整体特性(如数量、表面积或气溶胶成分大类,例如矿物尘埃、海盐等)作为代用指标。(8,57−59)在此过程中,通常假设 INP 浓度与温度之间存在对数线性或多项式关系。(15,57,59−62)虽然这种方法总体上能反映观测到的温度依赖性 INP 浓度,但将观测范围外推至更宽温度区间未必有效且缺乏物理基础。此外,除矿物尘埃外,INP 浓度通常仅通过间接代用指标估算,即并非直接基于实际引发不同温区冻结的、可能具有化学差异的气溶胶组分。目前仅对矿物尘埃已考虑其不同冰核活性组分。(4,63)
本研究探究了源自海洋真菌和原生生物的商业化标准多糖的冰核活性。我们建立了基于物理过程的参数化方案,并将这些发现与矿物粉尘冰核颗粒整合到全球模型中,通过对比现有海洋区域大气冰核观测数据来评估其重要性。
2. Experimental Methods 2. 实验方法
点击复制章节链接Section link copied!
2.1. Isolation and Cultivation of Microorganisms
2.1 微生物分离与培养
通过提取并测序 2017 年 11 月在斯瓦尔巴群岛附近 R/V Helmer Hanssen 科考船上采集的不同环境区室(包括空气传播和表层水样本)中的 DNA,测定了海洋环境中非光合微生物的丰度(表 S1、图 S1 及支持信息(SI)中的详细描述)。从包括特罗姆瑟近岸北极沉积物和北极海洋浮游生物在内的多种环境中采样微生物,重点关注真菌和原生生物等异养真核微生物。采集的样本经过培养以进行后续分析(见表 S2,SI)。具体而言,我们研究了一种破囊壶菌(裂殖壶菌 Thraustochytrium striatum)、两种酵母(出芽短梗霉 Tausonia pullulans 和流散长孢酵母 Naganishia diffluens)以及一种丝状真菌(产黄青霉 Penicillium chrysogenum)。
2.2. Microphysical and Chemical Analyses
2.2 微物理与化学分析
采用液滴冻结实验分析了这些培养真菌和破囊壶菌的冰核活性(详见 SI 第 S4 节)。为确定这些微生物产生的潜在冰核大分子候选物,进行了不同物理化学预处理测试,包括 0.2 μm 膜过滤(15,17,64)、热处理(95°C 持续 1 小时)(65,66)以及 CaCl2 沉淀(向出芽短梗霉 0.2 μm 过滤液中添加 1.6 g L–1 CaCl2)。为验证微生物样本的初步观察结果,还分析了以下市售标准多糖:昆布多糖、λ-卡拉胶、κ-卡拉胶、海藻酸(长链与短链)、琼脂、纤维素、黄原胶以及铜绿假单胞菌脂多糖。通过酸水解(0.8 M HCl,100°C,20 小时)后,采用高效阴离子交换色谱-脉冲安培检测法(67)对总碳水化合物(TCCHO,即可水解多糖)含量及单糖组成进行定量分析,具体方法详见 SI。 为测定总有机碳(TOC)含量,取 20 微升液体培养样品滴加于 1.5 平方厘米的石英纤维滤膜上,室温干燥 20 分钟后,采用美国 Sunset 实验室生产的 Lab OC-EC 分析仪,按照 EUSAAR2.91 标准温度程序进行分析。
2.3. Application of INP Parametrization to Global Model Simulations
2.3. 冰核粒子参数化在全球模型模拟中的应用
本研究采用了 2010 年大气化学传输模型 TM5 生成的现有模拟数据。选择该数据集是因为其能提供计算冰核粒子浓度所需的矿物尘和海盐替代指标,并具有高时间分辨率(每小时)。通过模拟数据,利用海盐与矿物尘的质量浓度、以及可溶性与不可溶性累积模态和粗模态中的数浓度来推导冰核粒子浓度。对于矿物尘来源的冰核粒子,采用了 Niedermeier 等人(2015,N15)提出的参数化方案。海洋多糖类冰核粒子的计算则应用了本工作推导的参数化方案(HSZ25)。多糖物质的动态排放建模及其气溶胶多糖含量不在本研究范围内,因此假设可溶累积模态和粗模态中海盐质量分别恒定含有 0.5%和 0.1%的海洋多糖成分。 海盐气溶胶(SSA)中的多糖组分源自以下环境观测数据:南大洋 PI-ICE 航次(积聚模态 0.2-0.5%、粗粒子模态 0.03-0.05%,为粒径分级撞击器数据各粒径区间的航次均值)(67)、北冰洋中部 PASCAL 航次(积聚模态 0.1-0.9%、粗粒子模态 0.1-0.7%,为粒径分级撞击器数据各粒径区间的航次均值)(71)、佛得角(PM10 中航次均值 0.1%)(72)以及挪威斯瓦尔巴群岛齐柏林山(PM1 中航次均值 0.4%)(73)。尽管现有多糖测量数据有限,但北极与南大洋的单次测量值范围及 SSA 中多糖平均含量似乎较为接近。为评估该假设带来的不确定性,同时采用积聚模态和粗粒子模态中多糖含量 0.05%与 0.5%分别作为下限和上限。通过应用质量分数,直接反映了海盐与海洋有机气溶胶的共排放特征。 因此,避免了来自建模、估算海面微表层有机物浓度或生物活性以及气溶胶化过程中富集因子的不确定性。另一方面,目前尚难以轻易考虑气溶胶中多糖浓度的时空变异性以及更详细的排放描述。为与我们基于多糖的冰核粒子参数化方案(HSZ25)进行比较,采用了 McCluskey 等人(2018 年,M18)(59)的冰核粒子参数化方案,该方案代表了对海喷雾气溶胶中非热不稳定海洋冰核粒子的估算,因此源自海水,并有意避免矿物粉尘的任何影响。冰核粒子浓度是根据每小时模型数据计算并全年平均得出的。模拟的冰核粒子浓度与覆盖十多年的偏远海洋区域观测数据集进行了评估。南大洋的观测活动提供了最大份额的数据,但北冰洋以及北大西洋、热带大西洋和太平洋也有代表性数据。 通过采用年平均冰核粒子(INP)浓度,可避免南大洋区域矿物尘浓度短期波动的影响。由于南大洋模拟的矿物尘与海盐浓度均未呈现明显季节性周期(参见补充信息),我们推断此类偏远海域的年平均 INP 浓度在不同年份间具有相似性。此外,主要结论源自 HSZ25 与 M18 两种参数化方案的对比——二者均采用模拟海盐浓度作为代理指标,因此在各测量时段内与真实条件的偏差程度相同。相较于 M18 方案,HSZ25 参数化的评估标准在于将模拟与观测 INP 浓度的吻合度提升至 10 倍误差范围内(FAC10)。该指标特指在仅考虑矿物尘 INPs 基础上实现的 FAC10 提升幅度。表 S5 右栏所列的多糖贡献率 FHSZ25,M18,即用于量化在 10 倍误差范围内吻合度改善中可归因于多糖作用的比例,其计算公式为:
其中 FAC10N15 表示仅使用矿物粉尘冰核颗粒(依据 N15)时,观测值在 10 倍范围内的吻合度。相应地,FAC10N15+M18 表示采用 N15 与 M18 提出的海盐气溶胶来源海洋冰核颗粒组合时的吻合度,而 FAC10N15+HSZ25 则表示采用 N15 与海洋多糖冰核颗粒组合时的吻合度。
2.4. Data and Code Availability
2.4. 数据与代码获取
真核微生物的测序结果可在 https://www.ncbi.nlm.nih.gov 查询,对应登录号详见表 S2。2017 年 11 月在 R/V Helmer Hanssen 科考船上采集的空气和水生微生物序列丰度数据、不同微生物的冰核活性浓度、多糖含量及目标测试结果可通过 10.5281/zenodo.10421589 获取。PI-ICE(南大洋)和佛得角航次中分级环境气溶胶颗粒的复合碳水化合物与无机离子数据分别存储于 https://doi.pangaea.de/10.1594/PANGAEA.927565 和 https://doi.pangaea.de/10.1594/PANGAEA.969080。应用代码存放于 10.5281/zenodo.10423597。
3. Results and Discussion
3. 结果与讨论
点击复制章节链接Section link copied!
3.1. Polysaccharides Responsible for INA of Marine Eukaryotic Microorganisms
3.1. 海洋真核微生物冰核活性的多糖组分
在北极海洋环境中,即便在极夜期间,基于测序的空气中海洋真核微生物调查仍显示出真菌出人意料的丰度(图 S1)。作为本研究的基础,我们分离并培养了存在于海洋和大气中的四种不同真核微生物,并研究了它们的冰核活性(INA):(图 1)一种破囊壶菌(T. striatum)、两种酵母菌(T. pullulans, N. diffluens)和一种丝状真菌(P. chrysogenum)。这些海洋微生物在-15°C 时表现出约 3 个数量级的显著分布范围。与其他类型的冰核颗粒(INP)相比,这些海洋微生物诱发冻结的温度高于大多数沙漠尘埃类型(高于-18°C),而低于陆源(主要为蛋白质类)生物源冰核材料(INMs)(低于-8°C)。基于经典成核理论(CNT)的参数化分析表明(图 2),不同微生物间相似的温度依赖性强烈提示:观察到的冰核活性由同一化学类别的 INMs 所导致,具体研究如下:
(i) | To determine the molecular identity of the INMs, various physical and chemical tests were conducted on the microbial cultures. Filtration through a 0.2 μm filter reduced INM concentrations by 97–99.8% (Figure 2C), though still above background levels. This indicates that INMs are predominantly attached to microbial cells or aggregates, with a smaller portion existing as dissolved or colloidal substances. Heating the suspensions (95 °C for 1 h, Figure 2B,D) did not alter INM concentrations, suggesting a nonproteinaceous nature, as proteins typically lose their ice-nucleating activity at high temperatures. (46,66,83) In contrast, strong acid hydrolysis of the T. pullulans sample (0.05 M H2SO4, 100 °C, 72 h, Figure S2B) significantly reduced the ice fraction, implying that hydrolyzable macromolecules disintegrated into non-ice-active fragments. Together with the heat resistance, this points to the presence of ice-active polysaccharides, either free or bound to the surface of microorganisms or debris. Adding calcium chloride (1.6 g L–1) to the 0.2 μm filtered T. pullulans aliquot did not change the ice fraction, but subsequent filtration led to a substantial reduction (Figure S2E). This suggests that INMs in the dissolved fraction may be acidic polysaccharides, as they tend to form microgels with a cross-linked structure in the presence of divalent Ca2+ cations, resulting in particle sizes greater than 0.2 μm. (84,85) We hypothesize that particulate INMs, though not explicitly investigated here, may readily exist as such three-dimensional networks. Similarly, a standard solution of alginic acid, a commercially available acidic marine polysaccharide with the highest INA among those tested (Figure S2F), showed comparable behavior to the microorganism culture aliquots. As other cultures did not provide enough material only T. pullulans was characterized in more detail. Given the consistency of results across the different microbial cultures regarding physical treatments (Figure 2), we assume that these observations allow for a certain level of generalization. | ||||
(ii) | To investigate polysaccharidic INA, standard polysaccharides commonly found in both, the marine and terrestrial environment, including laminarin, λ-carrageenan, κ-carrageenan, alginic acid (long- and short-chained), agar, cellulose, xanthan gum, and a lipopolysaccharide from P. aeruginosa were examined in a manner similar to the microbial samples. INA was found for all selected polysaccharide solutions. However, the different polysaccharides revealed a broad variability in terms of INA (Figure S3). The most ice-active polysaccharides with regard to observed onset temperature and number of INMs per dry mass were long-chained alginic acid and agar. It is important to note that, in the case of alginic acid, the qualitative experiments conducted (same as described under (i)) align closely with the observed behavior of the microorganism culture aliquots. Furthermore, agar and alginic acid are both negatively charged polysaccharides with gelling properties. However, other negatively charged polysaccharides, such as λ-carrageenan and κ-carrageenan, and neutral polysaccharides (cellulose, laminarin, lipopolysaccharide) showed an up to several orders of magnitude lower number concentration of INMs per dry mass. Additionally, an influence of the molecular weight is indicated as long-chained alginic acid (molecular weight: 100–200 kDa, degree of polymerization: 500–1000) was more ice-active than short-chained alginic acid (molecular weight: 2–40 kDa, degree of polymerization: 60–200). In summary, the sequence of monosaccharides within the polysaccharidic structure and their molecular weight had an influence on the INA of polysaccharides, although these features are obviously not the only relevant factor determining the INA. The effect of the secondary and tertiary three-dimensional structure on the catalysis of the ice nucleation has not been clarified. Previous studies also found an influence of chain length (86) and particle size (87) of biopolymers on their INA. However, the exact structures or features causing ice nucleation activity of biopolymers in general and in particular for polysaccharides remains elusive and more detailed experiments are required in the future. | ||||
(iii) | Polysaccharides in the cultivated microbial samples were detected in the dissolved and particulate phases, here referred to as total combined carbohydrates (TCCHO) (Table S3). The monosaccharide composition (Figure S4) revealed a complex mix of carbohydrates in all microorganisms contributing 4–66% to the total organic carbon. In the cultures of T. pullulans, T. striatum, and N. diffluens, the highest fraction of TCCHO was rather found in the particulate phase (76–91%) than in the dissolved phase (9–24%), which fits well to the strong reduction of INA after the filtration of these samples. Based on the monosaccharide footprint, strong indications for the presence of agar or agar-like ice-active polysaccharides within the microorganisms were found, while the presence of alginic acid could be excluded by the lack of mannuronic acid, a monosaccharide unit released during the acidic hydrolysis of alginic acid. The normalization of the INM number site density (eq S1) of the different microorganisms on a specific chemical measure─the carbohydrate carbon mass C-TCCHO─revealed a significant decrease of its spread between the different microbial samples from three to one order of magnitude (Figure 3, Figure 2A), which strongly indicates a causal relationship between C-TCCHO and INA. Additionally, a very high agreement of the INA of eukaryotic microorganisms and those of the marine polysaccharides alginic acid and agar could be found from the almost identical INM number site density normalized to C-TCCHO (Figure 3). As a result, we used INM number density normalized to C-TCCHO to parametrize INP resulting from polysaccharidic INMs in the marine organic aerosol (parametrization hereafter called HSZ25). |
Figure 1 图 1
Figure 1. Ice nucleation site density per mass nm is given as a function of temperature for known mineral dust, biogenic INMs, and in this study examined marine microbial INMs. ‡This data was converted from ns or nv to nm. Details of the conversion are given in the SI. * The desert dust compilation includes Asian dust, Canary Island dust, Israeli dust, and Saharan dust. Refs (21,38−40,50,61,62,70,74−82)
图 1. 以单位质量 nm 计的冰核位点密度随温度变化的关系图,展示了已知矿物粉尘、生物源冰核物质(INMs)及本研究检测的海洋微生物源 INMs 的数据。‡该数据由 ns 或 nv 换算为 nm,具体换算方法见支持信息。*沙漠粉尘数据合集包含亚洲粉尘、加那利群岛粉尘、以色列粉尘和撒哈拉粉尘。参考文献(21,38−40,50,61,62,70,74−82)
Figure 2 图 2
Figure 2. Physical properties of analyzed eukaryotic microorganisms indicate a non proteinaceous origin of INMs mainly attached to the microbial cells. The INM number concentration per sample volume is given for unmodified eukaryotic microorganisms together with CNT-based fits (A) and after physical treatments: heating at 95 °C for 1 h (B), filtration (<0.2 μm; C) and the combination of both (D). Heating does not change INM number concentrations, whereas filtration significantly reduces INM number concentration, and subsequent heating does not alter the INM concentration. This points toward the existence of heat-stable most likely non proteinaceous INMs freely suspended and to a larger extent connected to microbial cells.
图 2. 真核微生物的物理特性分析表明,冰核物质(INMs)主要附着于微生物细胞且具有非蛋白质属性。图中展示了未经处理的真核微生物样本单位体积内 INM 数量浓度与基于碳纳米管(CNT)拟合曲线的对比(A),以及经物理处理后的数据:95℃加热 1 小时(B)、0.2μm 过滤(C)及两种处理的组合(D)。加热处理未改变 INM 浓度,而过滤显著降低 INM 数量浓度,后续加热处理亦未改变 INM 浓度。这表明存在热稳定的 INMs,这些物质很可能为非蛋白质结构,部分自由悬浮但更大比例与微生物细胞相关联。
综上所述,所研究的海洋真核微生物产生的冰核活性物质(INMs)的化学本质是由游离态或与微生物细胞及其碎片结合的多糖构成。如前所述,三个论据支撑这一结论:(i)针对性定性物理化学实验阐明了所分析微生物样本中 INMs 的多糖特性;(ii)在海洋和陆地环境中同样存在的标准多糖表现出冰核活性(INA),其行为与微生物样本相似;(iii)总可溶性碳水化合物(TCCHO)可被定量检测(参见实验方法部分)并与观测到的 INA 相关联。不同微生物样本的 INM 浓度差异缩小至不足 2 个数量级(对比图 2A 与图 3)。当以 C-TCCHO 标准化后,微生物样本与标准多糖样本的 INA 相似性及差异缩小现象,强烈表明多糖类 INMs 是导致微生物样本中观测到结冰行为的原因。 此外,通过已开展的实验,我们可以排除其他潜在大分子物质(如蛋白质)引发观测到冰晶形成的可能性(图 2)。进一步结论表明,由于海洋冰核活性多糖(包括褐藻酸和琼脂)也由其他海洋生物产生,包括全球分布的宏藻与微藻,(88−91) 其在全球尺度上的重要性更为显著。鉴于本研究中分析的多种冰核活性多糖在归一化至 C-TCCHO 后呈现相似的冻结特性(图 3),且具有多样化的生物来源,直接评估冰核活性多糖而非单一微生物的全球影响是合理的。详细研究这些生物来源、其排放过程、垂直传输以及海洋与大气中冰核活性多糖的浓度,将成为未来研究中极具价值的课题。 最后,由于我们发现了多种具有冰活性的多糖,这种多样性也体现在图 3 中 nm,C-TCCHO 的分布上,因此我们采用基于经典成核理论(CNT)的模型对每种真核微生物和海洋多糖的 nm,C-TCCHO 单独曲线进行了参数化(方法详见 SI 第 S6 节,结果列于表 S4)。下文将采用条纹特拉伯菌(T. striatum)的推导参数化结果,并将其命名为 HSZ25。
Figure 3 图 3
Figure 3. High agreement of the ice nucleation activity of tested aquatic eukaryotic microorganisms with that of marine polysaccharides. The temperature-dependent ice nucleation site densities per carbohydrate carbon mass nm, C-TCCHO is presented with CNT-based parametrizations (parameters are presented in Table S4 in the SI). The derived CNT-parametrization of T. striatum is used for HSZ25.
图 3. 测试的水生真核微生物与海洋多糖的冰核活性高度吻合。图中展示了基于碳水化合物碳质量的温度依赖性冰核位点密度 nm,C-TCCHO,并采用基于经典成核理论(CNT)的参数化方法(相关参数见支持信息表 S4)。将 T. striatum 的 CNT 参数化结果应用于 HSZ25 样品。
3.2. Marine Polysaccharides Are Relevant Contributors to the INP Population in Remote Marine Regions Worldwide
3.2. 海洋多糖是全球偏远海域冰核颗粒群体的重要贡献组分
通过将 HSZ25 参数化方法应用于海洋多糖浓度(该浓度源自模拟海盐质量及实测海喷雾气溶胶中的多糖占比:积聚模态 0.5%、粗模态 0.1%,详见第 2.3 节),并结合矿物尘埃贡献的冰核颗粒(INPs),评估了海洋多糖类冰核物质(INMs)的重要性。(70) 将计算得出的 INP 浓度与全球海洋大气观测数据(-20 至-15°C:图 4 和表 S5;全温度范围:图 S5)进行对比。需注意的是,由于模型仅考虑矿物尘埃和海洋多糖作为 INP 类型,预计会低估温度高于-15°C 时的观测 INP 浓度(图 S5)。在此高温区间,其他类型 INP(如蛋白质类冰核物质(92))可能占据主导地位,但本研究无法确定其具体贡献。此外,矿物尘埃以外的陆地 INP(如陆地生物源 INP)也可能产生一定影响。
Figure 4 图 4
Figure 4. Modeled against observed INP concentration between −15 and −20 °C. Measurement data from 14 different campaigns (n = 5364; see Tab S5 and Figure S6 for references and regional coverage) in predominantly marine air masses was used. These were compared to annual mean INP concentrations derived from modeled mineral dust and sea salt concentrations simulated with a global model. For mineral dust INPs, the parametrization by Niedermeier et al., (70) and for marine polysaccharide INPs, the parametrization derived in this work was applied. Gray dots show the comparison between modeled mineral dust INPs and observation, whereas colored dots (color-code by observation temperature) present the sum of modeled mineral dust + marine polysaccharide INPs. For orientation, the figure shows the 1:1 line (solid) and the 1:10 and 10:1 lines (dashed).
图 4. 在-15 至-20°C 温度范围内模拟与观测的冰核颗粒(INP)浓度对比。研究采用了来自 14 个不同观测活动(n=5364;具体参考文献及区域覆盖范围参见表 S5 和图 S6)的测量数据,这些数据主要来自海洋气团。将全球模式模拟的矿物沙尘与海盐浓度推算出的年平均 INP 浓度与观测值进行对比:矿物沙尘 INP 采用 Niedermeier 等人(70)的参数化方案,海洋多糖 INP 则采用本研究推导的参数化方案。灰色圆点表示模拟矿物沙尘 INP 与观测值的对比,而彩色圆点(按观测温度进行颜色编码)表示模拟矿物沙尘+海洋多糖 INP 的总和。图中标有 1:1 比例线(实线)及 1:10 和 10:1 比例线(虚线)作为参照基准。
值得注意的是,尽管矿物粉尘在偏远海洋区域浓度较低,但在南半球温度低于-15°C 时仍对冰核粒子(INPs)具有显著且普遍存在的贡献,这与先前模型研究结果一致(4,55,56)。当在矿物粉尘 INPs 基础上加入海洋多糖来源的冰核物质(INMs)后,模型模拟的 INP 总浓度在温度高于-20°C 时显著增加,与观测数据吻合度明显提升(图 4,表 S5)。在-15 至-20°C 温度区间内,模拟 INP 浓度与观测值的偏差在 2 倍和 10 倍范围内的比例,对于所有南大洋航次而言,分别从 10%和 37%(仅考虑矿物粉尘 INPs 时)提升至 15%和 60%(表 S5)。个别航次(特别是偏远南大洋区域)的吻合度更为理想。由于北半球矿物粉尘丰度较高,非粉尘 INPs 的相对贡献较低,所有 INP 数据集的平均模拟改进幅度较弱(10 倍偏差范围内的吻合比例从 52%提升至 63%)。 将模拟海盐气溶胶中两种模态的多糖含量分别调整为 0.05%和 0.5%作为下限和上限估计值时,南大洋航次观测数据的吻合度达到 47%至 86%(相差 10 倍以内),所有航次数据的吻合度为 56%至 77%(表 S5)。
海喷雾气溶胶中海洋冰核粒子(INPs)的浓度可采用先前开发的参数化方案表示,该方案以海喷雾气溶胶表面积作为代用指标(59)(下文简称 M18)。但 M18 是基于非热不稳定性样品建立的,表明其中蛋白质类化合物等成分贡献较小。将 M18 参数化方案应用于模拟海盐浓度(而非 HSZ25)时,可获得类似的改进效果(即在矿物尘 INPs 基础上新增的 INPs),主要表现为与观测数据更吻合(2 倍和 10 倍范围内的符合比例见表 S5)。为比较两种参数化方案的性能,采用 10 倍范围内(在仅含矿物尘基础上)的符合度提升作为评价指标(公式 1)。在南大洋不同数据集和-15 至-20°C 温度区间内,HSZ25 参数化方案对 M18 方案 10 倍范围内符合度提升量的再现率为 30%~115%(包含北半球的所有观测数据集平均为 44%)。 在南大洋(所有航次平均 19%),当多糖含量为 0.05%时,重现比例仍达 10-100%;如表 S5 所示,随着多糖含量升至 0.5%的上限,该比例在南大洋(所有航次平均 104%)增至 100-120%。因此,作为 HSZ25 中唯一考虑的化合物类别,多糖在-15 至-20°C 范围内可解释大部分乃至全部海洋冰核粒子(如 M18 所示)。两种参数化方案的差异可能源于:其普遍不确定性(例如海盐气溶胶中的总海洋冰核粒子可能包含本研究未涉及的其他化合物)、假设的多糖含量及其时空变异性(当前模型尚未涵盖)、以及 M18 样本中可能存在的其他冰核类型(如成冰活性更高的多糖)。
在相关温度范围的高端(-15 至-16°C),海洋多糖产生的冰核颗粒(INP)浓度在海洋大气大部分区域(尤其是南半球)的年平均值与矿物尘 INP 浓度相当或更高(图 5)。当温度较低时,海洋多糖 INP 的重要性随矿物尘 INP 的增加而降低。在南半球偏远海域,模型模拟显示海洋多糖 INP 在低至约-19°C 时仍与矿物尘 INP 浓度相当,因此在混合相云相关的温度范围内,海洋多糖是偏远海域 INP 的重要来源。当温度更低时,矿物尘 INP 始终占据主导地位。
Figure 5 图 5
Figure 5. Percentage of modeled polysaccharide-based marine INPs in the sum of modeled INPs (mineral dust + marine polysaccharides) in the lowermost model layer for different temperatures. Annual mean INP concentrations were derived from mineral dust concentrations and from polysaccharides estimated based on sea salt concentrations simulated by a global model.
图 5. 最底层模式中不同温度下模拟的基于多糖的海洋冰核粒子(INPs)占模拟 INPs 总量(矿物粉尘+海洋多糖)的百分比。年均 INP 浓度由矿物粉尘浓度和基于全球模式模拟的海盐浓度估算的多糖浓度得出。
3.3. Implications for Modeling of INPs
3.3 对冰核粒子建模的启示
本研究表明,在-15 至-20°C 温度区间内,海洋大气中与温度相关的冰核数浓度主要部分可通过单一关键化学成分——具有冰活性的海洋多糖——进行描述。所选参数化函数基于经典成核理论(CNT)的物理基础,在大气模型应用中具有优势:它能复现观测到的冰核类型特异性自然极限,即真实呈现冻结起始温度并隐含最终冰核数量的上限。由此避免了传统对数线性参数化向无实测数据支持的温度区间进行可能无效的外推。此外,该模型框架可推广至其他冰核来源与类型(如陆源生物冰核物质或特定冰活性矿物粉尘组分),并能通过成核速率(应用接触角分布推导参数)而非冰核位点密度来实现冻结过程的时间依赖性描述。
从研究视角来看,本研究通过采用与冰形成存在因果关联的冰活性化学物质类别(而非仅与冰核活性相关的替代性气溶胶特性)来描述总冰核颗粒浓度,为深化冰形成过程认知开辟了新路径。尽管该理念仍需对冰活性化学物质类别、其排放途径及大气分布开展研究,但将使大气模型能够将冰形成与云冰晶化过程直接关联到具有真实时空变异性的关键成因上。目前针对矿物粉尘矿物学特征(93)和海洋生物大分子类别排放的建模方法已然存在(94),这为总冰核颗粒浓度的因果性描述提供了实现基础。
天然生物气溶胶组分对大气冰核粒子(INP)预算的重要作用,凸显了地球系统中生物圈与大气圈耦合的关键意义。随着气候变化减缓策略的实施,人为气溶胶排放预计将减少(95),自然气溶胶粒子对云微物理过程的影响将更为突出。在更清洁的环境中(即处于"气溶胶限制状态"的低云滴数条件下),云对气溶胶数浓度变化的敏感性会显著增强(96,97)。此外需特别注意,矿物沙尘排放始终存在区域差异性变化特征(98−100)。总体而言,由于人为源对大气 INP 预算贡献有限(101,102),在污染较轻的大气中,云滴与 INP 的数量关系可能发生改变,进而影响混合相云的云相态,最终作用于云辐射强迫效应。
Supporting Information 支持信息
点击复制章节链接Section link copied!
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.4c08014.
支持信息可免费在 https://pubs.acs.org/doi/10.1021/acs.est.4c08014 获取。
Additional details of the experimental setup, methods, and modeling approach (PDF)
实验设置、方法和建模方法的额外细节(PDF)
Terms & Conditions 条款与条件
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子版补充信息文件无需订阅 ACS 网络版即可获取。此类文件可按文章下载供研究使用(若相关文章附有公共使用许可,则该许可可能允许其他用途)。如需将文件用于其他用途,可通过 RightsLink 权限系统向 ACS 申请授权:http://pubs.acs.org/page/copyright/permissions.html。
Acknowledgments 致谢
点击复制章节链接Section link copied!
We thank Anke Rödger, Amelie Assenbaum, and Josephine Gundlach for the OC/EC and INP measurements, respectively. We are grateful to Paul DeMott, his colleagues, and André Welti for sharing their comprehensive data sets and Dennis Niedermeier for providing CNT-based dust parametrization. Funding for the research is provided by Leibniz Institute for Tropospheric Research (TROPOS) internal funding (R.S., S.H., S.Z.) and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, Projektnummer 268020496-TRR 172) within the Transregional Collaborative Research Center ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3 in subproject B04 (S.Z., F.S., and M.v.P.).
我们分别感谢 Anke Rödger、Amelie Assenbaum 和 Josephine Gundlach 进行的有机碳/元素碳(OC/EC)和冰核颗粒(INP)测量。衷心感谢 Paul DeMott 及其同事,以及 André Welti 分享其综合数据集,同时感谢 Dennis Niedermeier 提供基于经典成核理论(CNT)的沙尘参数化方案。本研究经费由莱布尼茨对流层研究所(TROPOS)内部资金(R.S.、S.H.、S.Z.)和德国研究基金会(DFG,项目编号 268020496-TRR 172)通过跨区域合作研究中心"北极放大:气候相关大气与地表过程及反馈机制(AC)³"的 B04 子项目(S.Z.、F.S.和 M.v.P.)提供。
References 参考文献
点击复制章节链接Section link copied!
This article references
102 other publications.
本文引用了 102 篇其他出版物。
- 1Tan, I.; Storelvmo, T.; Zelinka, M. D. Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 2016, 352, 224– 227, DOI: 10.1126/science.aad5300
1Tan, I.; Storelvmo, T.; Zelinka, M.D. 观测数据对混合相云的约束意味着更高的气候敏感性。Science 2016, 352, 224–227, DOI: 10.1126/science.aad5300Google Scholar 谷歌学术1Observational constraints on mixed-phase clouds imply higher climate sensitivityTan, Ivy; Storelvmo, Trude; Zelinka, Mark D.Science (Washington, DC, United States) (2016), 352 (6282), 224-227CODEN: SCIEAS; ISSN:0036-8075. (American Association for the Advancement of Science)Global climate model (GCM) ests. of the equil. global mean surface temp. response to a doubling of atm. CO2, measured by the equil. climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liq. droplets are constrained by global satellite observations. The higher ECS ests. are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. We point out the need for realistic representations of the supercooled liq. fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback. - 2McCluskey, C. S.; Hill, T. C. J.; Humphries, R. S.; Rauker, A. M.; Moreau, S.; Strutton, P. G.; Chambers, S. D.; Williams, A. G.; McRobert, I.; Ward, J.; Keywood, M. D.; Harnwell, J.; Ponsonby, W.; Loh, Z. M.; Krummel, P. B.; Protat, A.; Kreidenweis, S. M.; DeMott, P. J. Observations of Ice Nucleating Particles Over Southern Ocean Waters. Geophys. Res. Lett. 2018, 45, 11989– 11997, DOI: 10.1029/2018GL079981
2McCluskey, C. S.; Hill, T. C. J.; Humphries, R. S.; Rauker, A. M.; Moreau, S.; Strutton, P. G.; Chambers, S. D.; Williams, A. G.; McRobert, I.; Ward, J.; Keywood, M. D.; Harnwell, J.; Ponsonby, W.; Loh, Z. M.; Krummel, P. B.; Protat, A.; Kreidenweis, S. M.; DeMott, P. J.南大洋水域冰核粒子的观测研究. 地球物理研究快报. 2018, 45, 11989–11997, DOI: 10.1029/2018GL079981 - 3Tatzelt, C.; Henning, S.; Welti, A.; Baccarini, A.; Hartmann, M.; Gysel-Beer, M.; van Pinxteren, M.; Modini, R. L.; Schmale, J.; Stratmann, F. Circum-Antarctic abundance and properties of CCN and INPs. Atmos. Chem. Phys. 2022, 22, 9721– 9745, DOI: 10.5194/acp-22-9721-2022
3Tatzelt, C.; Henning, S.; Welti, A.; Baccarini, A.; Hartmann, M.; Gysel-Beer, M.; van Pinxteren, M.; Modini, R. L.; Schmale, J.; Stratmann, F. 环南极地区云凝结核与冰核粒子的丰度及特性研究. 大气化学与物理. 2022, 22, 9721–9745, DOI: 10.5194/acp-22-9721-2022 - 4Vergara-Temprado, J.; Murray, B. J.; Wilson, T. W.; O’Sullivan, D.; Browse, J.; Pringle, K. J.; Ardon-Dryer, K.; Bertram, A. K.; Burrows, S. M.; Ceburnis, D.; DeMott, P. J.; Mason, R. H.; O’Dowd, C. D.; Rinaldi, M.; Carslaw, K. S. Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations. Atmos. Chem. Phys. 2017, 17, 3637– 3658, DOI: 10.5194/acp-17-3637-2017
4Vergara-Temprado, J.; Murray, B. J.; Wilson, T. W.; O’Sullivan, D.; Browse, J.; Pringle, K. J.; Ardon-Dryer, K.; Bertram, A. K.; Burrows, S. M.; Ceburnis, D.; DeMott, P. J.; Mason, R. H.; O’Dowd, C. D.; Rinaldi, M.; Carslaw, K. S.长石与海洋有机气溶胶对全球冰核粒子浓度的贡献。大气化学与物理 2017, 17, 3637–3658, DOI: 10.5194/acp-17-3637-2017Google Scholar 谷歌学术4Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrationsVergara-Temprado, Jesus; Murray, Benjamin J.; Wilson, Theodore W.; O'Sullivan, Daniel; Browse, Jo; Pringle, Kirsty J.; Ardon-Dryer, Karin; Bertram, Allan K.; Burrows, Susannah M.; Ceburnis, Darius; De Mott, Paul J.; Mason, Ryan H.; O'Dowd, Colin D.; Rinaldi, Matteo; Carslaw, Ken S.Atmospheric Chemistry and Physics (2017), 17 (5), 3637-3658CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Ice-nucleating particles (INPs) are known to affect the amt. of ice in mixed-phase clouds, thereby influencing many of their properties. The atm. INP concn. changes by orders of magnitude from terrestrial to marine environments, which typically contain much lower concns. Many modeling studies use parameterizations for heterogeneous ice nucleation and cloud ice processes that do not account for this difference because they were developed based on INP measurements made predominantly in terrestrial environments without considering the aerosol compn. Errors in the assumed INP concn. will influence the simulated amt. of ice in mixed-phase clouds, leading to errors in top-of-atm. radiative flux and ultimately the climate sensitivity of the model. Here we develop a global model of INP concns. relevant for mixed-phase clouds based on lab. and field measurements of ice nucleation by K-feldspar (an ice-active component of desert dust) and marine org. aerosols (from sea spray). The simulated global distribution of INP concns. based on these two species agrees much better with currently available ambient measurements than when INP concns. are assumed to depend only on temp. or particle size. Underestimation of INP concns. in some terrestrial locations may be due to the neglect of INPs from other terrestrial sources. Our model indicates that, on a monthly av. basis, desert dusts dominate the contribution to the INP population over much of the world, but marine orgs. become increasingly important over remote oceans and they dominate over the Southern Ocean. However, day-to-day variability is important. Because desert dust aerosol tends to be sporadic, marine org. aerosols dominate the INP population on many days per mo over much of the mid- and high-latitude Northern Hemisphere. This study advances our understanding of which aerosol species need to be included in order to adequately describe the global and regional distribution of INPs in models, which will guide ice nucleation researchers on where to focus future lab. and field work. - 5Atkinson, J. D.; Murray, B. J.; Woodhouse, M. T.; Whale, T. F.; Baustian, K. J.; Carslaw, K. S.; Dobbie, S.; O’Sullivan, D.; Malkin, T. L. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 2013, 498, 355– 358, DOI: 10.1038/nature12278
5 阿特金森,J.D.;默里,B.J.;伍德豪斯,M.T.;惠尔,T.F.;鲍斯蒂安,K.J.;卡尔斯劳,K.S.;多比,S.;奥沙利文,D.;马尔金,T.L.长石在矿物粉尘混合相云冰核化中的重要性。《自然》2013 年第 498 卷,第 355-358 页,DOI: 10.1038/nature12278Google Scholar 谷歌学术5The importance of feldspar for ice nucleation by mineral dust in mixed-phase cloudsAtkinson, James D.; Murray, Benjamin J.; Woodhouse, Matthew T.; Whale, Thomas F.; Baustian, Kelly J.; Carslaw, Kenneth S.; Dobbie, Steven; O'Sullivan, Daniel; Malkin, Tamsin L.Nature (London, United Kingdom) (2013), 498 (7454), 355-358CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)The amt. of ice present in mixed-phase clouds, which contain both supercooled liq. water droplets and ice particles, affects cloud extent, lifetime, particle size and radiative properties. The freezing of cloud droplets can be catalyzed by the presence of aerosol particles known as ice nuclei. One of the most important ice nuclei is thought to be mineral dust aerosol from arid regions. It is generally assumed that clay minerals, which contribute approx. two-thirds of the dust mass, dominate ice nucleation by mineral dust, and many exptl. studies have therefore focused on these materials. Here we use an established droplet-freezing technique to show that feldspar minerals dominate ice nucleation by mineral dusts under mixed-phase cloud conditions, despite feldspar being a minor component of dust emitted from arid regions. We also find that clay minerals are relatively unimportant ice nuclei. Our results from a global aerosol model study suggest that feldspar ice nuclei are globally distributed and that feldspar particles may account for a large proportion of the ice nuclei in Earth's atm. that contribute to freezing at temps. below about -15 °C. - 6DeMott, P. J.; Hill, T. C. J.; McCluskey, C. S.; Prather, K. A.; Collins, D. B.; Sullivan, R. C.; Ruppel, M. J.; Mason, R. H.; Irish, V. E.; Lee, T.; Hwang, C. Y.; Rhee, T. S.; Snider, J. R.; McMeeking, G. R.; Dhaniyala, S.; Lewis, E. R.; Wentzell, J. J. B.; Abbatt, J.; Lee, C.; Sultana, C. M.; Ault, A. P.; Axson, J. L.; Diaz Martinez, M.; Venero, I.; Santos-Figueroa, G.; Stokes, M. D.; Deane, G. B.; Mayol-Bracero, O. L.; Grassian, V. H.; Bertram, T. H.; Bertram, A. K.; Moffett, B. F.; Franc, G. D. Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 5797– 5803, DOI: 10.1073/pnas.1514034112
6 德莫特,P.J.;希尔,T.C.J.;麦克拉斯基,C.S.;普拉瑟,K.A.;柯林斯,D.B.;沙利文,R.C.;鲁佩尔,M.J.;梅森,R.H.;爱尔兰,V.E.;李,T.;黄,C.Y.;李,T.S.;斯奈德,J.R.;麦克米金,G.R.;达尼亚拉,S.;刘易斯,E.R.;温策尔,J.J.B.;阿巴特,J.;李,C.;苏尔塔娜,C.M.;奥尔特,A.P.;阿克森,J.L.;迪亚斯·马丁内斯,M.;维内罗,I.;桑托斯-菲格罗亚,G.;斯托克斯,M.D.;迪恩,G.B.;马约尔-布拉塞罗,O.L.;格拉西安,V.H.;伯特伦,T.H.;伯特伦,A.K.;莫菲特,B.F.;弗兰克,G.D.海盐气溶胶作为冰核粒子的独特来源。《美国国家科学院院刊》2016 年第 113 卷,第 5797-5803 页,DOI: 10.1073/pnas.1514034112Google Scholar 谷歌学术6Sea spray aerosol as a unique source of ice nucleating particlesDeMott, Paul J.; Hill, Thomas C. J.; McCluskey, Christina S.; Prather, Kimberly A.; Collins, Douglas B.; Sullivan, Ryan C.; Ruppel, Matthew J.; Mason, Ryan H.; Irish, Victoria E.; Lee, Taehyoung; Hwang, Chung Yeon; Rhee, Tae Siek; Snider, Jefferson R.; McMeeking, Gavin R.; Dhaniyala, Suresh; Lewis, Ernie R.; Wentzell, Jeremy J. B.; Abbatt, Jonathan; Lee, Christopher; Sultana, Camille M.; Ault, Andrew P.; Axson, Jessica L.; Martinez, Myrelis Diaz; Venero, Ingrid; Santos-Figueroa, Gilmarie; Stokes, M. Dale; Deane, Grant B.; Mayol-Bracero, Olga L.; Grassian, Vicki H.; Bertram, Timothy H.; Bertram, Allan K.; Moffett, Bruce F.; Franc, Gary D.Proceedings of the National Academy of Sciences of the United States of America (2016), 113 (21), 5797-5803CODEN: PNASA6; ISSN:0027-8424. (National Academy of Sciences)Ice nucleating particles (INPs) are vital for ice initiation in, and pptn. from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a lab. flume to produce SSA. The no. concns. of INPs from lab.-generated SSA, when normalized to typical total aerosol no. concns. in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP no. concns. active within liq. water droplets increase exponentially in no. with a decrease in temp. below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in assocn. with phytoplankton blooms is also shown in lab. simulations. Nevertheless, INP no. concns., or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concns. or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and pptn. within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean. - 7Zhao, X.; Liu, X.; Burrows, S.; DeMott, P. J.; Diao, M.; McFarquhar, G. M.; Patade, S.; Phillips, V.; Roberts, G. C.; Sanchez, K. J.; Shi, Y.; Zhang, M. Important Ice Processes Are Missed by the Community Earth System Model in Southern Ocean Mixed-Phase Clouds: Bridging SOCRATES Observations to Model Developments. J. Geophys. Res. Atmos. 2023, 128, e2022JD037513 DOI: 10.1029/2022JD037513
7 赵旭; 刘翔; 伯罗斯; 德莫特; 刁明; 麦克法夸尔; 帕塔德; 菲利普斯; 罗伯茨; 桑切斯; 石阳; 张明《社区地球系统模型在南大洋混合相云中遗漏的重要冰过程:将 SOCRATES 观测与模型发展相连接》。《地球物理研究杂志:大气》2023 年第 128 卷,文章编号 e2022JD037513,DOI:10.1029/2022JD037513 - 8DeMott, P. J.; Prenni, A. J.; Liu, X.; Kreidenweis, S. M.; Petters, M. D.; Twohy, C. H.; Richardson, M. S.; Eidhammer, T.; Rogers, D. C. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 11217– 11222, DOI: 10.1073/pnas.0910818107
8 德莫特; 普伦尼; 刘翔; 克雷登维斯; 佩特斯; 图希; 理查德森; 艾德哈默; 罗杰斯《预测全球大气冰核分布及其对气候的影响》。《美国国家科学院院刊》2010 年第 107 卷,第 11217–11222 页,DOI:10.1073/pnas.0910818107Google Scholar 《多糖——海洋源冰核颗粒的重要组成成分 | 环境科学与技术》8Predicting global atmospheric ice nuclei distributions and their impacts on climateDeMott P J; Prenni A J; Liu X; Kreidenweis S M; Petters M D; Twohy C H; Richardson M S; Eidhammer T; Rogers D CProceedings of the National Academy of Sciences of the United States of America (2010), 107 (25), 11217-22 ISSN:.Knowledge of cloud and precipitation formation processes remains incomplete, yet global precipitation is predominantly produced by clouds containing the ice phase. Ice first forms in clouds warmer than -36 degrees C on particles termed ice nuclei. We combine observations from field studies over a 14-year period, from a variety of locations around the globe, to show that the concentrations of ice nuclei active in mixed-phase cloud conditions can be related to temperature and the number concentrations of particles larger than 0.5 microm in diameter. This new relationship reduces unexplained variability in ice nuclei concentrations at a given temperature from approximately 10(3) to less than a factor of 10, with the remaining variability apparently due to variations in aerosol chemical composition or other factors. When implemented in a global climate model, the new parameterization strongly alters cloud liquid and ice water distributions compared to the simple, temperature-only parameterizations currently widely used. The revised treatment indicates a global net cloud radiative forcing increase of approximately 1 W m(-2) for each order of magnitude increase in ice nuclei concentrations, demonstrating the strong sensitivity of climate simulations to assumptions regarding the initiation of cloud glaciation. - 9Overland, J.; Dunlea, E.; Box, J. E.; Corell, R.; Forsius, M.; Kattsov, V.; Olseng, M. S.; Pawlak, J.; Reiersen, L. O.; Wang, M. Y. The urgency of Arctic change. Polar Sci. 2019, 21, 6– 13, DOI: 10.1016/j.polar.2018.11.008
9Overland, J.; Dunlea, E.; Box, J. E.; Corell, R.; Forsius, M.; Kattsov, V.; Olseng, M. S.; Pawlak, J.; Reiersen, L. O.; Wang, M. Y. 北极变化的紧迫性. 极地科学 2019, 21, 6–13, DOI: 10.1016/j.polar.2018.11.008 - 10Sallée, J.-B. Southern Ocean Warming. Oceanography 2018, 31, 52– 62, DOI: 10.5670/oceanog.2018.215
10Sallée, J.-B.《南大洋变暖》。《海洋学》2018 年第 31 期,第 52–62 页,DOI: 10.5670/oceanog.2018.215 - 11Swart, N. C.; Gille, S. T.; Fyfe, J. C.; Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 2018, 11, 836, DOI: 10.1038/s41561-018-0226-1
11 斯沃特,N. C.;吉列,S. T.;法伊夫,J. C.;吉列特,N. P. 温室气体排放与臭氧消耗驱动近期南大洋变暖与淡化。《自然·地球科学》2018 年第 11 卷第 836 页,DOI:10.1038/s41561-018-0226-1 - 12Murray, B. J.; Carslaw, K. S.; Field, P. R. Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles. Atmos. Chem. Phys. 2021, 21, 665– 679, DOI: 10.5194/acp-21-665-2021
12Murray, B. J.; Carslaw, K. S.; Field, P. R.观点:云相态气候反馈与冰核粒子的重要性。Atmos. Chem. Phys. 2021, 21, 665– 679, DOI: 10.5194/acp-21-665-2021Google Scholar 谷歌学术12Opinion: cloud-phase climate feedback and the importance of ice-nucleating particlesMurray, Benjamin J.; Carslaw, Kenneth S.; Field, Paul R.Atmospheric Chemistry and Physics (2021), 21 (2), 665-679CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Shallow clouds covering vast areas of the world's middle- and high-latitude oceans play a key role in dampening the global temp. rise assocd. with CO2. These clouds, which contain both ice and supercooled water, respond to a warming world by transitioning to a state with more liq. water and a greater albedo, resulting in a neg. "cloud-phase" climate feedback component. Here we argue that the magnitude of the neg. cloud-phase feedback component depends on the amt. and nature of the small fraction of aerosol particles that can nucleate ice crystals. We propose that a concerted research effort is required to reduce substantial uncertainties related to the poorly understood sources, concn., seasonal cycles and nature of these ice-nucleating particles (INPs) and their rudimentary treatment in climate models. The topic is important because many climate models may have overestimated the magnitude of the cloud-phase feedback, and those with better representation of shallow oceanic clouds predict a substantially larger climate warming. We make the case that understanding the present-day INP population in shallow clouds in the cold sector of cyclone systems is particularly crit. for defining present-day cloud phase and therefore how the clouds respond to warming. We also need to develop a predictive capability for future INP emissions and sinks in a warmer world with less ice and snow and potentially stronger INP sources. - 13Wendisch, M.; Bruckner, M.; Crewell, S.; Ehrlich, A.; Notholt, J.; Lupkes, C.; Macke, A.; Burrows, J. P.; Rinke, A.; Quaas, J.; Maturilli, M.; Schemann, V.; Shupe, M. D.; Akansu, E. F.; Barrientos-Velasco, C.; Barfuss, K.; Blechschmidt, A. M.; Block, K.; Bougoudis, I.; Bozem, H.; Bockmann, C.; Bracher, A.; Bresson, H.; Bretschneider, L.; Buschmann, M.; Chechin, D. G.; Chylik, J.; Dahlke, S.; Deneke, H.; Dethloff, K.; Donth, T.; Dorn, W.; Dupuy, R.; Ebell, K.; Egerer, U.; Engelmann, R.; Eppers, O.; Gerdes, R.; Gierens, R.; Gorodetskaya, I. V.; Gottschalk, M.; Griesche, H.; Gryanik, V. M.; Handorf, D.; Harm-Altstadter, B.; Hartmann, J.; Hartmann, M.; Heinold, B.; Herber, A.; Herrmann, H.; Heygster, G.; Hoschel, I.; Hofmann, Z.; Holemann, J.; Hunerbein, A.; Jafariserajehlou, S.; Jakel, E.; Jacobi, C.; Janout, M.; Jansen, F.; Jourdan, O.; Juranyi, Z.; Kalesse-Los, H.; Kanzow, T.; Kathner, R.; Kliesch, L. L.; Klingebiel, M.; Knudsen, E. M.; Kovacs, T.; Kortke, W.; Krampe, D.; Kretzschmar, J.; Kreyling, D.; Kulla, B.; Kunkel, D.; Lampert, A.; Lauer, M.; Lelli, L.; von Lerber, A.; Linke, O.; Lohnert, U.; Lonardi, M.; Losa, S. N.; Losch, M.; Maahn, M.; Mech, M.; Mei, L.; Mertes, S.; Metzner, E.; Mewes, D.; Michaelis, J.; Mioche, G.; Moser, M.; Nakoudi, K.; Neggers, R.; Neuber, R.; Nomokonova, T.; Oelker, J.; Papakonstantinou-Presvelou, I.; Patzold, F. Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)(3) Project. Bull. Am. Meteorol. Soc. 2023, 104, E208– E242, DOI: 10.1175/BAMS-D-21-0218.1
13 温迪施, M.; 布鲁克纳, M.; 克鲁维尔, S.; 埃利希, A.; 诺特霍尔特, J.; 吕普克斯, C.; 马凯, A.; 伯罗斯, J. P.; 林克, A.; 夸斯, J.; 马图里利, M.; 舍曼, V.; 舒佩, M. D.; 阿坎苏, E. F.; 巴里恩托斯-贝拉斯科, C.; 巴夫斯, K.; 布莱希施密特, A. M.; 布洛克, K.; 布古迪斯, I.; 博泽姆, H.; 伯克曼, C.; 布拉赫, A.; 布雷松, H.; 布雷特施奈德, L.; 布施曼, M.; 切钦, D. G.; 奇利克, J.; 达尔克, S.; 德内克, H.; 德特洛夫, K.; 东特, T.; 多恩, W.; 迪皮伊, R.; 埃贝尔, K.; 埃格勒, U.; 恩格尔曼, R.; 埃珀斯, O.; 格德斯, R.; 吉伦斯, R.; 戈罗杰茨卡娅, I. V.; 戈特沙尔克, M.; 格里舍, H.; 格里亚尼克, V. M.; 汉多夫, D.; 哈尔姆-阿尔特施泰特, B.; 哈特曼, J.; 哈特曼, M.; 海因霍尔德, B.; 赫伯, A.; 赫尔曼, H.; 海格斯特, G.; 霍舍尔, I.; 霍夫曼, Z.; 霍勒曼, J.; 许纳拜因, A.; 贾法里塞拉杰卢, S.; 雅克尔, E.; 雅各比, C.; 亚努特, M.; 扬森, F.; 茹尔当, O.; 尤兰尼, Z.; 卡莱塞-洛斯, H.; 坎佐, T.; 卡特纳, R.; 克利施, L. L.; 克林格比尔, M.; 克努森, E. M.; 科瓦奇, T.; 科特克, W.; 克兰佩, D.; 克雷奇马尔, J.; 克赖林, D.; 库拉, B.; 昆克尔, D.; 兰佩特, A.; 劳尔, M.; 莱利, L.; 冯·勒伯, A.; 林克, O.; 勒纳特, U.; 洛纳迪, M.; 洛萨, S. N.; Losch, M.; Maahn, M.; Mech, M.; Mei, L.; Mertes, S.; Metzner, E.; Mewes, D.; Michaelis, J.; Mioche, G.; Moser, M.; Nakoudi, K.; Neggers, R.; Neuber, R.; Nomokonova, T.; Oelker, J.; Papakonstantinou-Presvelou, I.; Patzold, F. 大气与地表过程及反馈机制对北极放大的影响:(AC)³项目初步成果与展望综述。美国气象学会通报 2023 年第 104 卷 E208–E242 页,DOI: 10.1175/BAMS-D-21-0218.1 - 14Schnell, R. C.; Vali, G. Freezing nuclei in marine waters. Tellus 2022, 27, 321– 323, DOI: 10.3402/tellusa.v27i3.9911
14Schnell, R. C.; Vali, G. 海洋水域中的冰核粒子。《地球物理学报》2022 年第 27 卷,第 321–323 页,DOI: 10.3402/tellusa.v27i3.9911 - 15Wilson, T. W.; Ladino, L. A.; Alpert, P. A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, S. M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, G.; Miller, L. A.; Najera, J. J.; Polishchuk, E.; Rae, S.; Schiller, C. L.; Si, M.; Temprado, J. V.; Whale, T. F.; Wong, J. P. S.; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, J. P. D.; Aller, J. Y.; Bertram, A. K.; Knopf, D. A.; Murray, B. J. A marine biogenic source of atmospheric ice-nucleating particles. Nature 2015, 525, 234, DOI: 10.1038/nature14986
15Wilson, T. W.; Ladino, L. A.; Alpert, P. A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, S. M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, G.; Miller, L. A.; Najera, J. J.; Polishchuk, E.; Rae, S.; Schiller, C. L.; Si, M.; Temprado, J. V.; Whale, T. F.; Wong, J. P. S.; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, J. P. D.; Aller, J. Y.; Bertram, A. K.; Knopf, D. A.; Murray, B. J. 大气冰核粒子的海洋生物来源。《自然》2015 年第 525 卷,第 234 页,DOI: 10.1038/nature14986Google Scholar 谷歌学术15A marine biogenic source of atmospheric ice-nucleating particlesWilson, Theodore W.; Ladino, Luis A.; Alpert, Peter A.; Breckels, Mark N.; Brooks, Ian M.; Browse, Jo; Burrows, Susannah M.; Carslaw, Kenneth S.; Huffman, J. Alex; Judd, Christopher; Kilthau, Wendy P.; Mason, Ryan H.; McFiggans, Gordon; Miller, Lisa A.; Najera, Juan J.; Polishchuk, Elena; Rae, Stuart; Schiller, Corinne L.; Si, Meng; Temprado, Jesus Vergara; Whale, Thomas F.; Wong, Jenny P. S.; Wurl, Oliver; Yakobi-Hancock, Jacqueline D.; Abbatt, Jonathan P. D.; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.Nature (London, United Kingdom) (2015), 525 (7568), 234-238CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)The amt. of ice present in clouds can affect cloud lifetime, pptn. and radiative properties. The formation of ice in clouds is facilitated by the presence of airborne ice-nucleating particles. Sea spray is one of the major global sources of atm. particles, but it is unclear to what extent these particles are capable of nucleating ice. Sea-spray aerosol contains large amts. of org. material that is ejected into the atm. during bubble bursting at the organically enriched sea-air interface or sea surface microlayer. Here we show that org. material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice-nucleating material is probably biogenic and less than approx. 0.2 μm in size. We find that exudates sepd. from cells of the marine diatom Thalassiosira pseudonana nucleate ice, and propose that org. material assocd. with phytoplankton cell exudates is a likely candidate for the obsd. ice-nucleating ability of the microlayer samples. Global model simulations of marine org. aerosol, in combination with our measurements, suggest that marine org. material may be an important source of ice-nucleating particles in remote marine environments such as the Southern Ocean, North Pacific Ocean and North Atlantic Ocean. - 16McCluskey, C. S.; Hill, T. C. J.; Malfatti, F.; Sultana, C. M.; Lee, C.; Santander, M. V.; Beall, C. M.; Moore, K. A.; Cornwell, G. C.; Collins, D. B.; Prather, K. A.; Jayarathne, T.; Stone, E. A.; Azam, F.; Kreidenweis, S. M.; DeMott, P. J. A Dynamic Link between Ice Nucleating Particles Released in Nascent Sea Spray Aerosol and Oceanic Biological Activity during Two Mesocosm Experiments. J. Atmos. Sci. 2017, 74, 151– 166, DOI: 10.1175/JAS-D-16-0087.1
16McCluskey, C. S.; Hill, T. C. J.; Malfatti, F.; Sultana, C. M.; Lee, C.; Santander, M. V.; Beall, C. M.; Moore, K. A.; Cornwell, G. C.; Collins, D. B.; Prather, K. A.; Jayarathne, T.; Stone, E. A.; Azam, F.; Kreidenweis, S. M.; DeMott, P. J. 两项中宇宙实验中新生海喷雾气溶胶释放的冰核粒子与海洋生物活性之间的动态关联。《大气科学杂志》2017 年第 74 卷,第 151-166 页,DOI: 10.1175/JAS-D-16-0087.1 - 17McCluskey, C. S.; Hill, T. C. J.; Sultana, C. M.; Laskina, O.; Trueblood, J.; Santander, M. V.; Beall, C. M.; Michaud, J. M.; Kreidenweis, S. M.; Prather, K. A.; Grassian, V.; DeMott, P. J. A Mesocosm Double Feature: Insights into the Chemical Makeup of Marine Ice Nucleating Particles. J. Atmos. Sci. 2018, 75, 2405– 2423, DOI: 10.1175/JAS-D-17-0155.1
17McCluskey, C. S.; Hill, T. C. J.; Sultana, C. M.; Laskina, O.; Trueblood, J.; Santander, M. V.; Beall, C. M.; Michaud, J. M.; Kreidenweis, S. M.; Prather, K. A.; Grassian, V.; DeMott, P. J. 中宇宙双幕剧:海洋冰核粒子化学组成的启示。《大气科学杂志》2018 年第 75 卷,第 2405-2423 页,DOI: 10.1175/JAS-D-17-0155.1 - 18Creamean, J. M.; Kirpes, R. M.; Pratt, K. A.; Spada, N. J.; Maahn, M.; de Boer, G.; Schnell, R. C.; China, S. Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location. Atmos. Chem. Phys. 2018, 18, 18023– 18042, DOI: 10.5194/acp-18-18023-2018
18Creamean, J. M.; Kirpes, R. M.; Pratt, K. A.; Spada, N. J.; Maahn, M.; de Boer, G.; Schnell, R. C.; China, S. 北极油田连续春季观测期间海洋与陆地对冰核粒子的影响。《大气化学与物理》2018 年第 18 卷,第 18023-18042 页,DOI: 10.5194/acp-18-18023-2018Google Scholar 谷歌学术18Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield locationCreamean, Jessie M.; Kirpes, Rachel M.; Pratt, Kerri A.; Spada, Nicholas J.; Maahn, Maximilian; de Boer, Gijs; Schnell, Russell C.; China, SwarupAtmospheric Chemistry and Physics (2018), 18 (24), 18023-18042CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Aerosols that serve as ice nucleating particles (INPs) have the potential to modulate cloud microphys. properties and can therefore impact cloud radiative forcing (CRF) and pptn. formation processes. In remote regions such as the Arctic, aerosol-cloud interactions are severely understudied yet may have significant implications for the surface energy budget and its impact on sea ice and snow surfaces. Further, uncertainties in model representations of heterogeneous ice nucleation are a significant hindrance to simulating Arctic mixed-phase cloud processes. We present results from a campaign called INPOP (Ice Nucleating Particles at Oliktok Point), which took place at a US Department of Energy Atm. Radiation Measurement (DOE ARM) facility in the northern Alaskan Arctic. Three time- and size-resolved aerosol impactors were deployed from 1 March to 31 May 2017 for offline ice nucleation and chem. analyses and were co-located with routine measurements of aerosol no. and size. The largest particles (i.e., ≥3 ´i.m. or "coarse mode") were the most efficient INPs by inducing freezing at the warmest temps. - 19Trueblood, J. V.; Nicosia, A.; Engel, A.; Zäncker, B.; Rinaldi, M.; Freney, E.; Thyssen, M.; Obernosterer, I.; Dinasquet, J.; Belosi, F.; Tovar-Sánchez, A.; Rodriguez-Romero, A.; Santachiara, G.; Guieu, C.; Sellegri, K. A two-component parameterization of marine ice-nucleating particles based on seawater biology and sea spray aerosol measurements in the Mediterranean Sea. Atmos. Chem. Phys. 2021, 21, 4659– 4676, DOI: 10.5194/acp-21-4659-2021
19Trueblood, J. V.; Nicosia, A.; Engel, A.; Zäncker, B.; Rinaldi, M.; Freney, E.; Thyssen, M.; Obernosterer, I.; Dinasquet, J.; Belosi, F.; Tovar-Sánchez, A.; Rodriguez-Romero, A.; Santachiara, G.; Guieu, C.; Sellegri, K. 基于地中海海水生物学与海喷雾气溶胶测量的海洋冰核粒子双组分参数化研究。《大气化学与物理学》2021 年第 21 卷,第 4659–4676 页,DOI: 10.5194/acp-21-4659-2021 - 20Creamean, J. M.; Cross, J. N.; Pickart, R.; McRaven, L.; Lin, P.; Pacini, A.; Hanlon, R.; Schmale, D. G.; Ceniceros, J.; Aydell, T.; Colombi, N.; Bolger, E.; DeMott, P. J. Ice Nucleating Particles Carried From Below a Phytoplankton Bloom to the Arctic Atmosphere. Geophys. Res. Lett. 2019, 46, 8572– 8581, DOI: 10.1029/2019GL083039
20Creamean, J. M.; Cross, J. N.; Pickart, R.; McRaven, L.; Lin, P.; Pacini, A.; Hanlon, R.; Schmale, D. G.; Ceniceros, J.; Aydell, T.; Colombi, N.; Bolger, E.; DeMott, P. J. 浮游植物水华下方冰核粒子向北极大气的传输过程. 地球物理研究快报. 2019, 46, 8572–8581, DOI: 10.1029/2019GL083039 - 21Schnell, R. C. Ice nuclei produced by laboratory cultured marine phytoplankton. Geophys. Res. Lett. 1975, 2, 500– 502, DOI: 10.1029/GL002i011p00500
21Schnell, R.C. 实验室培养海洋浮游植物产生的冰核。地球物理研究快报。1975 年,第 2 卷,500-502 页,DOI: 10.1029/GL002i011p00500 - 22Schnell, R. C.; Vali, G. Biogenic ice nuclei: part 1. terrestrial and marine sources. J. Atmos. Sci. 1976, 33, 1554– 1564, DOI: 10.1175/1520-0469(1976)033<1554:BINPIT>2.0.CO;2
22Schnell, R.C.; Vali, G. 生物源冰核:第一部分。陆地与海洋来源。大气科学杂志。1976 年,第 33 卷,1554-1564 页,DOI: 10.1175/1520-0469(1976)033<1554:BINPIT>2.0.CO;2 - 23Mitts, B. A.; Wang, X.; Lucero, D. D.; Beall, C. M.; Deane, G. B.; DeMott, P. J.; Prather, K. A. Importance of Supermicron Ice Nucleating Particles in Nascent Sea Spray. Geophys. Res. Lett. 2021, 48, e2020GL089633 DOI: 10.1029/2020GL089633
23Mitts, B.A.; Wang, X.; Lucero, D.D.; Beall, C.M.; Deane, G.B.; DeMott, P.J.; Prather, K.A. 超微米冰核粒子在新出海盐气溶胶中的重要性。地球物理研究快报。2021 年,第 48 卷,e2020GL089633,DOI: 10.1029/2020GL089633 - 24Alpert, P. A.; Kilthau, W. P.; O’Brien, R. E.; Moffet, R. C.; Gilles, M. K.; Wang, B.; Laskin, A.; Aller, J. Y.; Knopf, D. A. Ice-nucleating agents in sea spray aerosol identified and quantified with a holistic multimodal freezing model. Sci. Adv. 2022, 8, eabq6842 DOI: 10.1126/sciadv.abq6842
24Alpert, P.A.; Kilthau, W.P.; O'Brien, R.E.; Moffet, R.C.; Gilles, M.K.; Wang, B.; Laskin, A.; Aller, J.Y.; Knopf, D.A. 采用整体多模态冻结模型对海盐气溶胶中冰核活性物质的鉴定与定量。科学进展。2022 年,第 8 卷,eabq6842,DOI: 10.1126/sciadv.abq6842 - 25Irish, V. E.; Elizondo, P.; Chen, J.; Chou, C.; Charette, J.; Lizotte, M.; Ladino, L. A.; Wilson, T. W.; Gosselin, M.; Murray, B. J.; Polishchuk, E.; Abbatt, J. P. D.; Miller, L. A.; Bertram, A. K. Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater. Atmos. Chem. Phys. 2017, 17, 10583– 10595, DOI: 10.5194/acp-17-10583-2017
25Irish, V. E.; Elizondo, P.; Chen, J.; Chou, C.; Charette, J.; Lizotte, M.; Ladino, L. A.; Wilson, T. W.; Gosselin, M.; Murray, B. J.; Polishchuk, E.; Abbatt, J. P. D.; Miller, L. A.; Bertram, A. K. 加拿大北极海域表层微层与整体海水中的冰核粒子。Atmos. Chem. Phys. 2017, 17, 10583–10595, DOI: 10.5194/acp-17-10583-2017 - 26Gong, X.; Wex, H.; van Pinxteren, M.; Triesch, N.; Fomba, K. W.; Lubitz, J.; Stolle, C.; Robinson, T. B.; Müller, T.; Herrmann, H.; Stratmann, F. Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level - Part 2: Ice-nucleating particles in air, cloud and seawater. Atmos. Chem. Phys. 2020, 20, 1451– 1468, DOI: 10.5194/acp-20-1451-2020
26 龚旭;韦克斯;范·平克斯特伦;特里施;丰巴;卢比茨;斯托勒;罗宾逊;穆勒;赫尔曼;斯特拉特曼。佛得角近海平面与云层气溶胶颗粒特征研究(第二部分):空气、云层与海水中的冰核粒子。《大气化学与物理》2020 年第 20 卷,1451-1468 页,DOI: 10.5194/acp-20-1451-2020 - 27Decesari, S.; Paglione, M.; Rinaldi, M.; Dall’Osto, M.; Simó, R.; Zanca, N.; Volpi, F.; Facchini, M. C.; Hoffmann, T.; Götz, S.; Kampf, C. J.; O’Dowd, C.; Ceburnis, D.; Ovadnevaite, J.; Tagliavini, E. Shipborne measurements of Antarctic submicron organic aerosols: an NMR perspective linking multiple sources and bioregions. Atmos. Chem. Phys. 2020, 20, 4193– 4207, DOI: 10.5194/acp-20-4193-2020
27 德切萨里;帕廖内;里纳尔迪;达洛斯特;西莫;赞卡;沃尔皮;法基尼;霍夫曼;格茨;坎普夫;奥道尔;塞伯尼斯;奥瓦德内瓦特;塔利亚维尼。南极亚微米有机气溶胶船载测量:基于核磁共振的多源与生物区域关联分析。《大气化学与物理》2020 年第 20 卷,4193-4207 页,DOI: 10.5194/acp-20-4193-2020Google Scholar 谷歌学术27Shipborne measurements of Antarctic submicron organic aerosols: an NMR perspective linking multiple sources and bioregionsDecesari, Stefano; Paglione, Marco; Rinaldi, Matteo; Dall'Osto, Manuel; Simo, Rafel; Zanca, Nicola; Volpi, Francesca; Facchini, Maria Cristina; Hoffmann, Thorsten; Gotz, Sven; Kampf, Christopher Johannes; O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Tagliavini, EmilioAtmospheric Chemistry and Physics (2020), 20 (7), 4193-4207CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)The concns. of submicron aerosol particles in maritime regions around Antarctica are influenced by the extent of sea ice. This effect is two ways: on one side, sea ice regulates the prodn. of particles by sea spray (primary aerosols); on the other side, it hosts complex communities of organisms emitting precursors for secondary particles. Past studies documenting the chem. compn. of fine aerosols in Antarctica indicate various potential primary and secondary sources active in coastal areas, in offshore marine regions, and in the sea ice itself. To complement the aerosol source apportionment performed using online mass spectrometric techniques, here we discuss the outcomes of offline spectroscopic anal. performed by NMR (NMR) spectroscopy. The anal. of water-sol. org. carbon (WSOC) in ambient submicron aerosol samples shows distinct NMR fingerprints for three bioregions: (1) the open Southern Ocean pelagic environments, in which aerosols are enriched with primary marine particles contg. lipids and sugars; (2) sympagic areas in the Weddell Sea, where secondary org. compds., including methanesulfonic acid and semivolatile amines abound in the aerosol compn.; and (3) terrestrial coastal areas, traced by sugars such as sucrose, emitted by land vegetation. Finally, a new biogenic chem. marker, creatinine, was identified in the samples from the Weddell Sea, providing another confirmation of the importance of nitrogen-contg. metabolites in Antarctic polar aerosols. - 28Hartmann, M.; Gong, X.; Kecorius, S.; van Pinxteren, M.; Vogl, T.; Welti, A.; Wex, H.; Zeppenfeld, S.; Herrmann, H.; Wiedensohler, A.; Stratmann, F. Terrestrial or marine - indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7°N. Atmos. Chem. Phys. 2021, 21, 11613– 11636, DOI: 10.5194/acp-21-11613-2021
28 哈特曼;龚旭;凯科里乌斯;范·平克斯特伦;沃格尔;韦尔蒂;韦克斯;泽彭菲尔德;赫尔曼;维登索勒;斯特拉特曼。陆源或海源——欧洲北极融冰季(北纬 83.7°)冰核粒子来源的指示性研究。《大气化学与物理》2021 年第 21 卷,11613-11636 页,DOI: 10.5194/acp-21-11613-2021 - 29Ladino, L. A.; Yakobi-Hancock, J. D.; Kilthau, W. P.; Mason, R. H.; Si, M.; Li, J.; Miller, L. A.; Schiller, C. L.; Huffman, J. A.; Aller, J. Y.; Knopf, D. A.; Bertram, A. K.; Abbatt, J. P. D. Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements. Atmos. Environ. 2016, 132, 1– 10, DOI: 10.1016/j.atmosenv.2016.02.028
29Ladino, L. A.; Yakobi-Hancock, J. D.; Kilthau, W. P.; Mason, R. H.; Si, M.; Li, J.; Miller, L. A.; Schiller, C. L.; Huffman, J. A.; Aller, J. Y.; Knopf, D. A.; Bertram, A. K.; Abbatt, J. P. D. 探究海洋气溶胶冰核活性:实验室沉积模式与实地测量的结合研究. 大气环境 2016, 132, 1–10, DOI: 10.1016/j.atmosenv.2016.02.028Google Scholar 谷歌学术29Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurementsLadino, L. A.; Yakobi-Hancock, J. D.; Kilthau, W. P.; Mason, R. H.; Si, M.; Li, J.; Miller, L. A.; Schiller, C. L.; Huffman, J. A.; Aller, J. Y.; Knopf, D. A.; Bertram, A. K.; Abbatt, J. P. D.Atmospheric Environment (2016), 132 (), 1-10CODEN: AENVEQ; ISSN:1352-2310. (Elsevier Ltd.)This study addresses, through two types of expts., the potential for the oceans to act as a source of atm. ice-nucleating particles (INPs). The INP concn. via deposition mode nucleation was measured in situ at a coastal site in British Columbia in August 2013. The INP concn. at conditions relevant to cirrus clouds (i.e., -40 °C and relative humidity with respect to ice, RHice = 139%) ranged from 0.2 L-1 to 3.3 L-1. Correlations of the INP concns. with levels of anthropogenic tracers (i.e., CO, SO2, NOx, and black carbon) and nos. of fluorescent particles do not indicate a significant influence from anthropogenic sources or submicron bioaerosols, resp. Addnl., the INPs measured in the deposition mode showed a poor correlation with the concn. of particles with sizes larger than 500 nm, which is in contrast with observations made in the immersion freezing mode. To investigate the nature of particles that could have acted as deposition INP, lab. expts. with potential marine aerosol particles were conducted under the ice-nucleating conditions used in the field. At -40 °C, no deposition activity was obsd. with salt aerosol particles (sodium chloride and two forms of com. sea salt: Sigma-Aldrich and Instant Ocean), particles composed of a com. source of natural org. matter (Suwannee River humic material), or particle mixts. of sea salt and humic material. In contrast, exudates from three phytoplankton (Thalassiosira pseudonana, Nanochloris atomus, and Emiliania huxleyi) and one marine bacterium (Vibrio harveyi) exhibited INP activity at low RHice values, down to below 110%. This suggests that the INPs measured at the field site were of marine biol. origins, although we cannot rule out other sources, including mineral dust. - 30Wilbourn, E. K.; Thornton, D. C.; Ott, C.; Graff, J.; Quinn, P. K.; Bates, T. S.; Betha, R.; Russell, L. M.; Behrenfeld, M. J.; Brooks, S. D. Ice Nucleation by Marine Aerosols Over the North Atlantic Ocean in Late Spring. J. Geophys. Res. Atmos. 2020, 125, e2019JD030913 DOI: 10.1029/2019JD030913
30Wilbourn, E. K.; Thornton, D. C.; Ott, C.; Graff, J.; Quinn, P. K.; Bates, T. S.; Betha, R.; Russell, L. M.; Behrenfeld, M. J.; Brooks, S. D. 北大西洋晚春季节海洋气溶胶的冰核特性研究. 地球物理研究杂志:大气 2020, 125, e2019JD030913 DOI: 10.1029/2019JD030913 - 31Beall, C. M.; Michaud, J. M.; Fish, M. A.; Dinasquet, J.; Cornwell, G. C.; Stokes, M. D.; Burkart, M. D.; Hill, T. C.; DeMott, P. J.; Prather, K. A. Cultivable halotolerant ice-nucleating bacteria and fungi in coastal precipitation. Atmos. Chem. Phys. 2021, 21, 9031– 9045, DOI: 10.5194/acp-21-9031-2021
31Beall, C. M.; Michaud, J. M.; Fish, M. A.; Dinasquet, J.; Cornwell, G. C.; Stokes, M. D.; Burkart, M. D.; Hill, T. C.; DeMott, P. J.; Prather, K. A. 沿海降水中的可培养耐盐冰核细菌与真菌. 大气化学与物理 2021, 21, 9031–9045, DOI: 10.5194/acp-21-9031-2021 - 32Thornton, D. C. O.; Brooks, S. D.; Wilbourn, E. K.; Mirrielees, J.; Alsante, A. N.; Gold-Bouchot, G.; Whitesell, A.; McFadden, K. Production of ice-nucleating particles (INPs) by fast-growing phytoplankton. Atmos. Chem. Phys. 2023, 23, 12707– 12729, DOI: 10.5194/acp-23-12707-2023
32Thornton, D. C. O.; Brooks, S. D.; Wilbourn, E. K.; Mirrielees, J.; Alsante, A. N.; Gold-Bouchot, G.; Whitesell, A.; McFadden, K.快速生长浮游植物产生冰核粒子(INPs)的研究. 大气化学与物理 2023, 23, 12707–12729, DOI: 10.5194/acp-23-12707-2023 - 33Hill, T. C. J.; Malfatti, F.; McCluskey, C. S.; Schill, G. P.; Santander, M. V.; Moore, K. A.; Rauker, A. M.; Perkins, R. J.; Celussi, M.; Levin, E. J. T.; Suski, K. J.; Cornwell, G. C.; Lee, C.; Del Negro, P.; Kreidenweis, S. M.; Prather, K. A.; DeMott, P. J. Resolving the controls over the production and emission of ice-nucleating particles in sea spray. Environ. Sci.: Atmos. 2023, 3, 970– 990, DOI: 10.1039/D2EA00154C
33Hill, T. C. J.; Malfatti, F.; McCluskey, C. S.; Schill, G. P.; Santander, M. V.; Moore, K. A.; Rauker, A. M.; Perkins, R. J.; Celussi, M.; Levin, E. J. T.; Suski, K. J.; Cornwell, G. C.; Lee, C.; Del Negro, P.; Kreidenweis, S. M.; Prather, K. A.; DeMott, P. J.解析海盐气溶胶中冰核粒子产生与释放的控制机制. 环境科学:大气 2023, 3, 970–990, DOI: 10.1039/D2EA00154C - 34Alpert, P. A.; Aller, J. Y.; Knopf, D. A. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases. Phys. Chem. Chem. Phys. 2011, 13, 19882– 19894, DOI: 10.1039/c1cp21844a
34Alpert, P. A.; Aller, J. Y.; Knopf, D. A.过饱和气体与过冷液相中海洋生物源表面对冰相形成的触发作用. 物理化学化学物理 2011, 13, 19882–19894, DOI: 10.1039/c1cp21844aGoogle Scholar 谷歌学术34Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phasesAlpert, Peter A.; Aller, Josephine Y.; Knopf, Daniel A.Physical Chemistry Chemical Physics (2011), 13 (44), 19882-19894CODEN: PPCPFQ; ISSN:1463-9076. (Royal Society of Chemistry)Biogenic particles have the potential to affect the formation of ice crystals in the atm. with subsequent consequences for the hydrol. cycle and climate. We present lab. observations of heterogeneous ice nucleation in immersion and deposition modes under atmospherically relevant conditions initiated by Nannochloris atomus and Emiliania huxleyi, marine phytoplankton with structurally and chem. distinct cell walls. Temps. at which freezing, melting, and water uptake occur are obsd. using optical microscopy. The intact and fragmented unarmoured cells of N. atomus in aq. NaCl droplets enhance ice nucleation by 10-20 K over the homogeneous freezing limit and can be described by a modified water activity based ice nucleation approach. E. huxleyi cells covered by calcite plates do not enhance droplet freezing temps. Both species nucleate ice in the deposition mode at an ice satn. ratio, Sice, as low as ∼1.2 and below 240 K, however, for each, different nucleation modes occur at warmer temps. These observations show that markedly different biogenic surfaces have both comparable and contrasting effects on ice nucleation behavior depending on the presence of the aq. phase and the extent of supercooling and water vapor supersatn. We derive heterogeneous ice nucleation rate coeffs., Jhet, and cumulative ice nuclei spectra, K, for quantification and anal. using time-dependent and time-independent approaches, resp. Contact angles, α, derived from Jhetvia immersion freezing depend on T, aw, and Sice. For deposition freezing, α can be described as a function of Sice only. The different approaches yield different predictions of atm. ice crystal nos. primarily due to the time evolution allowed for the time-dependent approach with implications for the evolution of mixed-phase and ice clouds. - 35Tesson, S. V. M.; Santl-Temkiv, T. Ice Nucleation Activity and Aeolian Dispersal Success in Airborne and Aquatic Microalgae. Front. Microbiol 2018, 9, 2681 DOI: 10.3389/fmicb.2018.02681
35Tesson, S. V. M.; Santl-Temkiv, T. 空气中与水生微藻的冰核活性及风媒扩散效率研究. 微生物学前沿 2018, 9, 2681 DOI: 10.3389/fmicb.2018.02681Google Scholar 谷歌学术35Ice Nucleation Activity and Aeolian Dispersal Success in Airborne and Aquatic MicroalgaeTesson Sylvie V M; Santl-Temkiv Tina; Santl-Temkiv Tina; Santl-Temkiv TinaFrontiers in microbiology (2018), 9 (), 2681 ISSN:1664-302X.Microalgae are common members of the atmospheric microbial assemblages. Diverse airborne microorganisms are known to produce ice nucleation active (INA) compounds, which catalyze cloud and rain formation, and thus alter cloud properties and their own deposition patterns. While the role of INA bacteria and fungi in atmospheric processes receives considerable attention, the numerical abundance and the capacity for ice nucleation in atmospheric microalgae are understudied. We isolated 81 strains of airborne microalgae from snow samples and determined their taxonomy by sequencing their ITS markers, 18S rRNA genes or 23S rRNA genes. We studied ice nucleation activity of airborne isolates, using droplet freezing assays, and their ability to withstand freezing. For comparison, we investigated 32 strains of microalgae from a culture collection, which were isolated from polar and temperate aqueous habitats. We show that ∼17% of airborne isolates, which belonged to taxa Trebouxiphyceae, Chlorophyceae and Stramenopiles, were INA. A large fraction of INA strains (over 40%) had ice nucleation activity at temperatures ≥-6°C. We found that 50% of aquatic microalgae were INA, but the majority were active at temperatures <-12°C. Most INA compounds produced by microalgae were proteinaceous and associated with the cells. While there were no deleterious effects of freezing on the viability of airborne microalgae, some of the aquatic strains were killed by freezing. In addition, the effect of desiccation was investigated for the aquatic strains and was found to constitute a limiting factor for their atmospheric dispersal. In conclusion, airborne microalgae possess adaptations to atmospheric dispersal, in contrast to microalgae isolated from aquatic habitats. We found that widespread taxa of both airborne and aquatic microalgae were INA at warm, sub-zero temperatures (>-15°C) and may thus participate in cloud and precipitation formation. - 36Knopf, D. A.; Alpert, P. A.; Wang, B.; Aller, J. Y. Stimulation of ice nucleation by marine diatoms. Nat. Geosci. 2011, 4, 88– 90, DOI: 10.1038/ngeo1037
36Knopf, D. A.; Alpert, P. A.; Wang, B.; Aller, J. Y. 海洋硅藻促进冰核形成的研究。《自然-地球科学》2011 年第 4 期,88–90 页,DOI: 10.1038/ngeo1037Google Scholar 谷歌学术36Stimulation of ice nucleation by marine diatomsKnopf, D. A.; Alpert, P. A.; Wang, B.; Aller, J. Y.Nature Geoscience (2011), 4 (2), 88-90CODEN: NGAEBU; ISSN:1752-0894. (Nature Publishing Group)Atm. aerosol particles serve as nuclei for ice-crystal formation. As such, these particles are crit. to the generation of cirrus clouds, which form from gas and liq. water. Atm. aerosols also initiate ice formation in warmer, mixed-phase clouds, where ice crystals coexist with aq. droplets. Biogenic aerosol particles of terrestrial origin, including bacteria and pollen, can act as ice nuclei. Whether biogenic particles of marine origin also act as ice nuclei has remained uncertain. We exposed the cosmopolitan planktonic diatom species Thalassiosira pseudonana to water vapor and supercooled aq. sodium chloride under typical tropospheric conditions conducive to cirrus-cloud formation. Ice nucleation was detd. using a controlled vapor cooling-stage microscope system. Under all conditions, diatoms initiated ice formation. The presence of diatoms in water increased the temp. for ice formation up to 13 K, and in aq. sodium chloride, ice formed at temps. up to 30 K higher than when diatoms were not present. In addn., diatoms initiated ice formation from water vapor at relative humidities as low as 65%. The rate of ice nucleation was rapid and independent of surface area. We suggest that marine biogenic particles such as diatoms help explain high values and seasonal variations in ice-nuclei concns. in subpolar regions. - 37Alpert, P. A.; Aller, J. Y.; Knopf, D. A. Ice nucleation from aqueous NaCl droplets with and without marine diatoms. Atmos. Chem. Phys. 2011, 11, 5539– 5555, DOI: 10.5194/acp-11-5539-2011
37Alpert, P. A.; Aller, J. Y.; Knopf, D. A. 含/不含海洋硅藻的氯化钠溶液滴冰核形成研究。《大气化学与物理》2011 年第 11 期,5539–5555 页,DOI: 10.5194/acp-11-5539-2011Google Scholar 谷歌学术37Ice nucleation from aqueous NaCl droplets with and without marine diatomsAlpert, P. A.; Aller, J. Y.; Knopf, D. A.Atmospheric Chemistry and Physics (2011), 11 (12), 5539-5555CODEN: ACPTCE; ISSN:1680-7316. (Copernicus Publications)Ice formation in the atm. by homogeneous and heterogeneous nucleation is one of the least understood processes in cloud microphysics and climate. Here we describe our investigation of the marine environment as a potential source of atm. IN by exptl. observing homogeneous ice nucleation from aq. NaCl droplets and comparing against heterogeneous ice nucleation from aq. NaCl droplets contg. intact and fragmented diatoms. Homogeneous and heterogeneous ice nucleation are studied as a function of temp. and water activity, aw. Addnl. analyses are presented on the dependence of diatom surface area and aq. vol. on heterogeneous freezing temps., ice nucleation rates, ωhet, ice nucleation rate coeffs., Jhet, and differential and cumulative ice nuclei spectra, k(T) and K(T), resp. Homogeneous freezing temps. and corresponding nucleation rate coeffs. are in agreement with the water activity based homogeneous ice nucleation theory within exptl. and predictive uncertainties. Our results confirm, as predicted by classical nucleation theory, that a stochastic interpretation can be used to describe the homogeneous ice nucleation process. Heterogeneous ice nucleation initiated by intact and fragmented diatoms can be adequately represented by a modified water activity based ice nucleation theory. A horizontal shift in water activity, Δaw,het = 0.2303, of the ice melting curve can describe median heterogeneous freezing temps. Individual freezing temps. showed no dependence on available diatom surface area and aq. vol. Detd. at median diatom freezing temps. for aw from 0.8 to 0.99, ωhet≃0.11+0.06-0.05 s-1, Jhet≃1.0+1.16-0.61 × 104 cm-2 s-1, and K≃6.2+3.5-4.1 × 104 cm-2. The exptl. derived ice nucleation rates and nuclei spectra allow us to est. ice particle prodn. which we subsequently use for a comparison with obsd. ice crystal concns. typically found in cirrus and polar marine mixed-phase clouds. Differences in application of time-dependent and time-independent analyses to predict ice particle prodn. are discussed. - 38Ickes, L.; Porter, G. C. E.; Wagner, R.; Adams, M. P.; Bierbauer, S.; Bertram, A. K.; Bilde, M.; Christiansen, S.; Ekman, A. M. L.; Gorokhova, E.; Hohler, K.; Kiselev, A. A.; Leck, C.; Mohler, O.; Murray, B. J.; Schiebel, T.; Ullrich, R.; Salter, M. E. The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal cultures. Atmos. Chem. Phys. 2020, 20, 11089– 11117, DOI: 10.5194/acp-20-11089-2020
38Ickes, L.; Porter, G. C. E.; Wagner, R.; Adams, M. P.; Bierbauer, S.; Bertram, A. K.; Bilde, M.; Christiansen, S.; Ekman, A. M. L.; Gorokhova, E.; Hohler, K.; Kiselev, A. A.; Leck, C.; Mohler, O.; Murray, B. J.; Schiebel, T.; Ullrich, R.; Salter, M. E. 北极海表微层样本与海洋藻类培养物的冰核活性研究. Atmos. Chem. Phys. 2020, 20, 11089–11117, DOI: 10.5194/acp-20-11089-2020Google Scholar 谷歌学术38The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal culturesIckes, Luisa; Porter, Grace C. E.; Wagner, Robert; Adams, Michael P.; Bierbauer, Sascha; Bertram, Allan K.; Bilde, Merete; Christiansen, Sigurd; Ekman, Annica M. L.; Gorokhova, Elena; Hoehler, Kristina; Kiselev, Alexei A.; Leck, Caroline; Moehler, Ottmar; Murray, Benjamin J.; Schiebel, Thea; Ullrich, Romy; Salter, Matthew E.Atmospheric Chemistry and Physics (2020), 20 (18), 11089-11117CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)In recent years, sea spray as well as the biol. material it contains has received increased attention as a source of ice-nucleating particles (INPs). Such INPs may play a role in remote marine regions, where other sources of INPs are scarce or absent. In the Arctic, these INPs can influence water-ice partitioning in low-level clouds and thereby the cloud lifetime, with consequences for the surface energy budget, sea ice formation and melt, and climate. Marine aerosol is of a diverse nature, so identifying sources of INPs is challenging. One fraction of marine bioaerosol (phytoplankton and their exudates) has been a particular focus of marine INP research. Firstly, we compare the ice-nucleating ability of two common phytoplankton species with Arctic seawater microlayer samples using the same instrumentation to see if these phytoplankton species produce ice-nucleating material with sufficient activity to account for the ice nucleation obsd. in Arctic microlayer samples. We present the first measurements of the ice-nucleating ability of two predominant phytoplankton species: Melosira arctica, a common Arctic diatom species, and Skeletonema marinoi, a ubiquitous diatom species across oceans worldwide. To det. the potential effect of nutrient conditions and characteristics of the algal culture, such as the amt. of org. carbon assocd. with algal cells, on the ice nucleation activity, Skeletonema marinoi was grown under different nutrient regimes. - 39Xi, Y.; Mercier, A.; Kuang, C.; Yun, J.; Christy, A.; Melo, L.; Maldonado, M. T.; Raymond, J. A.; Bertram, A. K. Concentrations and properties of ice nucleating substances in exudates from Antarctic sea-ice diatoms. Environ. Sci.:Processes Impacts 2021, 23, 323, DOI: 10.1039/D0EM00398K
39Xi, Y.; Mercier, A.; Kuang, C.; Yun, J.; Christy, A.; Melo, L.; Maldonado, M. T.; Raymond, J. A.; Bertram, A. K. 南极海冰硅藻分泌物中冰核物质的浓度与特性分析. Environ. Sci.:Processes Impacts 2021, 23, 323, DOI: 10.1039/D0EM00398KGoogle Scholar 谷歌学术39Concentrations and properties of ice nucleating substances in exudates from Antarctic sea-ice diatomsXi, Yu; Mercier, Alexia; Kuang, Cheng; Yun, Jingwei; Christy, Ashton; Melo, Luke; Maldonado, Maria T.; Raymond, James A.; Bertram, Allan K.Environmental Science: Processes & Impacts (2021), 23 (2), 323-334CODEN: ESPICZ; ISSN:2050-7895. (Royal Society of Chemistry)The ocean contains ice nucleating substances (INSs), some of which can be emitted to the atm. where they can influence the formation and properties of clouds. A possible source of INSs in the ocean is exudates from sea-ice diatoms. Here we examine the concns. and properties of INSs in supernatant samples from dense sea-ice diatom communities collected from Ross Sea and McMurdo Sound in the Antarctic. The median freezing temps. of the samples ranged from approx. -17 to -22°C. Based on our results and a comparison with results reported in the literature, the ice nucleating ability of exudates from sea-ice diatoms is likely not drastically different from the ice nucleating ability of exudates from temperate diatoms. The no. of INSs per mass of DOC for the supernatant samples were lower than those reported previously for the sea surface microlayer and bulk sea water collected in the Arctic and Atlantic. The INSs in the supernatant sample collected from Ross Sea were not sensitive to temps. up to 100°C, were larger than 300 kDa, and were different from ice shaping and recrystn. inhibiting mols. present in the same sample. Possible candidates for these INSs include polysaccharide contg. nanogels. The INSs in the supernatant sample collected from McMurdo Sound were sensitive to temps. of 80 and 100°C and were larger than 1000 kDa. Possible candidates for these INSs include protein contg. nanogels. - 40Creamean, J. M.; Ceniceros, J. E.; Newman, L.; Pace, A. D.; Hill, T. C. J.; DeMott, P. J.; Rhodes, M. E. Evaluating the potential for Haloarchaea to serve as ice nucleating particles. Biogeosciences 2021, 18, 3751– 3762, DOI: 10.5194/bg-18-3751-2021
40 克里米安,J. M.;塞尼塞罗斯,J. E.;纽曼,L.;佩斯,A. D.;希尔,T. C. J.;德莫特,P. J.;罗兹,M. E.评估盐古菌作为冰核粒子的潜力。《生物地球科学》2021 年第 18 卷,3751-3762 页,DOI:10.5194/bg-18-3751-2021 - 41Adams, M. P.; Atanasova, N. S.; Sofieva, S.; Ravantti, J.; Heikkinen, A.; Brasseur, Z.; Duplissy, J.; Bamford, D. H.; Murray, B. J. Ice nucleation by viruses and their potential for cloud glaciation. Biogeoscience 2021, 18, 4431– 4444, DOI: 10.5194/bg-18-4431-2021
41Adams, M. P.; Atanasova, N. S.; Sofieva, S.; Ravantti, J.; Heikkinen, A.; Brasseur, Z.; Duplissy, J.; Bamford, D. H.; Murray, B. J.病毒介导的冰核形成及其云冰晶化潜力研究. 生物地球科学 2021, 18, 4431–4444, DOI: 10.5194/bg-18-4431-2021 - 42Melchum, A.; Córdoba, F.; Salinas, E.; Martínez, L.; Campos, G.; Rosas, I.; Garcia-Mendoza, E.; Olivos-Ortiz, A.; Raga, G. B.; Pizano, B.; Silva, M. M.; Ladino, L. A. Maritime and continental microorganisms collected in Mexico: An investigation of their ice-nucleating abilities. Atmos. Res. 2023, 293, 106893 DOI: 10.1016/j.atmosres.2023.106893
42Melchum, A.; Córdoba, F.; Salinas, E.; Martínez, L.; Campos, G.; Rosas, I.; Garcia-Mendoza, E.; Olivos-Ortiz, A.; Raga, G. B.; Pizano, B.; Silva, M. M.; Ladino, L. A.墨西哥海域与陆源微生物的冰核活性研究. 大气研究 2023, 293, 106893 DOI: 10.1016/j.atmosres.2023.106893 - 43Bochdansky, A. B.; Clouse, M. A.; Herndl, G. J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 2017, 11, 362– 373, DOI: 10.1038/ismej.2016.113
43Bochdansky, A. B.; Clouse, M. A.; Herndl, G. J.深海雪团中真核微生物(以真菌和网黏菌为主)的生物量优势研究. ISME 期刊 2017, 11, 362–373, DOI: 10.1038/ismej.2016.113 - 44Hassett, B. T.; Borrego, E. J.; Vonnahme, T. R.; Rama, T.; Kolomiets, M. V.; Gradinger, R. Arctic marine fungi: biomass, functional genes, and putative ecological roles. ISME J. 2019, 13, 1484– 1496, DOI: 10.1038/s41396-019-0368-1
44Hassett, B. T.; Borrego, E. J.; Vonnahme, T. R.; Rama, T.; Kolomiets, M. V.; Gradinger, R.北极海洋真菌:生物量、功能基因及潜在生态作用. ISME 期刊 2019, 13, 1484–1496, DOI: 10.1038/s41396-019-0368-1 - 45Hassett, B. T. A Widely Distributed Thraustochytrid Parasite of Diatoms Isolated from the Arctic Represents a gen. and sp. nov. J. Eukaryotic Microbiol. 2020, 67, 480– 490, DOI: 10.1111/jeu.12796
45Hassett, B. T.《从北极分离的一种广泛分布的硅藻寄生破囊壶菌代表新属新种》。《真核微生物学杂志》2020 年第 67 卷,480–490 页,DOI: 10.1111/jeu.12796 - 46Pummer, B. G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C. J.; Huber, R. G.; Liedl, K. R.; Loerting, T.; Moschen, T.; Schauperl, M.; Tollinger, M.; Morris, C. E.; Wex, H.; Grothe, H.; Poeschl, U.; Koop, T.; Froehlich-Nowoisky, J. Ice nucleation by water-soluble macromolecules. Atmos. Chem. Phys. 2015, 15, 4077– 4091, DOI: 10.5194/acp-15-4077-2015
46Pummer, B. G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C. J.; Huber, R. G.; Liedl, K. R.; Loerting, T.; Moschen, T.; Schauperl, M.; Tollinger, M.; Morris, C. E.; Wex, H.; Grothe, H.; Poeschl, U.; Koop, T.; Froehlich-Nowoisky, J. 水溶性大分子物质的冰核活性研究. 大气化学与物理 2015, 15, 4077–4091, DOI: 10.5194/acp-15-4077-2015Google Scholar 谷歌学术46Ice nucleation by water-soluble macromoleculesPummer, B. G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C. J.; Huber, R. G.; Liedl, K. R.; Loerting, T.; Moschen, T.; Schauperl, M.; Tollinger, M.; Morris, C. E.; Wex, H.; Grothe, H.; Poeschl, U.; Koop, T.; Froehlich-Nowoisky, J.Atmospheric Chemistry and Physics (2015), 15 (8), 4077-4091CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of pptn. But the freezing of pure water droplets requires cooling to temps. as low as 235 K. Freezing at higher temps. requires the presence of an ice nucleator, which serves as a template for arranging water mols. in an ice-like manner. It is often assumed that these ice nucleators have to be insol. particles. We point out that also free macromols. which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromols. (INMs) is in the range of nanometers, corresponding to the size of the crit. ice embryo. As the latter is temp.-dependent, we see a correlation between the size of INMs and the ice nucleation temp. as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biol. species and comprise a variety of chem. structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-sol. INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theor. calcns. to develop a chem. interpretation of ice nucleation and water-sol. INMs. This has atm. implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atm. models. - 47Wolber, P. K.; Deininger, C. A.; Southworth, M. W.; Vandekerckhove, J.; Vanmontagu, M.; Warren, G. J. Identification and purification of a bacterial ice-nucleation protein. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 7256– 7260, DOI: 10.1073/pnas.83.19.7256
47Wolber, P. K.; Deininger, C. A.; Southworth, M. W.; Vandekerckhove, J.; Vanmontagu, M.; Warren, G. J. 细菌冰核蛋白的鉴定与纯化. 美国国家科学院院刊 1986, 83, 7256–7260, DOI: 10.1073/pnas.83.19.7256Google Scholar 谷歌学术47Identification and purification of a bacterial ice-nucleation proteinWolber, Paul K.; Deininger, Caroline A.; Southworth, Maurice W.; Vandekerckhove, Joel; Van Montagu, Marc; Warren, Gareth J.Proceedings of the National Academy of Sciences of the United States of America (1986), 83 (19), 7256-60CODEN: PNASA6; ISSN:0027-8424.The protein product of a gene (inaZ) responsible for ice nucleation by Pseudomonas syringae S203 was identified and purified after overexpression in Escherichia coli. The amino acid compn. and the N-terminal sequence of the purified, denatured protein corresponded well with that predicted from the sequence of the inaZ gene. The product of inaZ was also found to be the major component in prepns. of ice-nucleating, proteinaceous particles, obtained after extn. with and gel filtration in a mixt. of urea and the nondenaturing detergent octyl β-D-thioglucopyranoside. The activity of these prepns. in the absence of added lipid implies that the protein participates directly in the nucleation process. - 48Fröhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Yordanova, P.; Franc, G. D.; Poschl, U. Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences 2015, 12, 1057– 1071, DOI: 10.5194/bg-12-1057-2015
48Fröhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Yordanova, P.; Franc, G. D.; Poschl, U. 广布土壤真菌高山被孢霉的冰核活性研究. 生物地球科学 2015, 12, 1057–1071, DOI: 10.5194/bg-12-1057-2015 - 49Dreischmeier, K.; Budke, C.; Wiehemeier, L.; Kottke, T.; Koop, T. Boreal pollen contain ice-nucleating as well as ice-binding ’antifreeze’ polysaccharides. Sci. Rep. 2017, 7, 41890 DOI: 10.1038/srep41890
49Dreischmeier, K.; Budke, C.; Wiehemeier, L.; Kottke, T.; Koop, T. 北方花粉中同时存在冰核多糖与抗冻结合多糖. 科学报告 2017, 7, 41890 DOI: 10.1038/srep41890Google Scholar 谷歌学术49Boreal pollen contain ice-nucleating as well as ice-binding 'antifreeze' polysaccharidesDreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, ThomasScientific Reports (2017), 7 (), 41890CODEN: SRCEC3; ISSN:2045-2322. (Nature Publishing Group)Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromols. when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystn. inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding mols. are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chem. moieties, but centrifugal filtration indicates differences in mol. size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atm. processes and antifreeze protection. - 50Kunert, A. T.; Pöhlker, M. L.; Tang, K.; Krevert, C. S.; Wieder, C.; Speth, K. R.; Hanson, L. E.; Morris, C. E.; Schmale, D. G.; Poschl, U.; Frohlich-Nowoisky, J. Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing. Biogeosciences 2019, 16, 4647– 4659, DOI: 10.5194/bg-16-4647-2019
50Kunert, A. T.; Pöhlker, M. L.; Tang, K.; Krevert, C. S.; Wieder, C.; Speth, K. R.; Hanson, L. E.; Morris, C. E.; Schmale, D. G.; Poschl, U.; Frohlich-Nowoisky, J.镰刀菌属真菌大分子冰核的物理化学处理效应。《生物地球科学》2019 年 16 卷,4647-4659 页,DOI: 10.5194/bg-16-4647-2019Google Scholar 谷歌学术50Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processingKunert, Anna T.; Poehlker, Mira L.; Tang, Kai; Krevert, Carola S.; Wieder, Carsten; Speth, Kai R.; Hanson, Linda E.; Morris, Cindy E.; Schmale, David G., III; Poeschl, Ulrich; Froehlich-Nowoisky, JanineBiogeosciences (2019), 16 (23), 4647-4659CODEN: BIOGGR; ISSN:1726-4189. (Copernicus Publications)Some biol. particles and macromols. are particularly efficient ice nuclei (IN), triggering ice formation at temps. close to 0 °C. The impact of biol. particles on cloud glaciation and the formation of pptn. is still poorly understood and constitutes a large gap in the scientific understanding of the interactions and coevolution of life and climate. Ice nucleation activity in fungi was first discovered in the cosmopolitan genus Fusarium, which is widespread in soil and plants, has been found in atm. aerosol and cloud water samples, and can be regarded as the best studied ice-nucleation-active (IN-active) fungus. The frequency and distribution of ice nucleation activity within Fusarium, however, remains elusive. Here, we tested more than 100 strains from 65 different Fusarium species for ice nucleation activity. In total, ~ 11 % of all tested species included IN-active strains, and ~ 16 % of all tested strains showed ice nucleation activity above -12 °C. Besides Fusarium species with known ice nucleation activity, F. armeniacum, F. begoniae, F. concentricum, and F. langsethiae were newly identified as IN-active. The cumulative no. of IN per g of mycelium for all tested Fusarium species was comparable to other biol. IN like Sarocladium implicatum, Mortierella alpina, and Snomax. Filtration expts. indicate that cell-free ice-nucleating macromols. (INMs) from Fusarium are smaller than 100 kDa and that mol. aggregates can be formed in soln. Long-term storage and freeze-thaw cycle expts. revealed that the fungal IN in aq. soln. remain active over several months and in the course of repeated freezing and thawing. Exposure to ozone and nitrogen dioxide at atmospherically relevant concn. levels also did not affect the ice nucleation activity. Heat treatments at 40 to 98 °C, however, strongly reduced the obsd. IN concns., confirming earlier hypotheses that the INM in Fusarium largely consists of a proteinaceous compd. The frequency and the wide distribution of ice nucleation activity within the genus Fusarium, combined with the stability of the IN under atmospherically relevant conditions, suggest a larger implication of fungal IN on Earth's water cycle and climate than previously assumed. - 51Hartmann, S.; Ling, M.; Dreyer, L. S. A.; Zipori, A.; Finster, K.; Grawe, S.; Jensen, L. Z.; Borck, S.; Reicher, N.; Drace, T.; Niedermeier, D.; Jones, N. C.; Hoffmann, S. V.; Wex, H.; Rudich, Y.; Boesen, T.; Šantl Temkiv, T. Structure and Protein-Protein Interactions of Ice Nucleation Proteins Drive Their Activity. Front. Microbiol. 2022, 13, 872306 DOI: 10.3389/fmicb.2022.872306
51Hartmann, S.; Ling, M.; Dreyer, L. S. A.; Zipori, A.; Finster, K.; Grawe, S.; Jensen, L. Z.; Borck, S.; Reicher, N.; Drace, T.; Niedermeier, D.; Jones, N. C.; Hoffmann, S. V.; Wex, H.; Rudich, Y.; Boesen, T.; Šantl Temkiv, T.冰核蛋白结构与蛋白互作驱动其活性机制。《微生物学前沿》2022 年 13 卷,872306 号,DOI: 10.3389/fmicb.2022.872306Google Scholar 谷歌学术51Structure and Protein-Protein Interactions of Ice Nucleation Proteins Drive Their ActivityHartmann Susan; Grawe Sarah; Niedermeier Dennis; Wex Heike; Ling Meilee; Finster Kai; Jensen Lasse Z; Borck Stella; Santl-Temkiv Tina; Ling Meilee; Finster Kai; Jensen Lasse Z; Borck Stella; Santl-Temkiv Tina; Ling Meilee; Dreyer Lasse S A; Jensen Lasse Z; Borck Stella; Drace Taner; Boesen Thomas; Zipori Assaf; Reicher Naama; Rudich Yinon; Jones Nykola C; Hoffmann Soren V; Boesen ThomasFrontiers in microbiology (2022), 13 (), 872306 ISSN:1664-302X.Microbially-produced ice nucleating proteins (INpro) are unique molecular structures with the highest known catalytic efficiency for ice formation. Airborne microorganisms utilize these proteins to enhance their survival by reducing their atmospheric residence times. INpro also have critical environmental effects including impacts on the atmospheric water cycle, through their role in cloud and precipitation formation, as well as frost damage on crops. INpro are ubiquitously present in the atmosphere where they are emitted from diverse terrestrial and marine environments. Even though bacterial genes encoding INpro have been discovered and sequenced decades ago, the details of how the INpro molecular structure and oligomerization foster their unique ice-nucleation activity remain elusive. Using machine-learning based software AlphaFold 2 and trRosetta, we obtained and analysed the first ab initio structural models of full length and truncated versions of bacterial INpro. The modeling revealed a novel beta-helix structure of the INpro central repeat domain responsible for ice nucleation activity. This domain consists of repeated stacks of two beta strands connected by two sharp turns. One beta-strand is decorated with a TxT amino acid sequence motif and the other strand has an SxL[T/I] motif. The core formed between the stacked beta helix-pairs is unusually polar and very distinct from previous INpro models. Using synchrotron radiation circular dichroism, we validated the β-strand content of the central repeat domain in the model. Combining the structural model with functional studies of purified recombinant INpro, electron microscopy and modeling, we further demonstrate that the formation of dimers and higher-order oligomers is key to INpro activity. Using computational docking of the new INpro model based on rigid-body algorithms we could reproduce a previously proposed homodimer structure of the INpro CRD with an interface along a highly conserved tyrosine ladder and show that the dimer model agrees with our functional data. The parallel dimer structure creates a surface where the TxT motif of one monomer aligns with the SxL[T/I] motif of the other monomer widening the surface that interacts with water molecules and therefore enhancing the ice nucleation activity. This work presents a major advance in understanding the molecular foundation for bacterial ice-nucleation activity. - 52Wolf, M. J.; Coe, A.; Dove, L. A.; Zawadowicz, M. A.; Dooley, K.; Biller, S. J.; Zhang, Y.; Chisholm, S. W.; Cziczo, D. J. Investigating the Heterogeneous Ice Nucleation of Sea Spray Aerosols Using Prochlorococcus as a Model Source of Marine Organic Matter. Environ. Sci. Technol. 2019, 53, 1139– 1149, DOI: 10.1021/acs.est.8b05150
52Wolf, M. J.; Coe, A.; Dove, L. A.; Zawadowicz, M. A.; Dooley, K.; Biller, S. J.; Zhang, Y.; Chisholm, S. W.; Cziczo, D. J.以原绿球藻为海洋有机质模型研究海盐气溶胶异质冰核特性。《环境科学与技术》2019 年 53 卷,1139-1149 页,DOI: 10.1021/acs.est.8b05150Google Scholar 谷歌学术52Investigating the Heterogeneous Ice Nucleation of Sea Spray Aerosols Using Prochlorococcus as a Model Source of Marine Organic MatterWolf, Martin J.; Coe, Allison; Dove, Lilian A.; Zawadowicz, Maria A.; Dooley, Keven; Biller, Steven J.; Zhang, Yue; Chisholm, Sallie W.; Cziczo, Daniel J.Environmental Science & Technology (2019), 53 (3), 1139-1149CODEN: ESTHAG; ISSN:0013-936X. (American Chemical Society)Sea spray is the largest aerosol source on Earth. Bubble bursting mechanisms at the ocean surface create smaller film burst and larger jet drop particles. This study quantified the effects of particle chem. on the depositional ice nucleation efficiency of lab.-generated sea spray aerosols under the cirrus-relevant conditions. Cultures of Prochlorococcus, the most abundant phytoplankton species in the global ocean, were used as a model source of org. sea spray aerosols. We show that smaller particles generated from lyzed Prochlorococcus cultures are organically enriched and nucleate more effectively than larger particles generated from the same cultures. We then quantified the ice nucleation efficiency of single component org. mols. that mimic Prochlorococcus proteins, lipids, and saccharides. Amylopectin, agarose, and aspartic acid exhibited similar crit. ice saturations, fractional activations, and ice nucleation active site no. densities to particles generated from Prochlorococcus cultures. These findings indicate that saccharides and proteins with numerous and well-ordered hydrophilic functional groups may det. the ice nucleation abilities of org. sea spray aerosols. - 53Zeppenfeld, S.; van Pinxteren, M.; Hartmann, M.; Bracher, A.; Stratmann, F.; Herrmann, H. Glucose as a Potential Chemical Marker for Ice Nucleating Activity in Arctic Seawater and Melt Pond Samples. Environ. Sci. Technol. 2019, 53, 8747– 8756, DOI: 10.1021/acs.est.9b01469
53Zeppenfeld, S.; van Pinxteren, M.; Hartmann, M.; Bracher, A.; Stratmann, F.; Herrmann, H. 葡萄糖作为北极海水和融池样本中冰核活性的潜在化学标志物. 《环境科学与技术》2019 年第 53 卷, 第 8747–8756 页, DOI: 10.1021/acs.est.9b01469Google Scholar 谷歌学术53Glucose as a Potential Chemical Marker for Ice Nucleating Activity in Arctic Seawater and Melt Pond SamplesZeppenfeld, Sebastian; van Pinxteren, Manuela; Hartmann, Markus; Bracher, Astrid; Stratmann, Frank; Herrmann, HartmutEnvironmental Science & Technology (2019), 53 (15), 8747-8756CODEN: ESTHAG; ISSN:0013-936X. (American Chemical Society)Recent studies pointed to a high ice nucleating activity (INA) in the Arctic sea surface microlayer (SML). However, related chem. information is still sparse. In the present study, INA and free glucose concns. were quantified in Arctic SML and bulk water samples from the marginal ice zone, the ice-free ocean, melt ponds, and open waters within the ice pack. T50 (defining INA) ranged from -17.4 to -26.8 °C. Glucose concns. varied from 0.6 to 51 μg/L with highest values in the SML from the marginal ice zone and melt ponds (median 16.3 and 13.5 μg/L) and lower values in the SML from the ice pack and the ice-free ocean (median 3.9 and 4.0 μg/L). Enrichment factors between the SML and the bulk ranged from 0.4 to 17. A pos. correlation was obsd. between free glucose concn. and INA in Arctic water samples (T50(°C) = (-25.6 ± 0.6) + (0.15 ± 0.04)·Glucose(μg/L), RP = 0.66, n = 74). Clustering water samples based on phytoplankton pigment compn. resulted in robust but different correlations within the four clusters (RP between 0.67 and 0.96), indicating a strong link to phytoplankton-related processes. Since glucose did not show significant INA itself, free glucose may serve as a potential tracer for INA in Arctic water samples. - 54Vergara-Temprado, J.; Miltenberger, A. K.; Furtado, K.; Grosvenor, D. P.; Shipway, B. J.; Hill, A. A.; Wilkinson, J. M.; Field, P. R.; Murray, B. J.; Carslaw, K. S. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 2687– 2692, DOI: 10.1073/pnas.1721627115
54Vergara-Temprado, J.; Miltenberger, A. K.; Furtado, K.; Grosvenor, D. P.; Shipway, B. J.; Hill, A. A.; Wilkinson, J. M.; Field, P. R.; Murray, B. J.; Carslaw, K. S. 冰核粒子对南大洋云层反射率的强烈调控作用. 《美国国家科学院院刊》2018 年第 115 卷, 第 2687–2692 页, DOI: 10.1073/pnas.1721627115Google Scholar 谷歌学术54Strong control of Southern Ocean cloud reflectivity by ice-nucleating particlesVergara-Temprado, Jesus; Miltenberger, Annette K.; Furtado, Kalli; Grosvenor, Daniel P.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Field, Paul R.; Murray, Benjamin J.; Carslaw, Ken S.Proceedings of the National Academy of Sciences of the United States of America (2018), 115 (11), 2687-2692CODEN: PNASA6; ISSN:0027-8424. (National Academy of Sciences)Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temps., atm. circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with ests. of the concn. of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concn. of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extra-tropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concns. that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce pptn., and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concns. and their effects under specific meteorol. conditions. - 55McCluskey, C. S.; DeMott, P. J.; Ma, P.-L.; Burrows, S. M. Numerical Representations of Marine Ice-Nucleating Particles in Remote Marine Environments Evaluated Against Observations. Geophys. Res. Lett. 2019, 46, 7838– 7847, DOI: 10.1029/2018GL081861
55McCluskey, C. S.; DeMott, P. J.; Ma, P.-L.; Burrows, S. M. 海洋源冰核粒子的数值表征在远洋环境中的观测验证。《地球物理研究快报》2019 年第 46 卷,第 7838–7847 页,DOI: 10.1029/2018GL081861 - 56Chatziparaschos, M.; Myriokefalitakis, S.; Kalivitis, N.; Daskalakis, N.; Nenes, A.; Gonçalves Ageitos, M.; Costa-Surós, M.; Pérez García-Pando, C.; Vrekoussis, M.; Kanakidou, M. Assessing the global contribution of marine, terrestrial bioaerosols, and desert dust to ice-nucleating particle concentrations. EGUsphere 2024, 2024, 1– 28, DOI: 10.5194/egusphere-2024-952
56Chatziparaschos, M.; Myriokefalitakis, S.; Kalivitis, N.; Daskalakis, N.; Nenes, A.; Gonçalves Ageitos, M.; Costa-Surós, M.; Pérez García-Pando, C.; Vrekoussis, M.; Kanakidou, M. 评估海洋、陆地生物气溶胶与沙漠尘埃对全球冰核粒子浓度的贡献。《EGUsphere》2024 年第 2024 卷,第 1–28 页,DOI: 10.5194/egusphere-2024-952 - 57Fletcher, N. H. The Physics of Rainclouds; Cambridge University Press, 1962
57 弗莱彻,《雨云物理学》;剑桥大学出版社,1962 年。.Google Scholar 谷歌学术There is no corresponding record for this reference. - 58DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos. Chem. Phys. 2015, 15, 393– 409, DOI: 10.5194/acp-15-393-2015
58 德莫特,P. J.;普伦尼,A. J.;麦克米金,G. R.;沙利文,R. C.;佩特斯,M. D.;托博,Y.;尼曼德,M.;默勒,O.;斯奈德,J. R.;王,Z.;克雷登维斯,S. M. 整合实验室与野外数据量化矿物尘颗粒的浸没冻结冰核活性。《大气化学与物理》2015 年第 15 期,393-409 页,DOI: 10.5194/acp-15-393-2015Google Scholar 谷歌学术58Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particlesDeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Mohler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.Atmospheric Chemistry and Physics (2015), 15 (1), 393-409/1-393-409/17, 17 pp.CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Data from both lab. studies and atm. measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University CSU continuous flow diffusion chamber CFDC when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water RHw are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temp. for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atm. dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atm. particles of nonspecific compn. in quantifying ice nucleating particle concns. as functions of temp. and the total no. concn. of particles larger than 0.5 μm diam. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate by approx. 3, on av. of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. max. fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atm. (AIDA) expansion chamber cloud parcel expts. Further comparison of the new parameterization, including calibration correction, to predictions of the immersion freezing surface active site d. parameterization for mineral dust particles, developed sep. from AIDA exptl. data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of lab. measurements to obtain atmospherically relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first-order approxn. in numerical modeling investigations. - 59McCluskey, C. S.; Ovadnevaite, J.; Rinaldi, M.; Atkinson, J.; Belosi, F.; Ceburnis, D.; Marullo, S.; Hill, T. C. J.; Lohmann, U.; Kanji, Z. A.; O’Dowd, C.; Kreidenweis, S. M.; DeMott, P. J. Marine and Terrestrial Organic Ice-Nucleating Particles in Pristine Marine to Continentally Influenced Northeast Atlantic Air Masses. J. Geophys. Res.:Atmos. 2018, 123, 6196– 6212, DOI: 10.1029/2017JD028033
59 麦克卢斯基,C. S.;奥瓦德内瓦特,J.;里纳尔迪,M.;阿特金森,J.;贝洛西,F.;塞伯尼斯,D.;马鲁洛,S.;希尔,T. C. J.;洛曼,U.;坎吉,Z. A.;奥道尔,C.;克雷登维斯,S. M.;德莫特,P. J. 原始海洋至大陆影响东北大西洋气团中的海洋与陆地有机冰核粒子。《地球物理研究杂志:大气》2018 年第 123 卷,6196-6212 页,DOI: 10.1029/2017JD028033 - 60Meyers, M. P.; Demott, P. J.; Cotton, W. R. New Primary Ice-Nucleation Parameterizations In An Explicit Cloud Model. J. Appl. Meteorol. 1992, 31, 708– 721, DOI: 10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2
60Meyers, M. P.; Demott, P. J.; Cotton, W. R. 显式云模式中的新型初级冰核参数化方案。《应用气象学杂志》1992 年第 31 卷第 708–721 页,DOI: 10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2 - 61Ullrich, R.; Hoose, C.; Möhler, O.; Niemand, M.; Wagner, R.; Höhler, K.; Hiranuma, N.; Saathoff, H.; Leisner, T. A New Ice Nucleation Active Site Parameterization for Desert Dust and Soot. J. Atmos. Sci. 2017, 74, 699– 717, DOI: 10.1175/JAS-D-16-0074.1
61 乌尔里希, R.; 胡斯, C.; 默勒, O.; 尼曼德, M.; 瓦格纳, R.; 赫勒, K.; 平沼, N.; 萨托夫, H.; 莱斯纳, T. 一种针对沙漠尘埃和烟尘的新型冰核活性位点参数化方案. 大气科学杂志. 2017, 74, 699–717, DOI: 10.1175/JAS-D-16-0074.1 - 62Harrison, A. D.; Lever, K.; Sanchez-Marroquin, A.; Holden, M. A.; Whale, T. F.; Tarn, M. D.; McQuaid, J. B.; Murray, B. J. The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar. Atmos. Chem. Phys. 2019, 19, 11343– 11361, DOI: 10.5194/acp-19-11343-2019
62 哈里森, A. D.; 利弗, K.; 桑切斯-马罗金, A.; 霍尔登, M. A.; 惠尔, T. F.; 塔恩, M. D.; 麦奎德, J. B.; 默里, B. J. 石英在水中的冰核活性能力及其与钾长石相比的大气重要性. 大气化学与物理. 2019, 19, 11343–11361, DOI: 10.5194/acp-19-11343-2019 - 63Chatziparaschos, M.; Daskalakis, N.; Myriokefalitakis, S.; Kalivitis, N.; Nenes, A.; Gonçalves Ageitos, M.; Costa-Surós, M.; Pérez García-Pando, C.; Zanoli, M.; Vrekoussis, M.; Kanakidou, M. Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds. Atmos. Chem. Phys. 2023, 23, 1785– 1801, DOI: 10.5194/acp-23-1785-2023
63Chatziparaschos, M.; Daskalakis, N.; Myriokefalitakis, S.; Kalivitis, N.; Nenes, A.; Gonçalves Ageitos, M.; Costa-Surós, M.; Pérez García-Pando, C.; Zanoli, M.; Vrekoussis, M.; Kanakidou, M. 钾长石与石英在矿物尘混合相云全球冰核化中的作用. 大气化学与物理 2023, 23, 1785–1801, DOI: 10.5194/acp-23-1785-2023 - 64Tang, K.; Sánchez-Parra, B.; Yordanova, P.; Wehking, J.; Backes, A. T.; Pickersgill, D. A.; Maier, S.; Sciare, J.; Pöschl, U.; Weber, B.; Fröhlich-Nowoisky, J. Bioaerosols and atmospheric ice nuclei in a Mediterranean dryland: community changes related to rainfall. Biogeosciences 2022, 19, 71– 91, DOI: 10.5194/bg-19-71-2022
64Tang, K.; Sánchez-Parra, B.; Yordanova, P.; Wehking, J.; Backes, A. T.; Pickersgill, D. A.; Maier, S.; Sciare, J.; Pöschl, U.; Weber, B.; Fröhlich-Nowoisky, J. 地中海旱地生物气溶胶与大气冰核:降雨相关的群落变化. 生物地球科学 2022, 19, 71–91, DOI: 10.5194/bg-19-71-2022 - 65Pummer, B. G.; Bauer, H.; Bernardi, J.; Bleicher, S.; Grothe, H. Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos. Chem. Phys. 2012, 12, 2541– 2550, DOI: 10.5194/acp-12-2541-2012
65Pummer, B. G.; Bauer, H.; Bernardi, J.; Bleicher, S.; Grothe, H. 悬浮大分子物质是桦树和针叶树花粉冰核活性的关键因素. 大气化学与物理 2012, 12, 2541–2550, DOI: 10.5194/acp-12-2541-2012Google Scholar 谷歌学术65Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollenPummer, B. G.; Bauer, H.; Bernardi, J.; Bleicher, S.; Grothe, H.Atmospheric Chemistry and Physics (2012), 12 (5), 2541-2550CODEN: ACPTCE; ISSN:1680-7316. (Copernicus Publications)The ice nucleation of bioaerosols (bacteria, pollen, spores, etc.) is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate, is not yet fully understood. Here we show that pollen of different species strongly differ in their ice nucleation behavior. The av. freezing temps. in lab. expts. range from 240 to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. Far more intriguingly, it has turned out that water, which has been in contact with pollen and then been sepd. from the bodies, nucleates as good as the pollen grains themselves. The ice nuclei have to be easily-suspendable macromols. located on the pollen. Once extd., they can be distributed further through the atm. than the heavy pollen grains and so presumably augment the impact of pollen on ice cloud formation even in the upper troposphere. Our expts. lead to the conclusion that pollen ice nuclei, in contrast to bacterial and fungal ice nucleating proteins, are non-proteinaceous compds. - 66Hill, T. C. J.; DeMott, P. J.; Tobo, Y.; Froehlich-Nowoisky, J.; Moffett, B. F.; Franc, G. D.; Kreidenweis, S. M. Sources of organic ice nucleating particles in soils. Atmos. Chem. Phys. 2016, 16, 7195– 7211, DOI: 10.5194/acp-16-7195-2016
66Hill, T. C. J.; DeMott, P. J.; Tobo, Y.; Froehlich-Nowoisky, J.; Moffett, B. F.; Franc, G. D.; Kreidenweis, S. M. 土壤中有机冰核粒子的来源. 大气化学与物理 2016, 16, 7195–7211, DOI: 10.5194/acp-16-7195-2016Google Scholar 谷歌学术66Sources of organic ice nucleating particles in soilsHill, Tom C. J.; DeMott, Paul J.; Tobo, Yutaka; Frohlich-Nowoisky, Janine; Moffett, Bruce F.; Franc, Gary D.; Kreidenweis, Sonia M.Atmospheric Chemistry and Physics (2016), 16 (11), 7195-7211CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Soil org. matter (SOM) may be a significant source of atm. ice nucleating particles (INPs), esp. of those active >-15 °C. However, due to both a lack of investigations and the complexity of the SOM itself, the identities of these INPs remain unknown. To more comprehensively characterize org. INPs we tested locally representative soils in Wyoming and Colorado for total org. INPs, INPs in the heat-labile fraction, ice nucleating (IN) bacteria, IN fungi, IN fulvic and humic acids, IN plant tissue, and ice nucleation by monolayers of aliph. alcs. All soils contained ≈106 to ≈5×107 INPs g-1 dry soil active at -10 °C. Removal of SOM with H2O2 removed ≥99% of INPs active >-18 °C (the limit of testing), while heating of soil suspensions to 105 °C showed that labile INPs increasingly predominated >-12 °C and comprised ≥90%of INPs active >-9 °C. Papain protease, which inactivates IN proteins produced by the fungus Mortierella alpina, common in the region's soils, lowered INPs active at ≥-11 °C by _75% in two arable soils and in sagebrush shrubland soil. By contrast, lysozyme, which digests bacterial cell walls, only reduced INPs active at ≥-7.5 or ≥-6 °C, depending on the soil. The known IN bacteria were not detected in any soil, using PCR for the ina gene that codes for the active protein. We directly isolated and photographed two INPs from soil, using repeated cycles of freeze testing and subdivision of droplets of dil. soil suspensions; they were complex and apparently org. entities. Ice nucleation activity was not affected by digestion of Proteinase K-susceptible proteins or the removal of entities composed of fulvic and humic acids, sterols, or aliph. alc. monolayers. Org. INPs active colder than -10 to -12 °C were resistant to all investigations other than heat, oxidn. with H2O2, and, for some, digestion with papain. They may originate from decompg. plant material, microbial biomass, and/or the humin component of the SOM. In the case of the latter then they are most likely to be a carbohydrate. Reflecting the diversity of the SOM itself, soil INPs have a range of sources which occur with differing relative abundances. - 67Zeppenfeld, S.; van Pinxteren, M.; van Pinxteren, D.; Wex, H.; Berdalet, E.; Vaqué, D.; Dall’Osto, M.; Herrmann, H. Aerosol Marine Primary Carbohydrates and Atmospheric Transformation in the Western Antarctic Peninsula. ACS Earth Space Chem. 2021, 5, 1032– 1047, DOI: 10.1021/acsearthspacechem.0c00351
67Zeppenfeld, S.; van Pinxteren, M.; van Pinxteren, D.; Wex, H.; Berdalet, E.; Vaqué, D.; Dall’Osto, M.; Herrmann, H. 南极半岛西部海域气溶胶中初级碳水化合物及大气转化过程研究。《ACS 地球与空间化学》2021 年第 5 卷,1032–1047 页,DOI: 10.1021/acsearthspacechem.0c00351Google Scholar 谷歌学术67Aerosol marine primary carbohydrates and atmospheric transformation in the Western Antarctic PeninsulaZeppenfeld, Sebastian; van Pinxteren, Manuela; van Pinxteren, Dominik; Wex, Heike; Berdalet, Elisa; Vaque, Dolors; Dall'Osto, Manuel; Herrmann, HartmutACS Earth and Space Chemistry (2021), 5 (5), 1032-1047CODEN: AESCCQ; ISSN:2472-3452. (American Chemical Society)We present ship-borne and land-based measurements of carbohydrate concns. and patterns in bulk seawater, sea surface microlayer (SML), and atm. size-resolved aerosol particles (0.05-10μm) collected in the Western Antarctic Peninsula. In seawater, we find higher combined carbohydrates (CCHO) in both the particulate (PCCHO, 13-248μg L-1) and dissolved (DCCHO, 14-294μg L-1) phases than dissolved free carbohydrates (DFCHO, 1.0-17μg L-1). Moderate enrichment factors are found in the SML samples (median EFSML = 1.4 for PCCHO, DCCHO, and DFCHO). In PM10 atm. particles, combined carbohydrates (CCHOaer,PM10 0.2-11.3 ng m-3) were preferably found in particles of two size modes (0.05-0.42 and 1.2-10μm) and strongly correlated with Na+aer,PM10 and wind speed, hence suggesting oceanic emission as their primary source. In contrast to SML samples, very high enrichment factors for CCHOaer relative to the bulk water (EFaer) were estd. for supermicron (20-4000) and submicron (40-167 000) particles. Notably, the relative atm. aerosol monosaccharide compns. strongly differed from the ones sampled in seawater. The prevalence of bacterial monosaccharides (muramic acid, glucosamine) in aerosol particles allows us to suggest a selective consumption and release of polysaccharides by bacteria in the atm. Our results highlight the need to evaluate the role of different ecosystems as aerosol sources around Antarctica. - 68Bergman, T. Model Data for Research Article Description and Evaluation of a Secondary Organic Aerosol and New Particle Formation Scheme within TM5-MP v1 , 2021
68Bergman, T. 研究论文《TM5-MP v1 模式中二次有机气溶胶与新粒子生成方案的描述与评估》模型数据,2021 年。.Google Scholar 谷歌学术There is no corresponding record for this reference. - 69Bergman, T.; Makkonen, R.; Schrödner, R.; Swietlicki, E.; Phillips, V. T. J.; Le Sager, P.; van Noije, T. Description and evaluation of a secondary organic aerosol and new particle formation scheme within TM5-MP v1.2. Geosci. Model Dev. 2022, 15, 683– 713, DOI: 10.5194/gmd-15-683-2022
69Bergman, T.; Makkonen, R.; Schrödner, R.; Swietlicki, E.; Phillips, V. T. J.; Le Sager, P.; van Noije, T. TM5-MP v1.2 模式中二次有机气溶胶与新粒子生成方案的描述与评估。《地球科学模式开发》2022 年第 15 卷,683–713 页,DOI: 10.5194/gmd-15-683-2022 - 70Niedermeier, D.; Augustin-Bauditz, S.; Hartmann, S.; Wex, H.; Ignatius, K.; Stratmann, F. Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation?. J. Geophys. Res. Atmos. 2015, 120, 5036– 5046, DOI: 10.1002/2014JD022814
70Niedermeier, D.; Augustin-Bauditz, S.; Hartmann, S.; Wex, H.; Ignatius, K.; Stratmann, F. 异质冰核化过程中冰活性表面位点密度是否存在渐近值?。《地球物理研究杂志:大气》2015 年第 120 卷,5036–5046 页,DOI: 10.1002/2014JD022814 - 71Zeppenfeld, S.; van Pinxteren, M.; Hartmann, M.; Zeising, M.; Bracher, A.; Herrmann, H. Marine carbohydrates in Arctic aerosol particles and fog - diversity of oceanic sources and atmospheric transformations. Atmos. Chem. Phys. 2023, 23, 15561– 15587, DOI: 10.5194/acp-23-15561-2023
71Zeppenfeld, S.; van Pinxteren, M.; Hartmann, M.; Zeising, M.; Bracher, A.; Herrmann, H. 北极气溶胶颗粒与雾中的海洋碳水化合物——海洋来源多样性及大气转化过程。大气化学与物理. 2023, 23, 15561–15587, DOI: 10.5194/acp-23-15561-2023 - 72Zeppenfeld, S.; van Pinxteren, M.; Fuchs, S.; Rödger, A. Marine combined carbohydrates and other chemical constituents of PM10 aerosol particles at the Cape Verde Atmospheric Observatory (CVAO) in 2017, 2024. DOI: 10.1594/PANGAEA.969080
72Zeppenfeld, S.; van Pinxteren, M.; Fuchs, S.; Rödger, A. 2017 年佛得角大气观测站(CVAO)PM10 气溶胶颗粒中海洋复合碳水化合物及其他化学成分研究,2024 年。DOI: 10.1594/PANGAEA.969080 . - 73Karl, M.; Leck, C.; Rad, F. M.; Bäcklund, A.; Lopez-Aparicio, S.; Heintzenberg, J. New insights in sources of the sub-micrometre aerosol at Mt. Zeppelin observatory (Spitsbergen) in the year 2015. Tellus B 2019, 71, 1613143 DOI: 10.1080/16000889.2019.1613143
73Karl, M.; Leck, C.; Rad, F. M.; Bäcklund, A.; Lopez-Aparicio, S.; Heintzenberg, J. 2015 年齐柏林观测站(斯匹次卑尔根岛)亚微米气溶胶来源新发现。Tellus B 2019, 71, 1613143 DOI: 10.1080/16000889.2019.1613143 - 74Jayaweera, K.; Flanagan, P. Investigations on biogenic ice nuclei in the arctic atmosphere. Geophys. Res. Lett. 1982, 9, 94– 97, DOI: 10.1029/GL009i001p00094
74Jayaweera, K.; Flanagan, P. 北极大气中生物冰核研究。Geophys. Res. Lett. 1982, 9, 94–97, DOI: 10.1029/GL009i001p00094 - 75Kieft, T. L.; Ahmadjian, V. Biological ice nucleation activity in lichen mycobionts and photobionts. Lichenologist 1989, 21, 355– 362, DOI: 10.1017/S0024282989000599
75Kieft, T. L.; Ahmadjian, V. 地衣共生菌与光合共生体的生物冰核活性研究。Lichenologist 1989, 21, 355–362, DOI: 10.1017/S0024282989000599 - 76Iannone, R.; Chernoff, D. I.; Pringle, A.; Martin, S. T.; Bertram, A. K. The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere. Atmos. Chem. Phys. 2011, 11, 1191– 1201, DOI: 10.5194/acp-11-1191-2011
76Iannone, R.; Chernoff, D. I.; Pringle, A.; Martin, S. T.; Bertram, A. K. 大气中最常见真菌孢子的冰核形成能力研究. 大气化学与物理 2011, 11, 1191–1201, DOI: 10.5194/acp-11-1191-2011 - 77Haga, D. I.; Iannone, R.; Wheeler, M. J.; Mason, R.; Polishchuk, E. A.; Fetch, T.; van der Kamp, B. J.; McKendry, I. G.; Bertram, A. K. Ice nucleation properties of rust and bunt fungal spores and their transport to high altitudes, where they can cause heterogeneous freezing. J. Geophys. Res. Atmos. 2013, 118, 7260– 7272, DOI: 10.1002/jgrd.50556
77Haga, D. I.; Iannone, R.; Wheeler, M. J.; Mason, R.; Polishchuk, E. A.; Fetch, T.; van der Kamp, B. J.; McKendry, I. G.; Bertram, A. K. 锈菌与黑粉菌孢子的冰核活性及其向高海拔传输诱发异质冻结的研究. 地球物理研究杂志: 大气 2013, 118, 7260–7272, DOI: 10.1002/jgrd.50556Google Scholar 谷歌学术77Ice nucleation properties of rust and bunt fungal spores and their transport to high altitudes, where they can cause heterogeneous freezingHaga, D. I.; Iannone, R.; Wheeler, M. J.; Mason, R.; Polishchuk, E. A.; Fetch, T., Jr.; van der Kamp, B. J.; McKendry, I. G.; Bertram, A. K.Journal of Geophysical Research: Atmospheres (2013), 118 (13), 7260-7272CODEN: JGRDE3; ISSN:2169-8996. (Wiley-Blackwell)Rust and bunt spores that act as ice nuclei (IN) could change the formation characteristics and properties of ice-contg. clouds. In addn., ice nucleation on rust and bunt spores, followed by pptn., may be an important removal mechanism of these spores from the atm. Using an optical microscope, we studied the ice nucleation properties of spores from four rust species (Puccinia graminis, Puccinia triticina, Puccinia allii, and Endocronartium harknesssii) and two bunt species (Tilletia laevis and Tilletia tritici) immersed in water droplets. We show that the cumulative no. of IN per spore is 5 × 10-3, 0.01, and 0.10 at temps. of roughly -24°C, -25°C, and -28°C, resp. Using a particle dispersion model, we also investigated if these rust and bunt spores will reach high altitudes in the atm. where they can cause heterogeneous freezing. Simulations suggest that after 3 days and during periods of high spore prodn., between 6 and 9% of 15 μm particles released over agricultural regions in Kansas (U.S.), North Dakota (U.S.), Saskatchewan (Canada), and Manitoba (Canada) can reach at least 6 km in altitude. An altitude of 6 km corresponds to a temp. of roughly -25°C for the sites chosen. The combined results suggest that (a) ice nucleation by these fungal spores could play a role in the removal of these particles from the atm. and (b) ice nucleation by these rust and bunt spores are unlikely to compete with mineral dust on a global and annual scale at an altitude of approx. 6 km. - 78Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Goncalves, F. L. T.; Bigg, E. K. Urediospores of rust fungi are ice nucleation active at > −10 degrees C and harbor ice nucleation active bacteria. Atmos. Chem. Phys. 2013, 13, 4223– 4233, DOI: 10.5194/acp-13-4223-2013
78 莫里斯, C. E.; 桑兹, D. C.; 格洛克斯, C.; 萨姆萨特利, J.; 阿萨德, S.; 穆卡赫尔, A. R.; 贡萨尔维斯, F. L. T.; 比格, E. K.锈菌的夏孢子在>−10°C 时具有冰核活性并携带冰核活性细菌。大气化学与物理 2013, 13, 4223–4233, DOI: 10.5194/acp-13-4223-2013 - 79Haga, D. I.; Burrows, S. M.; Iannone, R.; Wheeler, M. J.; Mason, R. H.; Chen, J.; Polishchuk, E. A.; Poschl, U.; Bertram, A. K. Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores. Atmos. Chem. Phys. 2014, 14, 8611– 8630, DOI: 10.5194/acp-14-8611-2014
79 羽贺, D. I.; 伯罗斯, S. M.; 伊安诺内, R.; 惠勒, M. J.; 梅森, R. H.; 陈, J.; 波兰丘克, E. A.; 珀施尔, U.; 伯特伦, A. K.伞菌纲、黑粉菌纲和散囊菌纲真菌孢子的冰核活性及其对大气传播的影响。大气化学与物理 2014, 14, 8611–8630, DOI: 10.5194/acp-14-8611-2014 - 80O’Sullivan, D.; Murray, B. J.; Ross, J. F.; Whale, T. F.; Price, H. C.; Atkinson, J. D.; Umo, N. S.; Webb, M. E. The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci. Rep. 2015, 5, 8082 DOI: 10.1038/srep08082
80 奥沙利文, D.; 默里, B. J.; 罗斯, J. F.; 惠尔, T. F.; 普莱斯, H. C.; 阿特金森, J. D.; 乌莫, N. S.; 韦伯, M. E.纳米级生物碎片对云中冰核形成的相关性研究。科学报告 2015, 5, 8082 DOI: 10.1038/srep08082Google Scholar 谷歌学术80The relevance of nanoscale biological fragments for ice nucleation in cloudsO'Sullivan, D.; Murray, B. J.; Ross, J. F.; Whale, T. F.; Price, H. C.; Atkinson, J. D.; Umo, N. S.; Webb, M. E.Scientific Reports (2015), 5 (), 8082/1-8082/7CODEN: SRCEC3; ISSN:2045-2322. (Nature Publishing Group)Most studies of the role of biol. entities as atm. ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient nos. of these particles in the atm. to strongly influence clouds. Here, we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometer-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addn., we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biol. nano-INPs present in the environment which may, for example, become aerosolised in assocn. with fertile soil dust particles. - 81Knackstedt, K. A.; Moffett, B. F.; Hartmann, S.; Wex, H.; Hill, T. C. J.; Glasgo, E. D.; Reitz, L. A.; Augustin-Bauditz, S.; Beall, B. F. N.; Bullerjahn, G. S.; Frohlich-Nowoisky, J.; Grawe, S.; Lubitz, J.; Stratmann, F.; McKay, R. M. L. Terrestrial Origin for Abundant Riverine Nanoscale Ice-Nucleating Particles. Environ. Sci. Technol. 2018, 52, 12358– 12367, DOI: 10.1021/acs.est.8b03881
81Knackstedt, K. A.; Moffett, B. F.; Hartmann, S.; Wex, H.; Hill, T. C. J.; Glasgo, E. D.; Reitz, L. A.; Augustin-Bauditz, S.; Beall, B. F. N.; Bullerjahn, G. S.; Frohlich-Nowoisky, J.; Grawe, S.; Lubitz, J.; Stratmann, F.; McKay, R. M. L. 河流中丰富纳米级冰核颗粒的陆源成因。《环境科学与技术》2018 年第 52 卷,第 12358–12367 页,DOI: 10.1021/acs.est.8b03881Google Scholar 谷歌学术81Terrestrial Origin for Abundant Riverine Nanoscale Ice-Nucleating ParticlesKnackstedt, Kathryn A.; Moffett, Bruce F.; Hartmann, Susan; Wex, Heike; Hill, Thomas C. J.; Glasgo, Elizabeth D.; Reitz, Laura A.; Augustin-Bauditz, Stefanie; Beall, Benjamin F. N.; Bullerjahn, George S.; Frohlich-Nowoisky, Janine; Grawe, Sarah; Lubitz, Jasmin; Stratmann, Frank; McKay, Robert Michael L.Environmental Science & Technology (2018), 52 (21), 12358-12367CODEN: ESTHAG; ISSN:0013-936X. (American Chemical Society)Ice-nucleating particles (INPs) assocd. with fresh waters are a neglected, but integral component of the water cycle. Abundant INPs were identified from surface waters of both the Maumee River and Lake Erie with ice nucleus spectra spanning a temp. range from -3 to -15 °C. The majority of river INPs were submicron in size and attributed to biogenic macromols., inferred from the denaturation of ice-nucleation activity by heat. In a watershed dominated by row-crop agriculture, higher concns. of INPs were found in river samples compared to lake samples. Further, ice-nucleating temps. differed between river and lake samples, which indicated different populations of INPs. Seasonal anal. of INPs that were active at warmer temps. (≥-10 °C; INP-10) showed their concn. to correlate with river discharge, suggesting a watershed origin of these INPs. A terrestrial origin for INPs in the Maumee River was further supported by a correspondence between the ice-nucleation signatures of river INPs and INPs derived from the soil fungus Mortierella alpina. Aerosols derived from turbulence features in the river carry INP-10, although their potential influence on regional weather is unclear. INP-10 contained within aerosols generated from a weir spanning the river, ranged in concn. from 1 to 11 INP m-3, which represented a fold-change of 3.2 over av. INP-10 concns. sampled from aerosols at control locations. - 82Hoose, C.; Möhler, O. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys. 2012, 12, 9817– 9854, DOI: 10.5194/acp-12-9817-2012
82Hoose, C.; Möhler, O. 大气气溶胶异质冰核化研究:实验室实验结果综述。《大气化学与物理》2012 年第 12 卷,第 9817–9854 页,DOI: 10.5194/acp-12-9817-2012Google Scholar 谷歌学术82Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experimentsHoose, C.; Moehler, O.Atmospheric Chemistry and Physics (2012), 12 (20), 9817-9854CODEN: ACPTCE; ISSN:1680-7316. (Copernicus Publications)A review. A small subset of the atm. aerosol population has the ability to induce ice formation at conditions under which ice would not form without them (heterogeneous ice nucleation). While no closed theor. description of this process and the requirements for good ice nuclei is available, numerous studies have attempted to quantify the ice nucleation ability of different particles empirically in lab. expts. In this article, an overview of these results is provided. Ice nucleation "onset" conditions for various mineral dust, soot, biol., org. and ammonium sulfate particles are summarized. Typical temp.-supersatn. regions can be identified for the "onset" of ice nucleation of these different particle types, but the various particle sizes and activated fractions reported in different studies have to be taken into account when comparing results obtained with different methodologies. When intercomparing only data obtained under the same conditions, it is found that dust mineralogy is not a consistent predictor of higher or lower ice nucleation ability. However, the broad majority of studies agrees on a redn. of deposition nucleation by various coatings on mineral dust. The ice nucleation active surface site (INAS) d. is discussed as a simple and empirical normalized measure for ice nucleation activity. For most immersion and condensation freezing measurements on mineral dust, ests. of the temp.-dependent INAS d. agree within about two orders of magnitude. For deposition nucleation on dust, the spread is significantly larger, but a general trend of increasing INAS densities with increasing supersatn. is found. For soot, the presently available results are divergent. Estd. av. INAS densities are high for ice-nucleation active bacteria at high subzero temps. At the same time, it is shown that INAS densities of some other biol. aerosols, like certain pollen grains, fungal spores and diatoms, tend to be similar to those of dust. These particles may owe their high ice nucleation onsets to their large sizes. Surface-area-dependent parameterizations of heterogeneous ice nucleation are discussed. For immersion freezing on mineral dust, fitted INAS densities are available, but should not be used outside the temp. interval of the data they were based on. Classical nucleation theory, if employed with only one fitted contact angle, does not reproduce the obsd. temp. dependence for immersion nucleation, the temp. and supersatn. dependence for deposition nucleation, and the time dependence of ice nucleation. Formulations of classical nucleation theory with distributions of contact angles offer possibilities to overcome these weaknesses. - 83Daily, M. I.; Tarn, M. D.; Whale, T. F.; Murray, B. J. An evaluation of the heat test for the ice-nucleating ability of minerals and biological material. Atmos. Meas. Technol. 2022, 15, 2635– 2665, DOI: 10.5194/amt-15-2635-2022
83Daily, M. I.; Tarn, M. D.; Whale, T. F.; Murray, B. J. 矿物与生物材料冰核活性的热测试评估. 大气测量技术. 2022, 15, 2635–2665, DOI: 10.5194/amt-15-2635-2022 - 84Passow, U. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 2002, 55, 287– 333, DOI: 10.1016/S0079-6611(02)00138-6
84Passow, U. 水生环境中的透明胞外聚合物颗粒(TEP)。《海洋学进展》2002 年第 55 卷,第 287-333 页,DOI: 10.1016/S0079-6611(02)00138-6 - 85Meng, S.; Liu, Y. New insights into transparent exopolymer particles (TEP) formation from precursor materials at various Na+/Ca2+ ratios. Sci. Rep. 2016, 6, 19747 DOI: 10.1038/srep19747
85Meng, S.; Liu, Y. 不同 Na+/Ca2+比例下前体物质形成透明胞外聚合物颗粒(TEP)的新见解。《科学报告》2016 年第 6 卷,19747 号,DOI: 10.1038/srep19747 - 86Qiu, Y.; Odendahl, N.; Hudait, A.; Mason, R.; Bertram, A. K.; Paesani, F.; DeMott, P. J.; Molinero, V. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice. J. Am. Chem. Soc. 2017, 139, 3052– 3064, DOI: 10.1021/jacs.6b12210
86Qiu, Y.; Odendahl, N.; Hudait, A.; Mason, R.; Bertram, A. K.; Paesani, F.; DeMott, P. J.; Molinero, V. 羟基化有机表面的冰核效率受其结构波动和与冰晶匹配度控制。《美国化学会志》2017 年第 139 卷,第 3052-3064 页,DOI: 10.1021/jacs.6b12210Google Scholar 谷歌学术86Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to IceQiu, Yuqing; Odendahl, Nathan; Hudait, Arpa; Mason, Ryan; Bertram, Allan K.; Paesani, Francesco; DeMott, Paul J.; Molinero, ValeriaJournal of the American Chemical Society (2017), 139 (8), 3052-3064CODEN: JACSAT; ISSN:0002-7863. (American Chemical Society)The authors use mol. dynamic simulations and lab. expts. to investigate the relationship between the structure and fluctuations of hydroxylated org. surfaces and the temp. at which they nucleate ice. These surfaces order interfacial water to form domains with ice-like order that are the birthplace of ice. Both mismatch and fluctuations decrease the size of the preordered domains and monotonously decrease the ice freezing temp. The simulations indicate that fluctuations depress the freezing efficiency of monolayers of alcs. or acids to half the value predicted from lattice mismatch alone. The model captures the exptl. trend in freezing efficiencies as a function of chain length and predicts that alcs. have higher freezing efficiency than acids of the same chain length. These trends are mostly controlled by the modulation of the structural mismatch to ice. Classical nucleation theory is used to show that the freezing efficiencies of the monolayers are directly related to their free energy of binding to ice. - 87Bieber, P.; Darwish, G. H.; Algar, W. R.; Borduas-Dedekind, N. The presence of nanoparticles in aqueous droplets containing plant-derived biopolymers plays a role in heterogeneous ice nucleation. J. Chem. Phys. 2024, 161, 094304 DOI: 10.1063/5.0213171
87Bieber, P.; Darwish, G. H.; Algar, W. R.; Borduas-Dedekind, N. 含植物源生物聚合物的水相液滴中纳米颗粒的存在对异相冰核的作用。《化学物理杂志》2024 年第 161 卷,094304 号,DOI: 10.1063/5.0213171 - 88Booth, B. C.; Horner, R. A. Microalgae on the arctic ocean section, 1994: species abundance and biomass. Deep Sea Res., Part II 1997, 44, 1607– 1622, DOI: 10.1016/S0967-0645(97)00057-X
88Booth, B. C.; Horner, R. A. 1994 年北冰洋断面微藻:物种丰度与生物量。《深海研究第二辑》1997 年第 44 卷,1607–1622 页,DOI: 10.1016/S0967-0645(97)00057-X - 89Duarte, C. M.; Gattuso, J.-P.; Hancke, K.; Gundersen, H.; Filbee-Dexter, K.; Pedersen, M. F.; Middelburg, J. J.; Burrows, M.; Krumhansl, K. A.; Wernberg, T.; Moore, P.; Pessarrodona, A.; Ørberg, S. B.; Pinto, I. S.; Assis, J.; Queirós, A.; Smale, D. A.; Bekkby, T.; Serrão, E.; Krause-Jensen, D. Global estimates of the extent and production of macroalgal forests. Global Ecol. Biogeogr. 2022, 31, 1422– 1439, DOI: 10.1111/geb.13515
89Duarte, C. M.; Gattuso, J.-P.; Hancke, K.; Gundersen, H.; Filbee-Dexter, K.; Pedersen, M. F.; Middelburg, J. J.; Burrows, M.; Krumhansl, K. A.; Wernberg, T.; Moore, P.; Pessarrodona, A.; Ørberg, S. B.; Pinto, I. S.; Assis, J.; Queirós, A.; Smale, D. A.; Bekkby, T.; Serrão, E.; Krause-Jensen, D. 大型藻类森林分布范围与生产力的全球评估。《全球生态与生物地理学》2022 年第 31 卷,1422–1439 页,DOI: 10.1111/geb.13515 - 90Caetano, P. A.; do Nascimento, T. C.; Fernandes, A. S.; Nass, P. P.; Vieira, K. R.; Maróstica Junior, M. R.; Jacob-Lopes, E.; Zepka, L. Q. Microalgae-based polysaccharides: Insights on production, applications, analysis, and future challenges. Biocatal. Agric. Biotechnol. 2022, 45, 102491 DOI: 10.1016/j.bcab.2022.102491
90Caetano, P. A.; do Nascimento, T. C.; Fernandes, A. S.; Nass, P. P.; Vieira, K. R.; Maróstica Junior, M. R.; Jacob-Lopes, E.; Zepka, L. Q. 微藻基多糖:生产、应用、分析及未来挑战的见解。Biocatal. Agric. Biotechnol. 2022, 45, 102491 DOI: 10.1016/j.bcab.2022.102491 - 91Louw, S. D. V.; Walker, D. R.; Fawcett, S. E. Factors influencing sea-ice algae abundance, community composition, and distribution in the marginal ice zone of the Southern Ocean during winter. Deep Sea Res., Part I 2022, 185, 103805 DOI: 10.1016/j.dsr.2022.103805
91Louw, S. D. V.; Walker, D. R.; Fawcett, S. E. 冬季南大洋边缘冰区海冰藻类丰度、群落组成及分布的影响因素. 《深海研究第一辑》2022 年 185 卷, 103805 DOI: 10.1016/j.dsr.2022.103805 - 92Pereira Freitas, G.; Adachi, K.; Conen, F.; Heslin-Rees, D.; Krejci, R.; Tobo, Y.; Yttri, K. E.; Zieger, P. Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic. Nat. Commun. 2023, 14, 5997 DOI: 10.1038/s41467-023-41696-7
92Pereira Freitas, G.; Adachi, K.; Conen, F.; Heslin-Rees, D.; Krejci, R.; Tobo, Y.; Yttri, K. E.; Zieger, P. 区域来源的生物气溶胶驱动北极高温冰核粒子形成. 《自然·通讯》2023 年 14 卷, 5997 DOI: 10.1038/s41467-023-41696-7 - 93Gómez Maqueo Anaya, S.; Althausen, D.; Faust, M.; Baars, H.; Heinold, B.; Hofer, J.; Tegen, I.; Ansmann, A.; Engelmann, R.; Skupin, A.; Heese, B.; Schepanski, K. The implementation of dust mineralogy in COSMO5.05-MUSCAT. EGUsphere 2023, 2023, 1– 37, DOI: 10.5194/egusphere-2023-1558
93Gómez Maqueo Anaya, S.; Althausen, D.; Faust, M.; Baars, H.; Heinold, B.; Hofer, J.; Tegen, I.; Ansmann, A.; Engelmann, R.; Skupin, A.; Heese, B.; Schepanski, K. 沙尘矿物学在 COSMO5.05-MUSCAT 模型中的实现. 《EGUsphere》2023 年 2023 卷, 1–37, DOI: 10.5194/egusphere-2023-1558 - 94Burrows, S. M.; Easter, R. C.; Liu, X.; Ma, P. L.; Wang, H.; Elliott, S. M.; Singh, B.; Zhang, K.; Rasch, P. J. OCEANFILMS (Organic Compounds from Ecosystems to Aerosols: Natural Films and Interfaces via Langmuir Molecular Surfactants) sea spray organic aerosol emissions - implementation in a global climate model and impacts on clouds. Atmos. Chem. Phys. 2022, 22, 5223– 5251, DOI: 10.5194/acp-22-5223-2022
94 伯罗斯,S. M.;伊斯特,R. C.;刘,X.;马,P. L.;王,H.;埃利奥特,S. M.;辛格,B.;张,K.;拉施,P. J. OCEANFILMS(生态系统到气溶胶的有机化合物:通过朗缪尔分子表面活性剂的天然薄膜和界面)海喷雾有机气溶胶排放——在全球气候模型中的实施及对云的影响。大气化学与物理。2022,22,5223–5251,DOI:10.5194/acp-22-5223-2022 - 95Turnock, S. T.; Allen, R. J.; Andrews, M.; Bauer, S. E.; Deushi, M.; Emmons, L.; Good, P.; Horowitz, L.; John, J. G.; Michou, M.; Nabat, P.; Naik, V.; Neubauer, D.; O’Connor, F. M.; Olivié, D.; Oshima, N.; Schulz, M.; Sellar, A.; Shim, S.; Takemura, T.; Tilmes, S.; Tsigaridis, K.; Wu, T.; Zhang, J. Historical and future changes in air pollutants from CMIP6 models. Atmos. Chem. Phys. 2020, 20, 14547– 14579, DOI: 10.5194/acp-20-14547-2020
95 特纳克,S. T.;艾伦,R. J.;安德鲁斯,M.;鲍尔,S. E.;德希,M.;埃蒙斯,L.;古德,P.;霍洛维茨,L.;约翰,J. G.;米丘,M.;纳巴特,P.;奈克,V.;纽鲍尔,D.;奥康纳,F. M.;奥利维,D.;大岛,N.;舒尔茨,M.;塞拉尔,A.;沈,S.;竹村,T.;蒂尔梅斯,S.;齐加里迪斯,K.;吴,T.;张,J. CMIP6 模型中空气污染物的历史和未来变化。大气化学与物理。2020,20,14547–14579,DOI:10.5194/acp-20-14547-2020Google Scholar 谷歌学术95Historical and future changes in air pollutants from CMIP6 modelsTurnock, Steven T.; Allen, Robert J.; Andrews, Martin; Bauer, Susanne E.; Deushi, Makoto; Emmons, Louisa; Good, Peter; Horowitz, Larry; John, Jasmin G.; Michou, Martine; Nabat, Pierre; Naik, Vaishali; Neubauer, David; O'Connor, Fiona M.; Olivie, Dirk; Oshima, Naga; Schulz, Michael; Sellar, Alistair; Shim, Sungbo; Takemura, Toshihiko; Tilmes, Simone; Tsigaridis, Kostas; Wu, Tongwen; Zhang, JieAtmospheric Chemistry and Physics (2020), 20 (23), 14547-14579CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Poor air quality is currently responsible for large impacts on human health across the world. In addn., the air pollutants ozone (O3) and particulate matter less than 2.5μm in diam. (PM2.5) are also radiatively active in the atm. and can influence Earth's climate. It is important to understand the effect of air quality and climate mitigation measures over the historical period and in different future scenarios to ascertain any impacts from air pollutants on both climate and human health. The Coupled Model Intercomparison Project Phase 6 (CMIP6) presents an opportunity to analyze the change in air pollutants simulated by the current generation of climate and Earth system models that include a representation of chem. and aerosols (particulate matter). The shared socio-economic pathways (SSPs) used within CMIP6 encompass a wide range of trajectories in precursor emissions and climate change, allowing for an improved anal. of future changes to air pollutants. Firstly, we conduct an evaluation of the available CMIP6 models against surface observations of O3 and PM2.5. CMIP6 models consistently overestimate obsd. surface O3 concns. across most regions and in most seasons by up to 16 ppb, with a large diversity in simulated values over Northern Hemisphere continental regions. Conversely, obsd. surface PM2.5 concns. are consistently underestimated in CMIP6 models by up to 10μg m-3, particularly for the Northern Hemisphere winter months, with the largest model diversity near natural emission source regions. The biases in CMIP6 models when compared to observations of O3 and PM2.5are similar to those found in previous studies. Over the historical period (1850-2014) large increases in both surface O3 and PM2.5 are simulated by the CMIP6 models across all regions, particularly over the mid to late 20th century, when anthropogenic emissions increase markedly. Large regional historical changes are simulated for both pollutants across East and South Asia with an annual mean increase of up to 40 ppb for O3 and 12μg m-3 for PM2.5. In future scenarios contg. strong air quality and climate mitigation measures (ssp126), annual mean concns. of air pollutants are substantially reduced across all regions by up to 15 ppb for O3 and 12μg m-3 for PM2.5. However, for scenarios that encompass weak action on mitigating climate and reducing air pollutant emissions (ssp370), annual mean increases in both surface O3 (up 10 ppb) and PM2.5 (up to 8μg m-3) are simulated across most regions, although, for regions like North America and Europe small redns. in PM2.5 are simulated due to the regional redn. in precursor emissions in this scenario. A comparison of simulated regional changes in both surface O3 and PM2.5 from individual CMIP6 models highlights important regional differences due to the simulated interaction of aerosols, chem., climate and natural emission sources within models. The projection of regional air pollutant concns. from the latest climate and Earth system models used within CMIP6 shows that the particular future trajectory of climate and air quality mitigation measures could have important consequences for regional air quality, human health and near-term climate. Differences between individual models emphasize the importance of understanding how future Earth system feedbacks influence natural emission sources, e.g. response of biogenic emissions under climate change. - 96Carslaw, K. S.; Lee, L. A.; Reddington, C. L.; Pringle, K. J.; Rap, A.; Forster, P. M.; Mann, G. W.; Spracklen, D. V.; Woodhouse, M. T.; Regayre, L. A.; Pierce, J. R. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 2013, 503, 67– 71, DOI: 10.1038/nature12674
96 卡尔斯劳,K. S.;李,L. A.;雷丁顿,C. L.;普林格尔,K. J.;拉普,A.;福斯特,P. M.;曼,G. W.;斯普拉克伦,D. V.;伍德豪斯,M. T.;雷盖尔,L. A.;皮尔斯,J. R. 自然气溶胶对间接辐射强迫不确定性的重大贡献。《自然》2013 年,第 503 卷,第 67-71 页,DOI:10.1038/nature12674Google Scholar 谷歌学术96Large contribution of natural aerosols to uncertainty in indirect forcingCarslaw, K. S.; Lee, L. A.; Reddington, C. L.; Pringle, K. J.; Rap, A.; Forster, P. M.; Mann, G. W.; Spracklen, D. V.; Woodhouse, M. T.; Regayre, L. A.; Pierce, J. R.Nature (London, United Kingdom) (2013), 503 (7474), 67-71CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)The effect of anthropogenic aerosols on cloud droplet concns. and radiative properties is the source of large uncertainty in the radiative forcing of climate over the industrial period. This uncertainty affects the ability to est. how sensitive climate is to greenhouse gas emissions. This work performed a sensitivity anal. on a global model to quantify uncertainty in cloud radiative forcing over the industrial period caused by uncertainties in aerosol emissions and processes. Results showed 45% of the variance of aerosol forcing since ∼1750 arises from uncertainties in natural emissions of volcanic SO2, marine di-Me sulfide, biogenic volatile org. C, biomass burning, and sea spray. Only 34% of the variance was assocd. with anthropogenic emissions. Results point to the importance of understanding pristine pre-industrial-like environments, with natural aerosols only, and suggest improved measurements and evaluation of simulated aerosols in polluted present-day conditions will not necessarily result in commensurate redns. in uncertainty of forcing ests. - 97Jia, H.; Quaas, J. Nonlinearity of the cloud response postpones climate penalty of mitigating air pollution in polluted regions. Nat. Clim. Chang. 2023, 13, 943– 950, DOI: 10.1038/s41558-023-01775-5
贾浩;夸斯,J. 云响应的非线性推迟了污染区域空气污染治理的气候惩罚。《自然·气候变化》2023 年第 13 卷,第 943-950 页,DOI:10.1038/s41558-023-01775-5 - 98Notaro, M.; Yu, Y.; Kalashnikova, O. V. Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought. Geophys. Res. Atmos. 2015, 120, 10,229– 10,249, DOI: 10.1002/2015JD023855
98 诺塔罗,M.;余,Y.;卡拉什尼科娃,O.V. 由持续新月沃土干旱引发的阿拉伯地区沙尘活动机制转变。《地球物理研究:大气》2015 年第 120 卷,第 10229-10249 页,DOI:10.1002/2015JD023855 - 99Wu, C.; Lin, Z.; Shao, Y.; Liu, X.; Li, Y. Drivers of recent decline in dust activity over East Asia. Nat. Commun. 2022, 13, 7105 DOI: 10.1038/s41467-022-34823-3
99 吴,C.;林,Z.;邵,Y.;刘,X.;李,Y. 东亚地区近期沙尘活动减弱的驱动因素。《自然·通讯》2022 年第 13 卷,第 7105 页,DOI:10.1038/s41467-022-34823-3 - 100Liu, J.; Wang, X.; Wu, D.; Wei, H.; Li, Y.; Ji, M. Historical footprints and future projections of global dust burden from bias-corrected CMIP6 models. npj Clim. Atmos. Sci. 2024, 7, 1 DOI: 10.1038/s41612-023-00550-9
100 刘,J.;王,X.;吴,D.;魏,H.;李,Y.;季,M. 基于偏差校正 CMIP6 模型的全球沙尘负荷历史足迹与未来预测。《npj 气候与大气科学》2024 年第 7 卷第 1 期,DOI:10.1038/s41612-023-00550-9 - 101Chen, J.; Wu, Z.; Augustin-Bauditz, S.; Grawe, S.; Hartmann, M.; Pei, X.; Liu, Z.; Ji, D.; Wex, H. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China. Atmos. Chem. Phys. 2018, 18, 3523– 3539, DOI: 10.5194/acp-18-3523-2018
101 陈,J.;吴,Z.;奥古斯丁-鲍迪茨,S.;格拉韦,S.;哈特曼,M.;裴,X.;刘,Z.;季,D.;韦克斯,H. 北京城市空气污染对冰核粒子浓度无显著影响。《大气化学与物理》2018 年第 18 卷,第 3523-3539 页,DOI:10.5194/acp-18-3523-2018 - 102Hartmann, M.; Blunier, T.; Brugger, S. O.; Schmale, J.; Schwikowski, M.; Vogel, A.; Wex, H.; Stratmann, F. Variation of Ice Nucleating Particles in the European Arctic Over the Last Centuries. Geophys. Res. Lett. 2019, 46, 4007– 4016, DOI: 10.1029/2019GL082311
102 哈特曼,M.;布卢尼尔,T.;布鲁格,S.O.;施马尔,J.;施维科夫斯基,M.;沃格尔,A.;韦克斯,H.;斯特拉特曼,F.《欧洲北极地区冰核粒子在过去几个世纪的变化》。地球物理研究快报,2019 年,46 卷,4007-4016 页,DOI:10.1029/2019GL382311
Cited By 被引用情况
点击复制章节链接Section link copied!
This article has not yet been cited by other publications.
本文尚未被其他出版物引用。
Recommended Articles
Simulating Droplet-Resolved Haze and Cloud Chemistry Forming Secondary Organic Aerosols in Turbulent Conditions within Laboratory and Cloud Parcels
Quantifying the Accuracy, Uncertainty, and Sensitivity of Soil Geochemical Multisurface Models
Machine Learning-based Classification for the Prioritization of Potentially Hazardous Chemicals with Structural Alerts in Nontarget Screening
Dimensionless Parameters Define Criteria for Optimal Flow Velocity in Enhancing Chemotactic Response toward Residual Contaminants in Porous Media
Photodegradation Controls of Potential Toxicity of Secondary Sunscreen-Derived Microplastics and Associated Leachates
Article Views 文章阅读量
Altmetric Altmetric 指标
Citations 引用次数
了解这些指标
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles 推荐文章
Simulating Droplet-Resolved Haze and Cloud Chemistry Forming Secondary Organic Aerosols in Turbulent Conditions within Laboratory and Cloud Parcels
模拟实验室和云团湍流条件下液滴解析雾霾与云化学过程形成二次有机气溶胶《环境科学与技术》Quantifying the Accuracy, Uncertainty, and Sensitivity of Soil Geochemical Multisurface Models
量化土壤地球化学多表面模型的准确性、不确定性和敏感性《环境科学与技术》Machine Learning-based Classification for the Prioritization of Potentially Hazardous Chemicals with Structural Alerts in Nontarget Screening
基于机器学习的非目标筛查中具有结构警示的潜在有害化学品优先排序分类《环境科学与技术》Dimensionless Parameters Define Criteria for Optimal Flow Velocity in Enhancing Chemotactic Response toward Residual Contaminants in Porous Media
多孔介质中增强趋化响应的最佳流速标准由无量纲参数定义《环境科学与技术》Photodegradation Controls of Potential Toxicity of Secondary Sunscreen-Derived Microplastics and Associated Leachates
防晒剂衍生二次微塑料及其浸出液潜在毒性的光降解控制机制《环境科学与技术》
Abstract 摘要
Figure 1 图 1
Figure 1. Ice nucleation site density per mass nm is given as a function of temperature for known mineral dust, biogenic INMs, and in this study examined marine microbial INMs. ‡This data was converted from ns or nv to nm. Details of the conversion are given in the SI. * The desert dust compilation includes Asian dust, Canary Island dust, Israeli dust, and Saharan dust. Refs (21,38−40,50,61,62,70,74−82)
图 1. 以单位质量 nm 计的冰核位点密度随温度变化的关系图,展示了已知矿物粉尘、生物源冰核物质(INMs)及本研究检测的海洋微生物源 INMs 的数据。‡该数据由 ns 或 nv 换算为 nm,具体换算方法见支持信息。*沙漠粉尘数据合集包含亚洲粉尘、加那利群岛粉尘、以色列粉尘和撒哈拉粉尘。参考文献(21,38−40,50,61,62,70,74−82)Figure 2 图 2
Figure 2. Physical properties of analyzed eukaryotic microorganisms indicate a non proteinaceous origin of INMs mainly attached to the microbial cells. The INM number concentration per sample volume is given for unmodified eukaryotic microorganisms together with CNT-based fits (A) and after physical treatments: heating at 95 °C for 1 h (B), filtration (<0.2 μm; C) and the combination of both (D). Heating does not change INM number concentrations, whereas filtration significantly reduces INM number concentration, and subsequent heating does not alter the INM concentration. This points toward the existence of heat-stable most likely non proteinaceous INMs freely suspended and to a larger extent connected to microbial cells.
图 2. 真核微生物的物理特性分析表明,冰核物质(INMs)主要附着于微生物细胞且具有非蛋白质属性。图中展示了未经处理的真核微生物样本单位体积内 INM 数量浓度与基于碳纳米管(CNT)拟合曲线的对比(A),以及经物理处理后的数据:95℃加热 1 小时(B)、0.2μm 过滤(C)及两种处理的组合(D)。加热处理未改变 INM 浓度,而过滤显著降低 INM 数量浓度,后续加热处理亦未改变 INM 浓度。这表明存在热稳定的 INMs,这些物质很可能为非蛋白质结构,部分自由悬浮但更大比例与微生物细胞相关联。Figure 3 图 3
Figure 3. High agreement of the ice nucleation activity of tested aquatic eukaryotic microorganisms with that of marine polysaccharides. The temperature-dependent ice nucleation site densities per carbohydrate carbon mass nm, C-TCCHO is presented with CNT-based parametrizations (parameters are presented in Table S4 in the SI). The derived CNT-parametrization of T. striatum is used for HSZ25.
图 3. 测试的水生真核微生物冰核活性与海洋多糖高度吻合。基于碳水化合物碳质量的温度依赖性冰核位点密度 nm,C-TCCHO 采用经典成核理论(CNT)参数化呈现(参数见 SI 表 S4)。条纹颤藻(T. striatum)的 CNT 参数化结果被用于 HSZ25 样品分析。Figure 4 图 4
Figure 4. Modeled against observed INP concentration between −15 and −20 °C. Measurement data from 14 different campaigns (n = 5364; see Tab S5 and Figure S6 for references and regional coverage) in predominantly marine air masses was used. These were compared to annual mean INP concentrations derived from modeled mineral dust and sea salt concentrations simulated with a global model. For mineral dust INPs, the parametrization by Niedermeier et al., (70) and for marine polysaccharide INPs, the parametrization derived in this work was applied. Gray dots show the comparison between modeled mineral dust INPs and observation, whereas colored dots (color-code by observation temperature) present the sum of modeled mineral dust + marine polysaccharide INPs. For orientation, the figure shows the 1:1 line (solid) and the 1:10 and 10:1 lines (dashed).
图 4. 在-15 至-20°C 温度范围内模拟与观测的冰核颗粒(INP)浓度对比。研究采用了来自 14 个不同观测活动(n=5364;具体参考文献及区域覆盖范围参见表 S5 和图 S6)的测量数据,这些数据主要来自海洋气团。将全球模式模拟的矿物沙尘与海盐浓度推算出的年平均 INP 浓度与观测值进行对比:矿物沙尘 INP 采用 Niedermeier 等人(70)的参数化方案,海洋多糖 INP 则采用本研究推导的参数化方案。灰色圆点表示模拟矿物沙尘 INP 与观测值的对比,而彩色圆点(按观测温度进行颜色编码)表示模拟矿物沙尘+海洋多糖 INP 的总和。图中标有 1:1 比例线(实线)及 1:10 和 10:1 比例线(虚线)作为参照基准。Figure 5 图 5
Figure 5. Percentage of modeled polysaccharide-based marine INPs in the sum of modeled INPs (mineral dust + marine polysaccharides) in the lowermost model layer for different temperatures. Annual mean INP concentrations were derived from mineral dust concentrations and from polysaccharides estimated based on sea salt concentrations simulated by a global model.
图 5. 最底层模式中不同温度下模拟的基于多糖的海洋冰核粒子(INPs)占模拟 INPs 总量(矿物粉尘+海洋多糖)的百分比。年均 INP 浓度由矿物粉尘浓度和基于全球模式模拟的海盐浓度估算的多糖浓度得出。References
This article references 102 other publications.
- 1Tan, I.; Storelvmo, T.; Zelinka, M. D. Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 2016, 352, 224– 227, DOI: 10.1126/science.aad53001Observational constraints on mixed-phase clouds imply higher climate sensitivityTan, Ivy; Storelvmo, Trude; Zelinka, Mark D.Science (Washington, DC, United States) (2016), 352 (6282), 224-227CODEN: SCIEAS; ISSN:0036-8075. (American Association for the Advancement of Science)Global climate model (GCM) ests. of the equil. global mean surface temp. response to a doubling of atm. CO2, measured by the equil. climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liq. droplets are constrained by global satellite observations. The higher ECS ests. are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. We point out the need for realistic representations of the supercooled liq. fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback.
- 2McCluskey, C. S.; Hill, T. C. J.; Humphries, R. S.; Rauker, A. M.; Moreau, S.; Strutton, P. G.; Chambers, S. D.; Williams, A. G.; McRobert, I.; Ward, J.; Keywood, M. D.; Harnwell, J.; Ponsonby, W.; Loh, Z. M.; Krummel, P. B.; Protat, A.; Kreidenweis, S. M.; DeMott, P. J. Observations of Ice Nucleating Particles Over Southern Ocean Waters. Geophys. Res. Lett. 2018, 45, 11989– 11997, DOI: 10.1029/2018GL079981There is no corresponding record for this reference.
- 3Tatzelt, C.; Henning, S.; Welti, A.; Baccarini, A.; Hartmann, M.; Gysel-Beer, M.; van Pinxteren, M.; Modini, R. L.; Schmale, J.; Stratmann, F. Circum-Antarctic abundance and properties of CCN and INPs. Atmos. Chem. Phys. 2022, 22, 9721– 9745, DOI: 10.5194/acp-22-9721-2022There is no corresponding record for this reference.
- 4Vergara-Temprado, J.; Murray, B. J.; Wilson, T. W.; O’Sullivan, D.; Browse, J.; Pringle, K. J.; Ardon-Dryer, K.; Bertram, A. K.; Burrows, S. M.; Ceburnis, D.; DeMott, P. J.; Mason, R. H.; O’Dowd, C. D.; Rinaldi, M.; Carslaw, K. S. Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations. Atmos. Chem. Phys. 2017, 17, 3637– 3658, DOI: 10.5194/acp-17-3637-20174Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrationsVergara-Temprado, Jesus; Murray, Benjamin J.; Wilson, Theodore W.; O'Sullivan, Daniel; Browse, Jo; Pringle, Kirsty J.; Ardon-Dryer, Karin; Bertram, Allan K.; Burrows, Susannah M.; Ceburnis, Darius; De Mott, Paul J.; Mason, Ryan H.; O'Dowd, Colin D.; Rinaldi, Matteo; Carslaw, Ken S.Atmospheric Chemistry and Physics (2017), 17 (5), 3637-3658CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Ice-nucleating particles (INPs) are known to affect the amt. of ice in mixed-phase clouds, thereby influencing many of their properties. The atm. INP concn. changes by orders of magnitude from terrestrial to marine environments, which typically contain much lower concns. Many modeling studies use parameterizations for heterogeneous ice nucleation and cloud ice processes that do not account for this difference because they were developed based on INP measurements made predominantly in terrestrial environments without considering the aerosol compn. Errors in the assumed INP concn. will influence the simulated amt. of ice in mixed-phase clouds, leading to errors in top-of-atm. radiative flux and ultimately the climate sensitivity of the model. Here we develop a global model of INP concns. relevant for mixed-phase clouds based on lab. and field measurements of ice nucleation by K-feldspar (an ice-active component of desert dust) and marine org. aerosols (from sea spray). The simulated global distribution of INP concns. based on these two species agrees much better with currently available ambient measurements than when INP concns. are assumed to depend only on temp. or particle size. Underestimation of INP concns. in some terrestrial locations may be due to the neglect of INPs from other terrestrial sources. Our model indicates that, on a monthly av. basis, desert dusts dominate the contribution to the INP population over much of the world, but marine orgs. become increasingly important over remote oceans and they dominate over the Southern Ocean. However, day-to-day variability is important. Because desert dust aerosol tends to be sporadic, marine org. aerosols dominate the INP population on many days per mo over much of the mid- and high-latitude Northern Hemisphere. This study advances our understanding of which aerosol species need to be included in order to adequately describe the global and regional distribution of INPs in models, which will guide ice nucleation researchers on where to focus future lab. and field work.
- 5Atkinson, J. D.; Murray, B. J.; Woodhouse, M. T.; Whale, T. F.; Baustian, K. J.; Carslaw, K. S.; Dobbie, S.; O’Sullivan, D.; Malkin, T. L. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 2013, 498, 355– 358, DOI: 10.1038/nature122785The importance of feldspar for ice nucleation by mineral dust in mixed-phase cloudsAtkinson, James D.; Murray, Benjamin J.; Woodhouse, Matthew T.; Whale, Thomas F.; Baustian, Kelly J.; Carslaw, Kenneth S.; Dobbie, Steven; O'Sullivan, Daniel; Malkin, Tamsin L.Nature (London, United Kingdom) (2013), 498 (7454), 355-358CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)The amt. of ice present in mixed-phase clouds, which contain both supercooled liq. water droplets and ice particles, affects cloud extent, lifetime, particle size and radiative properties. The freezing of cloud droplets can be catalyzed by the presence of aerosol particles known as ice nuclei. One of the most important ice nuclei is thought to be mineral dust aerosol from arid regions. It is generally assumed that clay minerals, which contribute approx. two-thirds of the dust mass, dominate ice nucleation by mineral dust, and many exptl. studies have therefore focused on these materials. Here we use an established droplet-freezing technique to show that feldspar minerals dominate ice nucleation by mineral dusts under mixed-phase cloud conditions, despite feldspar being a minor component of dust emitted from arid regions. We also find that clay minerals are relatively unimportant ice nuclei. Our results from a global aerosol model study suggest that feldspar ice nuclei are globally distributed and that feldspar particles may account for a large proportion of the ice nuclei in Earth's atm. that contribute to freezing at temps. below about -15 °C.
- 6DeMott, P. J.; Hill, T. C. J.; McCluskey, C. S.; Prather, K. A.; Collins, D. B.; Sullivan, R. C.; Ruppel, M. J.; Mason, R. H.; Irish, V. E.; Lee, T.; Hwang, C. Y.; Rhee, T. S.; Snider, J. R.; McMeeking, G. R.; Dhaniyala, S.; Lewis, E. R.; Wentzell, J. J. B.; Abbatt, J.; Lee, C.; Sultana, C. M.; Ault, A. P.; Axson, J. L.; Diaz Martinez, M.; Venero, I.; Santos-Figueroa, G.; Stokes, M. D.; Deane, G. B.; Mayol-Bracero, O. L.; Grassian, V. H.; Bertram, T. H.; Bertram, A. K.; Moffett, B. F.; Franc, G. D. Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 5797– 5803, DOI: 10.1073/pnas.15140341126Sea spray aerosol as a unique source of ice nucleating particlesDeMott, Paul J.; Hill, Thomas C. J.; McCluskey, Christina S.; Prather, Kimberly A.; Collins, Douglas B.; Sullivan, Ryan C.; Ruppel, Matthew J.; Mason, Ryan H.; Irish, Victoria E.; Lee, Taehyoung; Hwang, Chung Yeon; Rhee, Tae Siek; Snider, Jefferson R.; McMeeking, Gavin R.; Dhaniyala, Suresh; Lewis, Ernie R.; Wentzell, Jeremy J. B.; Abbatt, Jonathan; Lee, Christopher; Sultana, Camille M.; Ault, Andrew P.; Axson, Jessica L.; Martinez, Myrelis Diaz; Venero, Ingrid; Santos-Figueroa, Gilmarie; Stokes, M. Dale; Deane, Grant B.; Mayol-Bracero, Olga L.; Grassian, Vicki H.; Bertram, Timothy H.; Bertram, Allan K.; Moffett, Bruce F.; Franc, Gary D.Proceedings of the National Academy of Sciences of the United States of America (2016), 113 (21), 5797-5803CODEN: PNASA6; ISSN:0027-8424. (National Academy of Sciences)Ice nucleating particles (INPs) are vital for ice initiation in, and pptn. from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a lab. flume to produce SSA. The no. concns. of INPs from lab.-generated SSA, when normalized to typical total aerosol no. concns. in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP no. concns. active within liq. water droplets increase exponentially in no. with a decrease in temp. below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in assocn. with phytoplankton blooms is also shown in lab. simulations. Nevertheless, INP no. concns., or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concns. or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and pptn. within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.
- 7Zhao, X.; Liu, X.; Burrows, S.; DeMott, P. J.; Diao, M.; McFarquhar, G. M.; Patade, S.; Phillips, V.; Roberts, G. C.; Sanchez, K. J.; Shi, Y.; Zhang, M. Important Ice Processes Are Missed by the Community Earth System Model in Southern Ocean Mixed-Phase Clouds: Bridging SOCRATES Observations to Model Developments. J. Geophys. Res. Atmos. 2023, 128, e2022JD037513 DOI: 10.1029/2022JD037513There is no corresponding record for this reference.
- 8DeMott, P. J.; Prenni, A. J.; Liu, X.; Kreidenweis, S. M.; Petters, M. D.; Twohy, C. H.; Richardson, M. S.; Eidhammer, T.; Rogers, D. C. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 11217– 11222, DOI: 10.1073/pnas.09108181078Predicting global atmospheric ice nuclei distributions and their impacts on climateDeMott P J; Prenni A J; Liu X; Kreidenweis S M; Petters M D; Twohy C H; Richardson M S; Eidhammer T; Rogers D CProceedings of the National Academy of Sciences of the United States of America (2010), 107 (25), 11217-22 ISSN:.Knowledge of cloud and precipitation formation processes remains incomplete, yet global precipitation is predominantly produced by clouds containing the ice phase. Ice first forms in clouds warmer than -36 degrees C on particles termed ice nuclei. We combine observations from field studies over a 14-year period, from a variety of locations around the globe, to show that the concentrations of ice nuclei active in mixed-phase cloud conditions can be related to temperature and the number concentrations of particles larger than 0.5 microm in diameter. This new relationship reduces unexplained variability in ice nuclei concentrations at a given temperature from approximately 10(3) to less than a factor of 10, with the remaining variability apparently due to variations in aerosol chemical composition or other factors. When implemented in a global climate model, the new parameterization strongly alters cloud liquid and ice water distributions compared to the simple, temperature-only parameterizations currently widely used. The revised treatment indicates a global net cloud radiative forcing increase of approximately 1 W m(-2) for each order of magnitude increase in ice nuclei concentrations, demonstrating the strong sensitivity of climate simulations to assumptions regarding the initiation of cloud glaciation.
- 9Overland, J.; Dunlea, E.; Box, J. E.; Corell, R.; Forsius, M.; Kattsov, V.; Olseng, M. S.; Pawlak, J.; Reiersen, L. O.; Wang, M. Y. The urgency of Arctic change. Polar Sci. 2019, 21, 6– 13, DOI: 10.1016/j.polar.2018.11.008There is no corresponding record for this reference.
- 10Sallée, J.-B. Southern Ocean Warming. Oceanography 2018, 31, 52– 62, DOI: 10.5670/oceanog.2018.215There is no corresponding record for this reference.
- 11Swart, N. C.; Gille, S. T.; Fyfe, J. C.; Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 2018, 11, 836, DOI: 10.1038/s41561-018-0226-1There is no corresponding record for this reference.
- 12Murray, B. J.; Carslaw, K. S.; Field, P. R. Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles. Atmos. Chem. Phys. 2021, 21, 665– 679, DOI: 10.5194/acp-21-665-202112Opinion: cloud-phase climate feedback and the importance of ice-nucleating particlesMurray, Benjamin J.; Carslaw, Kenneth S.; Field, Paul R.Atmospheric Chemistry and Physics (2021), 21 (2), 665-679CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Shallow clouds covering vast areas of the world's middle- and high-latitude oceans play a key role in dampening the global temp. rise assocd. with CO2. These clouds, which contain both ice and supercooled water, respond to a warming world by transitioning to a state with more liq. water and a greater albedo, resulting in a neg. "cloud-phase" climate feedback component. Here we argue that the magnitude of the neg. cloud-phase feedback component depends on the amt. and nature of the small fraction of aerosol particles that can nucleate ice crystals. We propose that a concerted research effort is required to reduce substantial uncertainties related to the poorly understood sources, concn., seasonal cycles and nature of these ice-nucleating particles (INPs) and their rudimentary treatment in climate models. The topic is important because many climate models may have overestimated the magnitude of the cloud-phase feedback, and those with better representation of shallow oceanic clouds predict a substantially larger climate warming. We make the case that understanding the present-day INP population in shallow clouds in the cold sector of cyclone systems is particularly crit. for defining present-day cloud phase and therefore how the clouds respond to warming. We also need to develop a predictive capability for future INP emissions and sinks in a warmer world with less ice and snow and potentially stronger INP sources.
- 13Wendisch, M.; Bruckner, M.; Crewell, S.; Ehrlich, A.; Notholt, J.; Lupkes, C.; Macke, A.; Burrows, J. P.; Rinke, A.; Quaas, J.; Maturilli, M.; Schemann, V.; Shupe, M. D.; Akansu, E. F.; Barrientos-Velasco, C.; Barfuss, K.; Blechschmidt, A. M.; Block, K.; Bougoudis, I.; Bozem, H.; Bockmann, C.; Bracher, A.; Bresson, H.; Bretschneider, L.; Buschmann, M.; Chechin, D. G.; Chylik, J.; Dahlke, S.; Deneke, H.; Dethloff, K.; Donth, T.; Dorn, W.; Dupuy, R.; Ebell, K.; Egerer, U.; Engelmann, R.; Eppers, O.; Gerdes, R.; Gierens, R.; Gorodetskaya, I. V.; Gottschalk, M.; Griesche, H.; Gryanik, V. M.; Handorf, D.; Harm-Altstadter, B.; Hartmann, J.; Hartmann, M.; Heinold, B.; Herber, A.; Herrmann, H.; Heygster, G.; Hoschel, I.; Hofmann, Z.; Holemann, J.; Hunerbein, A.; Jafariserajehlou, S.; Jakel, E.; Jacobi, C.; Janout, M.; Jansen, F.; Jourdan, O.; Juranyi, Z.; Kalesse-Los, H.; Kanzow, T.; Kathner, R.; Kliesch, L. L.; Klingebiel, M.; Knudsen, E. M.; Kovacs, T.; Kortke, W.; Krampe, D.; Kretzschmar, J.; Kreyling, D.; Kulla, B.; Kunkel, D.; Lampert, A.; Lauer, M.; Lelli, L.; von Lerber, A.; Linke, O.; Lohnert, U.; Lonardi, M.; Losa, S. N.; Losch, M.; Maahn, M.; Mech, M.; Mei, L.; Mertes, S.; Metzner, E.; Mewes, D.; Michaelis, J.; Mioche, G.; Moser, M.; Nakoudi, K.; Neggers, R.; Neuber, R.; Nomokonova, T.; Oelker, J.; Papakonstantinou-Presvelou, I.; Patzold, F. Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)(3) Project. Bull. Am. Meteorol. Soc. 2023, 104, E208– E242, DOI: 10.1175/BAMS-D-21-0218.1There is no corresponding record for this reference.
- 14Schnell, R. C.; Vali, G. Freezing nuclei in marine waters. Tellus 2022, 27, 321– 323, DOI: 10.3402/tellusa.v27i3.9911There is no corresponding record for this reference.
- 15Wilson, T. W.; Ladino, L. A.; Alpert, P. A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, S. M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, G.; Miller, L. A.; Najera, J. J.; Polishchuk, E.; Rae, S.; Schiller, C. L.; Si, M.; Temprado, J. V.; Whale, T. F.; Wong, J. P. S.; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, J. P. D.; Aller, J. Y.; Bertram, A. K.; Knopf, D. A.; Murray, B. J. A marine biogenic source of atmospheric ice-nucleating particles. Nature 2015, 525, 234, DOI: 10.1038/nature1498615A marine biogenic source of atmospheric ice-nucleating particlesWilson, Theodore W.; Ladino, Luis A.; Alpert, Peter A.; Breckels, Mark N.; Brooks, Ian M.; Browse, Jo; Burrows, Susannah M.; Carslaw, Kenneth S.; Huffman, J. Alex; Judd, Christopher; Kilthau, Wendy P.; Mason, Ryan H.; McFiggans, Gordon; Miller, Lisa A.; Najera, Juan J.; Polishchuk, Elena; Rae, Stuart; Schiller, Corinne L.; Si, Meng; Temprado, Jesus Vergara; Whale, Thomas F.; Wong, Jenny P. S.; Wurl, Oliver; Yakobi-Hancock, Jacqueline D.; Abbatt, Jonathan P. D.; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.Nature (London, United Kingdom) (2015), 525 (7568), 234-238CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)The amt. of ice present in clouds can affect cloud lifetime, pptn. and radiative properties. The formation of ice in clouds is facilitated by the presence of airborne ice-nucleating particles. Sea spray is one of the major global sources of atm. particles, but it is unclear to what extent these particles are capable of nucleating ice. Sea-spray aerosol contains large amts. of org. material that is ejected into the atm. during bubble bursting at the organically enriched sea-air interface or sea surface microlayer. Here we show that org. material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice-nucleating material is probably biogenic and less than approx. 0.2 μm in size. We find that exudates sepd. from cells of the marine diatom Thalassiosira pseudonana nucleate ice, and propose that org. material assocd. with phytoplankton cell exudates is a likely candidate for the obsd. ice-nucleating ability of the microlayer samples. Global model simulations of marine org. aerosol, in combination with our measurements, suggest that marine org. material may be an important source of ice-nucleating particles in remote marine environments such as the Southern Ocean, North Pacific Ocean and North Atlantic Ocean.
- 16McCluskey, C. S.; Hill, T. C. J.; Malfatti, F.; Sultana, C. M.; Lee, C.; Santander, M. V.; Beall, C. M.; Moore, K. A.; Cornwell, G. C.; Collins, D. B.; Prather, K. A.; Jayarathne, T.; Stone, E. A.; Azam, F.; Kreidenweis, S. M.; DeMott, P. J. A Dynamic Link between Ice Nucleating Particles Released in Nascent Sea Spray Aerosol and Oceanic Biological Activity during Two Mesocosm Experiments. J. Atmos. Sci. 2017, 74, 151– 166, DOI: 10.1175/JAS-D-16-0087.1There is no corresponding record for this reference.
- 17McCluskey, C. S.; Hill, T. C. J.; Sultana, C. M.; Laskina, O.; Trueblood, J.; Santander, M. V.; Beall, C. M.; Michaud, J. M.; Kreidenweis, S. M.; Prather, K. A.; Grassian, V.; DeMott, P. J. A Mesocosm Double Feature: Insights into the Chemical Makeup of Marine Ice Nucleating Particles. J. Atmos. Sci. 2018, 75, 2405– 2423, DOI: 10.1175/JAS-D-17-0155.1There is no corresponding record for this reference.
- 18Creamean, J. M.; Kirpes, R. M.; Pratt, K. A.; Spada, N. J.; Maahn, M.; de Boer, G.; Schnell, R. C.; China, S. Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location. Atmos. Chem. Phys. 2018, 18, 18023– 18042, DOI: 10.5194/acp-18-18023-201818Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield locationCreamean, Jessie M.; Kirpes, Rachel M.; Pratt, Kerri A.; Spada, Nicholas J.; Maahn, Maximilian; de Boer, Gijs; Schnell, Russell C.; China, SwarupAtmospheric Chemistry and Physics (2018), 18 (24), 18023-18042CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Aerosols that serve as ice nucleating particles (INPs) have the potential to modulate cloud microphys. properties and can therefore impact cloud radiative forcing (CRF) and pptn. formation processes. In remote regions such as the Arctic, aerosol-cloud interactions are severely understudied yet may have significant implications for the surface energy budget and its impact on sea ice and snow surfaces. Further, uncertainties in model representations of heterogeneous ice nucleation are a significant hindrance to simulating Arctic mixed-phase cloud processes. We present results from a campaign called INPOP (Ice Nucleating Particles at Oliktok Point), which took place at a US Department of Energy Atm. Radiation Measurement (DOE ARM) facility in the northern Alaskan Arctic. Three time- and size-resolved aerosol impactors were deployed from 1 March to 31 May 2017 for offline ice nucleation and chem. analyses and were co-located with routine measurements of aerosol no. and size. The largest particles (i.e., ≥3 ´i.m. or "coarse mode") were the most efficient INPs by inducing freezing at the warmest temps.
- 19Trueblood, J. V.; Nicosia, A.; Engel, A.; Zäncker, B.; Rinaldi, M.; Freney, E.; Thyssen, M.; Obernosterer, I.; Dinasquet, J.; Belosi, F.; Tovar-Sánchez, A.; Rodriguez-Romero, A.; Santachiara, G.; Guieu, C.; Sellegri, K. A two-component parameterization of marine ice-nucleating particles based on seawater biology and sea spray aerosol measurements in the Mediterranean Sea. Atmos. Chem. Phys. 2021, 21, 4659– 4676, DOI: 10.5194/acp-21-4659-2021There is no corresponding record for this reference.
- 20Creamean, J. M.; Cross, J. N.; Pickart, R.; McRaven, L.; Lin, P.; Pacini, A.; Hanlon, R.; Schmale, D. G.; Ceniceros, J.; Aydell, T.; Colombi, N.; Bolger, E.; DeMott, P. J. Ice Nucleating Particles Carried From Below a Phytoplankton Bloom to the Arctic Atmosphere. Geophys. Res. Lett. 2019, 46, 8572– 8581, DOI: 10.1029/2019GL083039There is no corresponding record for this reference.
- 21Schnell, R. C. Ice nuclei produced by laboratory cultured marine phytoplankton. Geophys. Res. Lett. 1975, 2, 500– 502, DOI: 10.1029/GL002i011p00500There is no corresponding record for this reference.
- 22Schnell, R. C.; Vali, G. Biogenic ice nuclei: part 1. terrestrial and marine sources. J. Atmos. Sci. 1976, 33, 1554– 1564, DOI: 10.1175/1520-0469(1976)033<1554:BINPIT>2.0.CO;2There is no corresponding record for this reference.
- 23Mitts, B. A.; Wang, X.; Lucero, D. D.; Beall, C. M.; Deane, G. B.; DeMott, P. J.; Prather, K. A. Importance of Supermicron Ice Nucleating Particles in Nascent Sea Spray. Geophys. Res. Lett. 2021, 48, e2020GL089633 DOI: 10.1029/2020GL089633There is no corresponding record for this reference.
- 24Alpert, P. A.; Kilthau, W. P.; O’Brien, R. E.; Moffet, R. C.; Gilles, M. K.; Wang, B.; Laskin, A.; Aller, J. Y.; Knopf, D. A. Ice-nucleating agents in sea spray aerosol identified and quantified with a holistic multimodal freezing model. Sci. Adv. 2022, 8, eabq6842 DOI: 10.1126/sciadv.abq6842There is no corresponding record for this reference.
- 25Irish, V. E.; Elizondo, P.; Chen, J.; Chou, C.; Charette, J.; Lizotte, M.; Ladino, L. A.; Wilson, T. W.; Gosselin, M.; Murray, B. J.; Polishchuk, E.; Abbatt, J. P. D.; Miller, L. A.; Bertram, A. K. Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater. Atmos. Chem. Phys. 2017, 17, 10583– 10595, DOI: 10.5194/acp-17-10583-2017There is no corresponding record for this reference.
- 26Gong, X.; Wex, H.; van Pinxteren, M.; Triesch, N.; Fomba, K. W.; Lubitz, J.; Stolle, C.; Robinson, T. B.; Müller, T.; Herrmann, H.; Stratmann, F. Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level - Part 2: Ice-nucleating particles in air, cloud and seawater. Atmos. Chem. Phys. 2020, 20, 1451– 1468, DOI: 10.5194/acp-20-1451-2020There is no corresponding record for this reference.
- 27Decesari, S.; Paglione, M.; Rinaldi, M.; Dall’Osto, M.; Simó, R.; Zanca, N.; Volpi, F.; Facchini, M. C.; Hoffmann, T.; Götz, S.; Kampf, C. J.; O’Dowd, C.; Ceburnis, D.; Ovadnevaite, J.; Tagliavini, E. Shipborne measurements of Antarctic submicron organic aerosols: an NMR perspective linking multiple sources and bioregions. Atmos. Chem. Phys. 2020, 20, 4193– 4207, DOI: 10.5194/acp-20-4193-202027Shipborne measurements of Antarctic submicron organic aerosols: an NMR perspective linking multiple sources and bioregionsDecesari, Stefano; Paglione, Marco; Rinaldi, Matteo; Dall'Osto, Manuel; Simo, Rafel; Zanca, Nicola; Volpi, Francesca; Facchini, Maria Cristina; Hoffmann, Thorsten; Gotz, Sven; Kampf, Christopher Johannes; O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Tagliavini, EmilioAtmospheric Chemistry and Physics (2020), 20 (7), 4193-4207CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)The concns. of submicron aerosol particles in maritime regions around Antarctica are influenced by the extent of sea ice. This effect is two ways: on one side, sea ice regulates the prodn. of particles by sea spray (primary aerosols); on the other side, it hosts complex communities of organisms emitting precursors for secondary particles. Past studies documenting the chem. compn. of fine aerosols in Antarctica indicate various potential primary and secondary sources active in coastal areas, in offshore marine regions, and in the sea ice itself. To complement the aerosol source apportionment performed using online mass spectrometric techniques, here we discuss the outcomes of offline spectroscopic anal. performed by NMR (NMR) spectroscopy. The anal. of water-sol. org. carbon (WSOC) in ambient submicron aerosol samples shows distinct NMR fingerprints for three bioregions: (1) the open Southern Ocean pelagic environments, in which aerosols are enriched with primary marine particles contg. lipids and sugars; (2) sympagic areas in the Weddell Sea, where secondary org. compds., including methanesulfonic acid and semivolatile amines abound in the aerosol compn.; and (3) terrestrial coastal areas, traced by sugars such as sucrose, emitted by land vegetation. Finally, a new biogenic chem. marker, creatinine, was identified in the samples from the Weddell Sea, providing another confirmation of the importance of nitrogen-contg. metabolites in Antarctic polar aerosols.
- 28Hartmann, M.; Gong, X.; Kecorius, S.; van Pinxteren, M.; Vogl, T.; Welti, A.; Wex, H.; Zeppenfeld, S.; Herrmann, H.; Wiedensohler, A.; Stratmann, F. Terrestrial or marine - indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7°N. Atmos. Chem. Phys. 2021, 21, 11613– 11636, DOI: 10.5194/acp-21-11613-2021There is no corresponding record for this reference.
- 29Ladino, L. A.; Yakobi-Hancock, J. D.; Kilthau, W. P.; Mason, R. H.; Si, M.; Li, J.; Miller, L. A.; Schiller, C. L.; Huffman, J. A.; Aller, J. Y.; Knopf, D. A.; Bertram, A. K.; Abbatt, J. P. D. Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements. Atmos. Environ. 2016, 132, 1– 10, DOI: 10.1016/j.atmosenv.2016.02.02829Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurementsLadino, L. A.; Yakobi-Hancock, J. D.; Kilthau, W. P.; Mason, R. H.; Si, M.; Li, J.; Miller, L. A.; Schiller, C. L.; Huffman, J. A.; Aller, J. Y.; Knopf, D. A.; Bertram, A. K.; Abbatt, J. P. D.Atmospheric Environment (2016), 132 (), 1-10CODEN: AENVEQ; ISSN:1352-2310. (Elsevier Ltd.)This study addresses, through two types of expts., the potential for the oceans to act as a source of atm. ice-nucleating particles (INPs). The INP concn. via deposition mode nucleation was measured in situ at a coastal site in British Columbia in August 2013. The INP concn. at conditions relevant to cirrus clouds (i.e., -40 °C and relative humidity with respect to ice, RHice = 139%) ranged from 0.2 L-1 to 3.3 L-1. Correlations of the INP concns. with levels of anthropogenic tracers (i.e., CO, SO2, NOx, and black carbon) and nos. of fluorescent particles do not indicate a significant influence from anthropogenic sources or submicron bioaerosols, resp. Addnl., the INPs measured in the deposition mode showed a poor correlation with the concn. of particles with sizes larger than 500 nm, which is in contrast with observations made in the immersion freezing mode. To investigate the nature of particles that could have acted as deposition INP, lab. expts. with potential marine aerosol particles were conducted under the ice-nucleating conditions used in the field. At -40 °C, no deposition activity was obsd. with salt aerosol particles (sodium chloride and two forms of com. sea salt: Sigma-Aldrich and Instant Ocean), particles composed of a com. source of natural org. matter (Suwannee River humic material), or particle mixts. of sea salt and humic material. In contrast, exudates from three phytoplankton (Thalassiosira pseudonana, Nanochloris atomus, and Emiliania huxleyi) and one marine bacterium (Vibrio harveyi) exhibited INP activity at low RHice values, down to below 110%. This suggests that the INPs measured at the field site were of marine biol. origins, although we cannot rule out other sources, including mineral dust.
- 30Wilbourn, E. K.; Thornton, D. C.; Ott, C.; Graff, J.; Quinn, P. K.; Bates, T. S.; Betha, R.; Russell, L. M.; Behrenfeld, M. J.; Brooks, S. D. Ice Nucleation by Marine Aerosols Over the North Atlantic Ocean in Late Spring. J. Geophys. Res. Atmos. 2020, 125, e2019JD030913 DOI: 10.1029/2019JD030913There is no corresponding record for this reference.
- 31Beall, C. M.; Michaud, J. M.; Fish, M. A.; Dinasquet, J.; Cornwell, G. C.; Stokes, M. D.; Burkart, M. D.; Hill, T. C.; DeMott, P. J.; Prather, K. A. Cultivable halotolerant ice-nucleating bacteria and fungi in coastal precipitation. Atmos. Chem. Phys. 2021, 21, 9031– 9045, DOI: 10.5194/acp-21-9031-2021There is no corresponding record for this reference.
- 32Thornton, D. C. O.; Brooks, S. D.; Wilbourn, E. K.; Mirrielees, J.; Alsante, A. N.; Gold-Bouchot, G.; Whitesell, A.; McFadden, K. Production of ice-nucleating particles (INPs) by fast-growing phytoplankton. Atmos. Chem. Phys. 2023, 23, 12707– 12729, DOI: 10.5194/acp-23-12707-2023There is no corresponding record for this reference.
- 33Hill, T. C. J.; Malfatti, F.; McCluskey, C. S.; Schill, G. P.; Santander, M. V.; Moore, K. A.; Rauker, A. M.; Perkins, R. J.; Celussi, M.; Levin, E. J. T.; Suski, K. J.; Cornwell, G. C.; Lee, C.; Del Negro, P.; Kreidenweis, S. M.; Prather, K. A.; DeMott, P. J. Resolving the controls over the production and emission of ice-nucleating particles in sea spray. Environ. Sci.: Atmos. 2023, 3, 970– 990, DOI: 10.1039/D2EA00154CThere is no corresponding record for this reference.
- 34Alpert, P. A.; Aller, J. Y.; Knopf, D. A. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases. Phys. Chem. Chem. Phys. 2011, 13, 19882– 19894, DOI: 10.1039/c1cp21844a34Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phasesAlpert, Peter A.; Aller, Josephine Y.; Knopf, Daniel A.Physical Chemistry Chemical Physics (2011), 13 (44), 19882-19894CODEN: PPCPFQ; ISSN:1463-9076. (Royal Society of Chemistry)Biogenic particles have the potential to affect the formation of ice crystals in the atm. with subsequent consequences for the hydrol. cycle and climate. We present lab. observations of heterogeneous ice nucleation in immersion and deposition modes under atmospherically relevant conditions initiated by Nannochloris atomus and Emiliania huxleyi, marine phytoplankton with structurally and chem. distinct cell walls. Temps. at which freezing, melting, and water uptake occur are obsd. using optical microscopy. The intact and fragmented unarmoured cells of N. atomus in aq. NaCl droplets enhance ice nucleation by 10-20 K over the homogeneous freezing limit and can be described by a modified water activity based ice nucleation approach. E. huxleyi cells covered by calcite plates do not enhance droplet freezing temps. Both species nucleate ice in the deposition mode at an ice satn. ratio, Sice, as low as ∼1.2 and below 240 K, however, for each, different nucleation modes occur at warmer temps. These observations show that markedly different biogenic surfaces have both comparable and contrasting effects on ice nucleation behavior depending on the presence of the aq. phase and the extent of supercooling and water vapor supersatn. We derive heterogeneous ice nucleation rate coeffs., Jhet, and cumulative ice nuclei spectra, K, for quantification and anal. using time-dependent and time-independent approaches, resp. Contact angles, α, derived from Jhetvia immersion freezing depend on T, aw, and Sice. For deposition freezing, α can be described as a function of Sice only. The different approaches yield different predictions of atm. ice crystal nos. primarily due to the time evolution allowed for the time-dependent approach with implications for the evolution of mixed-phase and ice clouds.
- 35Tesson, S. V. M.; Santl-Temkiv, T. Ice Nucleation Activity and Aeolian Dispersal Success in Airborne and Aquatic Microalgae. Front. Microbiol 2018, 9, 2681 DOI: 10.3389/fmicb.2018.0268135Ice Nucleation Activity and Aeolian Dispersal Success in Airborne and Aquatic MicroalgaeTesson Sylvie V M; Santl-Temkiv Tina; Santl-Temkiv Tina; Santl-Temkiv TinaFrontiers in microbiology (2018), 9 (), 2681 ISSN:1664-302X.Microalgae are common members of the atmospheric microbial assemblages. Diverse airborne microorganisms are known to produce ice nucleation active (INA) compounds, which catalyze cloud and rain formation, and thus alter cloud properties and their own deposition patterns. While the role of INA bacteria and fungi in atmospheric processes receives considerable attention, the numerical abundance and the capacity for ice nucleation in atmospheric microalgae are understudied. We isolated 81 strains of airborne microalgae from snow samples and determined their taxonomy by sequencing their ITS markers, 18S rRNA genes or 23S rRNA genes. We studied ice nucleation activity of airborne isolates, using droplet freezing assays, and their ability to withstand freezing. For comparison, we investigated 32 strains of microalgae from a culture collection, which were isolated from polar and temperate aqueous habitats. We show that ∼17% of airborne isolates, which belonged to taxa Trebouxiphyceae, Chlorophyceae and Stramenopiles, were INA. A large fraction of INA strains (over 40%) had ice nucleation activity at temperatures ≥-6°C. We found that 50% of aquatic microalgae were INA, but the majority were active at temperatures <-12°C. Most INA compounds produced by microalgae were proteinaceous and associated with the cells. While there were no deleterious effects of freezing on the viability of airborne microalgae, some of the aquatic strains were killed by freezing. In addition, the effect of desiccation was investigated for the aquatic strains and was found to constitute a limiting factor for their atmospheric dispersal. In conclusion, airborne microalgae possess adaptations to atmospheric dispersal, in contrast to microalgae isolated from aquatic habitats. We found that widespread taxa of both airborne and aquatic microalgae were INA at warm, sub-zero temperatures (>-15°C) and may thus participate in cloud and precipitation formation.
- 36Knopf, D. A.; Alpert, P. A.; Wang, B.; Aller, J. Y. Stimulation of ice nucleation by marine diatoms. Nat. Geosci. 2011, 4, 88– 90, DOI: 10.1038/ngeo103736Stimulation of ice nucleation by marine diatomsKnopf, D. A.; Alpert, P. A.; Wang, B.; Aller, J. Y.Nature Geoscience (2011), 4 (2), 88-90CODEN: NGAEBU; ISSN:1752-0894. (Nature Publishing Group)Atm. aerosol particles serve as nuclei for ice-crystal formation. As such, these particles are crit. to the generation of cirrus clouds, which form from gas and liq. water. Atm. aerosols also initiate ice formation in warmer, mixed-phase clouds, where ice crystals coexist with aq. droplets. Biogenic aerosol particles of terrestrial origin, including bacteria and pollen, can act as ice nuclei. Whether biogenic particles of marine origin also act as ice nuclei has remained uncertain. We exposed the cosmopolitan planktonic diatom species Thalassiosira pseudonana to water vapor and supercooled aq. sodium chloride under typical tropospheric conditions conducive to cirrus-cloud formation. Ice nucleation was detd. using a controlled vapor cooling-stage microscope system. Under all conditions, diatoms initiated ice formation. The presence of diatoms in water increased the temp. for ice formation up to 13 K, and in aq. sodium chloride, ice formed at temps. up to 30 K higher than when diatoms were not present. In addn., diatoms initiated ice formation from water vapor at relative humidities as low as 65%. The rate of ice nucleation was rapid and independent of surface area. We suggest that marine biogenic particles such as diatoms help explain high values and seasonal variations in ice-nuclei concns. in subpolar regions.
- 37Alpert, P. A.; Aller, J. Y.; Knopf, D. A. Ice nucleation from aqueous NaCl droplets with and without marine diatoms. Atmos. Chem. Phys. 2011, 11, 5539– 5555, DOI: 10.5194/acp-11-5539-201137Ice nucleation from aqueous NaCl droplets with and without marine diatomsAlpert, P. A.; Aller, J. Y.; Knopf, D. A.Atmospheric Chemistry and Physics (2011), 11 (12), 5539-5555CODEN: ACPTCE; ISSN:1680-7316. (Copernicus Publications)Ice formation in the atm. by homogeneous and heterogeneous nucleation is one of the least understood processes in cloud microphysics and climate. Here we describe our investigation of the marine environment as a potential source of atm. IN by exptl. observing homogeneous ice nucleation from aq. NaCl droplets and comparing against heterogeneous ice nucleation from aq. NaCl droplets contg. intact and fragmented diatoms. Homogeneous and heterogeneous ice nucleation are studied as a function of temp. and water activity, aw. Addnl. analyses are presented on the dependence of diatom surface area and aq. vol. on heterogeneous freezing temps., ice nucleation rates, ωhet, ice nucleation rate coeffs., Jhet, and differential and cumulative ice nuclei spectra, k(T) and K(T), resp. Homogeneous freezing temps. and corresponding nucleation rate coeffs. are in agreement with the water activity based homogeneous ice nucleation theory within exptl. and predictive uncertainties. Our results confirm, as predicted by classical nucleation theory, that a stochastic interpretation can be used to describe the homogeneous ice nucleation process. Heterogeneous ice nucleation initiated by intact and fragmented diatoms can be adequately represented by a modified water activity based ice nucleation theory. A horizontal shift in water activity, Δaw,het = 0.2303, of the ice melting curve can describe median heterogeneous freezing temps. Individual freezing temps. showed no dependence on available diatom surface area and aq. vol. Detd. at median diatom freezing temps. for aw from 0.8 to 0.99, ωhet≃0.11+0.06-0.05 s-1, Jhet≃1.0+1.16-0.61 × 104 cm-2 s-1, and K≃6.2+3.5-4.1 × 104 cm-2. The exptl. derived ice nucleation rates and nuclei spectra allow us to est. ice particle prodn. which we subsequently use for a comparison with obsd. ice crystal concns. typically found in cirrus and polar marine mixed-phase clouds. Differences in application of time-dependent and time-independent analyses to predict ice particle prodn. are discussed.
- 38Ickes, L.; Porter, G. C. E.; Wagner, R.; Adams, M. P.; Bierbauer, S.; Bertram, A. K.; Bilde, M.; Christiansen, S.; Ekman, A. M. L.; Gorokhova, E.; Hohler, K.; Kiselev, A. A.; Leck, C.; Mohler, O.; Murray, B. J.; Schiebel, T.; Ullrich, R.; Salter, M. E. The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal cultures. Atmos. Chem. Phys. 2020, 20, 11089– 11117, DOI: 10.5194/acp-20-11089-202038The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal culturesIckes, Luisa; Porter, Grace C. E.; Wagner, Robert; Adams, Michael P.; Bierbauer, Sascha; Bertram, Allan K.; Bilde, Merete; Christiansen, Sigurd; Ekman, Annica M. L.; Gorokhova, Elena; Hoehler, Kristina; Kiselev, Alexei A.; Leck, Caroline; Moehler, Ottmar; Murray, Benjamin J.; Schiebel, Thea; Ullrich, Romy; Salter, Matthew E.Atmospheric Chemistry and Physics (2020), 20 (18), 11089-11117CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)In recent years, sea spray as well as the biol. material it contains has received increased attention as a source of ice-nucleating particles (INPs). Such INPs may play a role in remote marine regions, where other sources of INPs are scarce or absent. In the Arctic, these INPs can influence water-ice partitioning in low-level clouds and thereby the cloud lifetime, with consequences for the surface energy budget, sea ice formation and melt, and climate. Marine aerosol is of a diverse nature, so identifying sources of INPs is challenging. One fraction of marine bioaerosol (phytoplankton and their exudates) has been a particular focus of marine INP research. Firstly, we compare the ice-nucleating ability of two common phytoplankton species with Arctic seawater microlayer samples using the same instrumentation to see if these phytoplankton species produce ice-nucleating material with sufficient activity to account for the ice nucleation obsd. in Arctic microlayer samples. We present the first measurements of the ice-nucleating ability of two predominant phytoplankton species: Melosira arctica, a common Arctic diatom species, and Skeletonema marinoi, a ubiquitous diatom species across oceans worldwide. To det. the potential effect of nutrient conditions and characteristics of the algal culture, such as the amt. of org. carbon assocd. with algal cells, on the ice nucleation activity, Skeletonema marinoi was grown under different nutrient regimes.
- 39Xi, Y.; Mercier, A.; Kuang, C.; Yun, J.; Christy, A.; Melo, L.; Maldonado, M. T.; Raymond, J. A.; Bertram, A. K. Concentrations and properties of ice nucleating substances in exudates from Antarctic sea-ice diatoms. Environ. Sci.:Processes Impacts 2021, 23, 323, DOI: 10.1039/D0EM00398K39Concentrations and properties of ice nucleating substances in exudates from Antarctic sea-ice diatomsXi, Yu; Mercier, Alexia; Kuang, Cheng; Yun, Jingwei; Christy, Ashton; Melo, Luke; Maldonado, Maria T.; Raymond, James A.; Bertram, Allan K.Environmental Science: Processes & Impacts (2021), 23 (2), 323-334CODEN: ESPICZ; ISSN:2050-7895. (Royal Society of Chemistry)The ocean contains ice nucleating substances (INSs), some of which can be emitted to the atm. where they can influence the formation and properties of clouds. A possible source of INSs in the ocean is exudates from sea-ice diatoms. Here we examine the concns. and properties of INSs in supernatant samples from dense sea-ice diatom communities collected from Ross Sea and McMurdo Sound in the Antarctic. The median freezing temps. of the samples ranged from approx. -17 to -22°C. Based on our results and a comparison with results reported in the literature, the ice nucleating ability of exudates from sea-ice diatoms is likely not drastically different from the ice nucleating ability of exudates from temperate diatoms. The no. of INSs per mass of DOC for the supernatant samples were lower than those reported previously for the sea surface microlayer and bulk sea water collected in the Arctic and Atlantic. The INSs in the supernatant sample collected from Ross Sea were not sensitive to temps. up to 100°C, were larger than 300 kDa, and were different from ice shaping and recrystn. inhibiting mols. present in the same sample. Possible candidates for these INSs include polysaccharide contg. nanogels. The INSs in the supernatant sample collected from McMurdo Sound were sensitive to temps. of 80 and 100°C and were larger than 1000 kDa. Possible candidates for these INSs include protein contg. nanogels.
- 40Creamean, J. M.; Ceniceros, J. E.; Newman, L.; Pace, A. D.; Hill, T. C. J.; DeMott, P. J.; Rhodes, M. E. Evaluating the potential for Haloarchaea to serve as ice nucleating particles. Biogeosciences 2021, 18, 3751– 3762, DOI: 10.5194/bg-18-3751-2021There is no corresponding record for this reference.
- 41Adams, M. P.; Atanasova, N. S.; Sofieva, S.; Ravantti, J.; Heikkinen, A.; Brasseur, Z.; Duplissy, J.; Bamford, D. H.; Murray, B. J. Ice nucleation by viruses and their potential for cloud glaciation. Biogeoscience 2021, 18, 4431– 4444, DOI: 10.5194/bg-18-4431-2021There is no corresponding record for this reference.
- 42Melchum, A.; Córdoba, F.; Salinas, E.; Martínez, L.; Campos, G.; Rosas, I.; Garcia-Mendoza, E.; Olivos-Ortiz, A.; Raga, G. B.; Pizano, B.; Silva, M. M.; Ladino, L. A. Maritime and continental microorganisms collected in Mexico: An investigation of their ice-nucleating abilities. Atmos. Res. 2023, 293, 106893 DOI: 10.1016/j.atmosres.2023.106893There is no corresponding record for this reference.
- 43Bochdansky, A. B.; Clouse, M. A.; Herndl, G. J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 2017, 11, 362– 373, DOI: 10.1038/ismej.2016.113There is no corresponding record for this reference.
- 44Hassett, B. T.; Borrego, E. J.; Vonnahme, T. R.; Rama, T.; Kolomiets, M. V.; Gradinger, R. Arctic marine fungi: biomass, functional genes, and putative ecological roles. ISME J. 2019, 13, 1484– 1496, DOI: 10.1038/s41396-019-0368-1There is no corresponding record for this reference.
- 45Hassett, B. T. A Widely Distributed Thraustochytrid Parasite of Diatoms Isolated from the Arctic Represents a gen. and sp. nov. J. Eukaryotic Microbiol. 2020, 67, 480– 490, DOI: 10.1111/jeu.12796There is no corresponding record for this reference.
- 46Pummer, B. G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C. J.; Huber, R. G.; Liedl, K. R.; Loerting, T.; Moschen, T.; Schauperl, M.; Tollinger, M.; Morris, C. E.; Wex, H.; Grothe, H.; Poeschl, U.; Koop, T.; Froehlich-Nowoisky, J. Ice nucleation by water-soluble macromolecules. Atmos. Chem. Phys. 2015, 15, 4077– 4091, DOI: 10.5194/acp-15-4077-201546Ice nucleation by water-soluble macromoleculesPummer, B. G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C. J.; Huber, R. G.; Liedl, K. R.; Loerting, T.; Moschen, T.; Schauperl, M.; Tollinger, M.; Morris, C. E.; Wex, H.; Grothe, H.; Poeschl, U.; Koop, T.; Froehlich-Nowoisky, J.Atmospheric Chemistry and Physics (2015), 15 (8), 4077-4091CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of pptn. But the freezing of pure water droplets requires cooling to temps. as low as 235 K. Freezing at higher temps. requires the presence of an ice nucleator, which serves as a template for arranging water mols. in an ice-like manner. It is often assumed that these ice nucleators have to be insol. particles. We point out that also free macromols. which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromols. (INMs) is in the range of nanometers, corresponding to the size of the crit. ice embryo. As the latter is temp.-dependent, we see a correlation between the size of INMs and the ice nucleation temp. as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biol. species and comprise a variety of chem. structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-sol. INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theor. calcns. to develop a chem. interpretation of ice nucleation and water-sol. INMs. This has atm. implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atm. models.
- 47Wolber, P. K.; Deininger, C. A.; Southworth, M. W.; Vandekerckhove, J.; Vanmontagu, M.; Warren, G. J. Identification and purification of a bacterial ice-nucleation protein. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 7256– 7260, DOI: 10.1073/pnas.83.19.725647Identification and purification of a bacterial ice-nucleation proteinWolber, Paul K.; Deininger, Caroline A.; Southworth, Maurice W.; Vandekerckhove, Joel; Van Montagu, Marc; Warren, Gareth J.Proceedings of the National Academy of Sciences of the United States of America (1986), 83 (19), 7256-60CODEN: PNASA6; ISSN:0027-8424.The protein product of a gene (inaZ) responsible for ice nucleation by Pseudomonas syringae S203 was identified and purified after overexpression in Escherichia coli. The amino acid compn. and the N-terminal sequence of the purified, denatured protein corresponded well with that predicted from the sequence of the inaZ gene. The product of inaZ was also found to be the major component in prepns. of ice-nucleating, proteinaceous particles, obtained after extn. with and gel filtration in a mixt. of urea and the nondenaturing detergent octyl β-D-thioglucopyranoside. The activity of these prepns. in the absence of added lipid implies that the protein participates directly in the nucleation process.
- 48Fröhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Yordanova, P.; Franc, G. D.; Poschl, U. Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences 2015, 12, 1057– 1071, DOI: 10.5194/bg-12-1057-2015There is no corresponding record for this reference.
- 49Dreischmeier, K.; Budke, C.; Wiehemeier, L.; Kottke, T.; Koop, T. Boreal pollen contain ice-nucleating as well as ice-binding ’antifreeze’ polysaccharides. Sci. Rep. 2017, 7, 41890 DOI: 10.1038/srep4189049Boreal pollen contain ice-nucleating as well as ice-binding 'antifreeze' polysaccharidesDreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, ThomasScientific Reports (2017), 7 (), 41890CODEN: SRCEC3; ISSN:2045-2322. (Nature Publishing Group)Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromols. when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystn. inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding mols. are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chem. moieties, but centrifugal filtration indicates differences in mol. size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atm. processes and antifreeze protection.
- 50Kunert, A. T.; Pöhlker, M. L.; Tang, K.; Krevert, C. S.; Wieder, C.; Speth, K. R.; Hanson, L. E.; Morris, C. E.; Schmale, D. G.; Poschl, U.; Frohlich-Nowoisky, J. Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing. Biogeosciences 2019, 16, 4647– 4659, DOI: 10.5194/bg-16-4647-201950Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processingKunert, Anna T.; Poehlker, Mira L.; Tang, Kai; Krevert, Carola S.; Wieder, Carsten; Speth, Kai R.; Hanson, Linda E.; Morris, Cindy E.; Schmale, David G., III; Poeschl, Ulrich; Froehlich-Nowoisky, JanineBiogeosciences (2019), 16 (23), 4647-4659CODEN: BIOGGR; ISSN:1726-4189. (Copernicus Publications)Some biol. particles and macromols. are particularly efficient ice nuclei (IN), triggering ice formation at temps. close to 0 °C. The impact of biol. particles on cloud glaciation and the formation of pptn. is still poorly understood and constitutes a large gap in the scientific understanding of the interactions and coevolution of life and climate. Ice nucleation activity in fungi was first discovered in the cosmopolitan genus Fusarium, which is widespread in soil and plants, has been found in atm. aerosol and cloud water samples, and can be regarded as the best studied ice-nucleation-active (IN-active) fungus. The frequency and distribution of ice nucleation activity within Fusarium, however, remains elusive. Here, we tested more than 100 strains from 65 different Fusarium species for ice nucleation activity. In total, ~ 11 % of all tested species included IN-active strains, and ~ 16 % of all tested strains showed ice nucleation activity above -12 °C. Besides Fusarium species with known ice nucleation activity, F. armeniacum, F. begoniae, F. concentricum, and F. langsethiae were newly identified as IN-active. The cumulative no. of IN per g of mycelium for all tested Fusarium species was comparable to other biol. IN like Sarocladium implicatum, Mortierella alpina, and Snomax. Filtration expts. indicate that cell-free ice-nucleating macromols. (INMs) from Fusarium are smaller than 100 kDa and that mol. aggregates can be formed in soln. Long-term storage and freeze-thaw cycle expts. revealed that the fungal IN in aq. soln. remain active over several months and in the course of repeated freezing and thawing. Exposure to ozone and nitrogen dioxide at atmospherically relevant concn. levels also did not affect the ice nucleation activity. Heat treatments at 40 to 98 °C, however, strongly reduced the obsd. IN concns., confirming earlier hypotheses that the INM in Fusarium largely consists of a proteinaceous compd. The frequency and the wide distribution of ice nucleation activity within the genus Fusarium, combined with the stability of the IN under atmospherically relevant conditions, suggest a larger implication of fungal IN on Earth's water cycle and climate than previously assumed.
- 51Hartmann, S.; Ling, M.; Dreyer, L. S. A.; Zipori, A.; Finster, K.; Grawe, S.; Jensen, L. Z.; Borck, S.; Reicher, N.; Drace, T.; Niedermeier, D.; Jones, N. C.; Hoffmann, S. V.; Wex, H.; Rudich, Y.; Boesen, T.; Šantl Temkiv, T. Structure and Protein-Protein Interactions of Ice Nucleation Proteins Drive Their Activity. Front. Microbiol. 2022, 13, 872306 DOI: 10.3389/fmicb.2022.87230651Structure and Protein-Protein Interactions of Ice Nucleation Proteins Drive Their ActivityHartmann Susan; Grawe Sarah; Niedermeier Dennis; Wex Heike; Ling Meilee; Finster Kai; Jensen Lasse Z; Borck Stella; Santl-Temkiv Tina; Ling Meilee; Finster Kai; Jensen Lasse Z; Borck Stella; Santl-Temkiv Tina; Ling Meilee; Dreyer Lasse S A; Jensen Lasse Z; Borck Stella; Drace Taner; Boesen Thomas; Zipori Assaf; Reicher Naama; Rudich Yinon; Jones Nykola C; Hoffmann Soren V; Boesen ThomasFrontiers in microbiology (2022), 13 (), 872306 ISSN:1664-302X.Microbially-produced ice nucleating proteins (INpro) are unique molecular structures with the highest known catalytic efficiency for ice formation. Airborne microorganisms utilize these proteins to enhance their survival by reducing their atmospheric residence times. INpro also have critical environmental effects including impacts on the atmospheric water cycle, through their role in cloud and precipitation formation, as well as frost damage on crops. INpro are ubiquitously present in the atmosphere where they are emitted from diverse terrestrial and marine environments. Even though bacterial genes encoding INpro have been discovered and sequenced decades ago, the details of how the INpro molecular structure and oligomerization foster their unique ice-nucleation activity remain elusive. Using machine-learning based software AlphaFold 2 and trRosetta, we obtained and analysed the first ab initio structural models of full length and truncated versions of bacterial INpro. The modeling revealed a novel beta-helix structure of the INpro central repeat domain responsible for ice nucleation activity. This domain consists of repeated stacks of two beta strands connected by two sharp turns. One beta-strand is decorated with a TxT amino acid sequence motif and the other strand has an SxL[T/I] motif. The core formed between the stacked beta helix-pairs is unusually polar and very distinct from previous INpro models. Using synchrotron radiation circular dichroism, we validated the β-strand content of the central repeat domain in the model. Combining the structural model with functional studies of purified recombinant INpro, electron microscopy and modeling, we further demonstrate that the formation of dimers and higher-order oligomers is key to INpro activity. Using computational docking of the new INpro model based on rigid-body algorithms we could reproduce a previously proposed homodimer structure of the INpro CRD with an interface along a highly conserved tyrosine ladder and show that the dimer model agrees with our functional data. The parallel dimer structure creates a surface where the TxT motif of one monomer aligns with the SxL[T/I] motif of the other monomer widening the surface that interacts with water molecules and therefore enhancing the ice nucleation activity. This work presents a major advance in understanding the molecular foundation for bacterial ice-nucleation activity.
- 52Wolf, M. J.; Coe, A.; Dove, L. A.; Zawadowicz, M. A.; Dooley, K.; Biller, S. J.; Zhang, Y.; Chisholm, S. W.; Cziczo, D. J. Investigating the Heterogeneous Ice Nucleation of Sea Spray Aerosols Using Prochlorococcus as a Model Source of Marine Organic Matter. Environ. Sci. Technol. 2019, 53, 1139– 1149, DOI: 10.1021/acs.est.8b0515052Investigating the Heterogeneous Ice Nucleation of Sea Spray Aerosols Using Prochlorococcus as a Model Source of Marine Organic MatterWolf, Martin J.; Coe, Allison; Dove, Lilian A.; Zawadowicz, Maria A.; Dooley, Keven; Biller, Steven J.; Zhang, Yue; Chisholm, Sallie W.; Cziczo, Daniel J.Environmental Science & Technology (2019), 53 (3), 1139-1149CODEN: ESTHAG; ISSN:0013-936X. (American Chemical Society)Sea spray is the largest aerosol source on Earth. Bubble bursting mechanisms at the ocean surface create smaller film burst and larger jet drop particles. This study quantified the effects of particle chem. on the depositional ice nucleation efficiency of lab.-generated sea spray aerosols under the cirrus-relevant conditions. Cultures of Prochlorococcus, the most abundant phytoplankton species in the global ocean, were used as a model source of org. sea spray aerosols. We show that smaller particles generated from lyzed Prochlorococcus cultures are organically enriched and nucleate more effectively than larger particles generated from the same cultures. We then quantified the ice nucleation efficiency of single component org. mols. that mimic Prochlorococcus proteins, lipids, and saccharides. Amylopectin, agarose, and aspartic acid exhibited similar crit. ice saturations, fractional activations, and ice nucleation active site no. densities to particles generated from Prochlorococcus cultures. These findings indicate that saccharides and proteins with numerous and well-ordered hydrophilic functional groups may det. the ice nucleation abilities of org. sea spray aerosols.
- 53Zeppenfeld, S.; van Pinxteren, M.; Hartmann, M.; Bracher, A.; Stratmann, F.; Herrmann, H. Glucose as a Potential Chemical Marker for Ice Nucleating Activity in Arctic Seawater and Melt Pond Samples. Environ. Sci. Technol. 2019, 53, 8747– 8756, DOI: 10.1021/acs.est.9b0146953Glucose as a Potential Chemical Marker for Ice Nucleating Activity in Arctic Seawater and Melt Pond SamplesZeppenfeld, Sebastian; van Pinxteren, Manuela; Hartmann, Markus; Bracher, Astrid; Stratmann, Frank; Herrmann, HartmutEnvironmental Science & Technology (2019), 53 (15), 8747-8756CODEN: ESTHAG; ISSN:0013-936X. (American Chemical Society)Recent studies pointed to a high ice nucleating activity (INA) in the Arctic sea surface microlayer (SML). However, related chem. information is still sparse. In the present study, INA and free glucose concns. were quantified in Arctic SML and bulk water samples from the marginal ice zone, the ice-free ocean, melt ponds, and open waters within the ice pack. T50 (defining INA) ranged from -17.4 to -26.8 °C. Glucose concns. varied from 0.6 to 51 μg/L with highest values in the SML from the marginal ice zone and melt ponds (median 16.3 and 13.5 μg/L) and lower values in the SML from the ice pack and the ice-free ocean (median 3.9 and 4.0 μg/L). Enrichment factors between the SML and the bulk ranged from 0.4 to 17. A pos. correlation was obsd. between free glucose concn. and INA in Arctic water samples (T50(°C) = (-25.6 ± 0.6) + (0.15 ± 0.04)·Glucose(μg/L), RP = 0.66, n = 74). Clustering water samples based on phytoplankton pigment compn. resulted in robust but different correlations within the four clusters (RP between 0.67 and 0.96), indicating a strong link to phytoplankton-related processes. Since glucose did not show significant INA itself, free glucose may serve as a potential tracer for INA in Arctic water samples.
- 54Vergara-Temprado, J.; Miltenberger, A. K.; Furtado, K.; Grosvenor, D. P.; Shipway, B. J.; Hill, A. A.; Wilkinson, J. M.; Field, P. R.; Murray, B. J.; Carslaw, K. S. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 2687– 2692, DOI: 10.1073/pnas.172162711554Strong control of Southern Ocean cloud reflectivity by ice-nucleating particlesVergara-Temprado, Jesus; Miltenberger, Annette K.; Furtado, Kalli; Grosvenor, Daniel P.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Field, Paul R.; Murray, Benjamin J.; Carslaw, Ken S.Proceedings of the National Academy of Sciences of the United States of America (2018), 115 (11), 2687-2692CODEN: PNASA6; ISSN:0027-8424. (National Academy of Sciences)Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temps., atm. circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with ests. of the concn. of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concn. of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extra-tropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concns. that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce pptn., and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concns. and their effects under specific meteorol. conditions.
- 55McCluskey, C. S.; DeMott, P. J.; Ma, P.-L.; Burrows, S. M. Numerical Representations of Marine Ice-Nucleating Particles in Remote Marine Environments Evaluated Against Observations. Geophys. Res. Lett. 2019, 46, 7838– 7847, DOI: 10.1029/2018GL081861There is no corresponding record for this reference.
- 56Chatziparaschos, M.; Myriokefalitakis, S.; Kalivitis, N.; Daskalakis, N.; Nenes, A.; Gonçalves Ageitos, M.; Costa-Surós, M.; Pérez García-Pando, C.; Vrekoussis, M.; Kanakidou, M. Assessing the global contribution of marine, terrestrial bioaerosols, and desert dust to ice-nucleating particle concentrations. EGUsphere 2024, 2024, 1– 28, DOI: 10.5194/egusphere-2024-952There is no corresponding record for this reference.
- 57Fletcher, N. H. The Physics of Rainclouds; Cambridge University Press, 1962.There is no corresponding record for this reference.
- 58DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos. Chem. Phys. 2015, 15, 393– 409, DOI: 10.5194/acp-15-393-201558Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particlesDeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Mohler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.Atmospheric Chemistry and Physics (2015), 15 (1), 393-409/1-393-409/17, 17 pp.CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Data from both lab. studies and atm. measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University CSU continuous flow diffusion chamber CFDC when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water RHw are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temp. for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atm. dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atm. particles of nonspecific compn. in quantifying ice nucleating particle concns. as functions of temp. and the total no. concn. of particles larger than 0.5 μm diam. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate by approx. 3, on av. of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. max. fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atm. (AIDA) expansion chamber cloud parcel expts. Further comparison of the new parameterization, including calibration correction, to predictions of the immersion freezing surface active site d. parameterization for mineral dust particles, developed sep. from AIDA exptl. data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of lab. measurements to obtain atmospherically relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first-order approxn. in numerical modeling investigations.
- 59McCluskey, C. S.; Ovadnevaite, J.; Rinaldi, M.; Atkinson, J.; Belosi, F.; Ceburnis, D.; Marullo, S.; Hill, T. C. J.; Lohmann, U.; Kanji, Z. A.; O’Dowd, C.; Kreidenweis, S. M.; DeMott, P. J. Marine and Terrestrial Organic Ice-Nucleating Particles in Pristine Marine to Continentally Influenced Northeast Atlantic Air Masses. J. Geophys. Res.:Atmos. 2018, 123, 6196– 6212, DOI: 10.1029/2017JD028033There is no corresponding record for this reference.
- 60Meyers, M. P.; Demott, P. J.; Cotton, W. R. New Primary Ice-Nucleation Parameterizations In An Explicit Cloud Model. J. Appl. Meteorol. 1992, 31, 708– 721, DOI: 10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2There is no corresponding record for this reference.
- 61Ullrich, R.; Hoose, C.; Möhler, O.; Niemand, M.; Wagner, R.; Höhler, K.; Hiranuma, N.; Saathoff, H.; Leisner, T. A New Ice Nucleation Active Site Parameterization for Desert Dust and Soot. J. Atmos. Sci. 2017, 74, 699– 717, DOI: 10.1175/JAS-D-16-0074.1There is no corresponding record for this reference.
- 62Harrison, A. D.; Lever, K.; Sanchez-Marroquin, A.; Holden, M. A.; Whale, T. F.; Tarn, M. D.; McQuaid, J. B.; Murray, B. J. The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar. Atmos. Chem. Phys. 2019, 19, 11343– 11361, DOI: 10.5194/acp-19-11343-2019There is no corresponding record for this reference.
- 63Chatziparaschos, M.; Daskalakis, N.; Myriokefalitakis, S.; Kalivitis, N.; Nenes, A.; Gonçalves Ageitos, M.; Costa-Surós, M.; Pérez García-Pando, C.; Zanoli, M.; Vrekoussis, M.; Kanakidou, M. Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds. Atmos. Chem. Phys. 2023, 23, 1785– 1801, DOI: 10.5194/acp-23-1785-2023There is no corresponding record for this reference.
- 64Tang, K.; Sánchez-Parra, B.; Yordanova, P.; Wehking, J.; Backes, A. T.; Pickersgill, D. A.; Maier, S.; Sciare, J.; Pöschl, U.; Weber, B.; Fröhlich-Nowoisky, J. Bioaerosols and atmospheric ice nuclei in a Mediterranean dryland: community changes related to rainfall. Biogeosciences 2022, 19, 71– 91, DOI: 10.5194/bg-19-71-2022There is no corresponding record for this reference.
- 65Pummer, B. G.; Bauer, H.; Bernardi, J.; Bleicher, S.; Grothe, H. Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos. Chem. Phys. 2012, 12, 2541– 2550, DOI: 10.5194/acp-12-2541-201265Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollenPummer, B. G.; Bauer, H.; Bernardi, J.; Bleicher, S.; Grothe, H.Atmospheric Chemistry and Physics (2012), 12 (5), 2541-2550CODEN: ACPTCE; ISSN:1680-7316. (Copernicus Publications)The ice nucleation of bioaerosols (bacteria, pollen, spores, etc.) is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate, is not yet fully understood. Here we show that pollen of different species strongly differ in their ice nucleation behavior. The av. freezing temps. in lab. expts. range from 240 to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. Far more intriguingly, it has turned out that water, which has been in contact with pollen and then been sepd. from the bodies, nucleates as good as the pollen grains themselves. The ice nuclei have to be easily-suspendable macromols. located on the pollen. Once extd., they can be distributed further through the atm. than the heavy pollen grains and so presumably augment the impact of pollen on ice cloud formation even in the upper troposphere. Our expts. lead to the conclusion that pollen ice nuclei, in contrast to bacterial and fungal ice nucleating proteins, are non-proteinaceous compds.
- 66Hill, T. C. J.; DeMott, P. J.; Tobo, Y.; Froehlich-Nowoisky, J.; Moffett, B. F.; Franc, G. D.; Kreidenweis, S. M. Sources of organic ice nucleating particles in soils. Atmos. Chem. Phys. 2016, 16, 7195– 7211, DOI: 10.5194/acp-16-7195-201666Sources of organic ice nucleating particles in soilsHill, Tom C. J.; DeMott, Paul J.; Tobo, Yutaka; Frohlich-Nowoisky, Janine; Moffett, Bruce F.; Franc, Gary D.; Kreidenweis, Sonia M.Atmospheric Chemistry and Physics (2016), 16 (11), 7195-7211CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Soil org. matter (SOM) may be a significant source of atm. ice nucleating particles (INPs), esp. of those active >-15 °C. However, due to both a lack of investigations and the complexity of the SOM itself, the identities of these INPs remain unknown. To more comprehensively characterize org. INPs we tested locally representative soils in Wyoming and Colorado for total org. INPs, INPs in the heat-labile fraction, ice nucleating (IN) bacteria, IN fungi, IN fulvic and humic acids, IN plant tissue, and ice nucleation by monolayers of aliph. alcs. All soils contained ≈106 to ≈5×107 INPs g-1 dry soil active at -10 °C. Removal of SOM with H2O2 removed ≥99% of INPs active >-18 °C (the limit of testing), while heating of soil suspensions to 105 °C showed that labile INPs increasingly predominated >-12 °C and comprised ≥90%of INPs active >-9 °C. Papain protease, which inactivates IN proteins produced by the fungus Mortierella alpina, common in the region's soils, lowered INPs active at ≥-11 °C by _75% in two arable soils and in sagebrush shrubland soil. By contrast, lysozyme, which digests bacterial cell walls, only reduced INPs active at ≥-7.5 or ≥-6 °C, depending on the soil. The known IN bacteria were not detected in any soil, using PCR for the ina gene that codes for the active protein. We directly isolated and photographed two INPs from soil, using repeated cycles of freeze testing and subdivision of droplets of dil. soil suspensions; they were complex and apparently org. entities. Ice nucleation activity was not affected by digestion of Proteinase K-susceptible proteins or the removal of entities composed of fulvic and humic acids, sterols, or aliph. alc. monolayers. Org. INPs active colder than -10 to -12 °C were resistant to all investigations other than heat, oxidn. with H2O2, and, for some, digestion with papain. They may originate from decompg. plant material, microbial biomass, and/or the humin component of the SOM. In the case of the latter then they are most likely to be a carbohydrate. Reflecting the diversity of the SOM itself, soil INPs have a range of sources which occur with differing relative abundances.
- 67Zeppenfeld, S.; van Pinxteren, M.; van Pinxteren, D.; Wex, H.; Berdalet, E.; Vaqué, D.; Dall’Osto, M.; Herrmann, H. Aerosol Marine Primary Carbohydrates and Atmospheric Transformation in the Western Antarctic Peninsula. ACS Earth Space Chem. 2021, 5, 1032– 1047, DOI: 10.1021/acsearthspacechem.0c0035167Aerosol marine primary carbohydrates and atmospheric transformation in the Western Antarctic PeninsulaZeppenfeld, Sebastian; van Pinxteren, Manuela; van Pinxteren, Dominik; Wex, Heike; Berdalet, Elisa; Vaque, Dolors; Dall'Osto, Manuel; Herrmann, HartmutACS Earth and Space Chemistry (2021), 5 (5), 1032-1047CODEN: AESCCQ; ISSN:2472-3452. (American Chemical Society)We present ship-borne and land-based measurements of carbohydrate concns. and patterns in bulk seawater, sea surface microlayer (SML), and atm. size-resolved aerosol particles (0.05-10μm) collected in the Western Antarctic Peninsula. In seawater, we find higher combined carbohydrates (CCHO) in both the particulate (PCCHO, 13-248μg L-1) and dissolved (DCCHO, 14-294μg L-1) phases than dissolved free carbohydrates (DFCHO, 1.0-17μg L-1). Moderate enrichment factors are found in the SML samples (median EFSML = 1.4 for PCCHO, DCCHO, and DFCHO). In PM10 atm. particles, combined carbohydrates (CCHOaer,PM10 0.2-11.3 ng m-3) were preferably found in particles of two size modes (0.05-0.42 and 1.2-10μm) and strongly correlated with Na+aer,PM10 and wind speed, hence suggesting oceanic emission as their primary source. In contrast to SML samples, very high enrichment factors for CCHOaer relative to the bulk water (EFaer) were estd. for supermicron (20-4000) and submicron (40-167 000) particles. Notably, the relative atm. aerosol monosaccharide compns. strongly differed from the ones sampled in seawater. The prevalence of bacterial monosaccharides (muramic acid, glucosamine) in aerosol particles allows us to suggest a selective consumption and release of polysaccharides by bacteria in the atm. Our results highlight the need to evaluate the role of different ecosystems as aerosol sources around Antarctica.
- 68Bergman, T. Model Data for Research Article Description and Evaluation of a Secondary Organic Aerosol and New Particle Formation Scheme within TM5-MP v1 , 2021.There is no corresponding record for this reference.
- 69Bergman, T.; Makkonen, R.; Schrödner, R.; Swietlicki, E.; Phillips, V. T. J.; Le Sager, P.; van Noije, T. Description and evaluation of a secondary organic aerosol and new particle formation scheme within TM5-MP v1.2. Geosci. Model Dev. 2022, 15, 683– 713, DOI: 10.5194/gmd-15-683-2022There is no corresponding record for this reference.
- 70Niedermeier, D.; Augustin-Bauditz, S.; Hartmann, S.; Wex, H.; Ignatius, K.; Stratmann, F. Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation?. J. Geophys. Res. Atmos. 2015, 120, 5036– 5046, DOI: 10.1002/2014JD022814There is no corresponding record for this reference.
- 71Zeppenfeld, S.; van Pinxteren, M.; Hartmann, M.; Zeising, M.; Bracher, A.; Herrmann, H. Marine carbohydrates in Arctic aerosol particles and fog - diversity of oceanic sources and atmospheric transformations. Atmos. Chem. Phys. 2023, 23, 15561– 15587, DOI: 10.5194/acp-23-15561-2023There is no corresponding record for this reference.
- 72Zeppenfeld, S.; van Pinxteren, M.; Fuchs, S.; Rödger, A. Marine combined carbohydrates and other chemical constituents of PM10 aerosol particles at the Cape Verde Atmospheric Observatory (CVAO) in 2017, 2024. DOI: 10.1594/PANGAEA.969080 .There is no corresponding record for this reference.
- 73Karl, M.; Leck, C.; Rad, F. M.; Bäcklund, A.; Lopez-Aparicio, S.; Heintzenberg, J. New insights in sources of the sub-micrometre aerosol at Mt. Zeppelin observatory (Spitsbergen) in the year 2015. Tellus B 2019, 71, 1613143 DOI: 10.1080/16000889.2019.1613143There is no corresponding record for this reference.
- 74Jayaweera, K.; Flanagan, P. Investigations on biogenic ice nuclei in the arctic atmosphere. Geophys. Res. Lett. 1982, 9, 94– 97, DOI: 10.1029/GL009i001p00094There is no corresponding record for this reference.
- 75Kieft, T. L.; Ahmadjian, V. Biological ice nucleation activity in lichen mycobionts and photobionts. Lichenologist 1989, 21, 355– 362, DOI: 10.1017/S0024282989000599There is no corresponding record for this reference.
- 76Iannone, R.; Chernoff, D. I.; Pringle, A.; Martin, S. T.; Bertram, A. K. The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere. Atmos. Chem. Phys. 2011, 11, 1191– 1201, DOI: 10.5194/acp-11-1191-2011There is no corresponding record for this reference.
- 77Haga, D. I.; Iannone, R.; Wheeler, M. J.; Mason, R.; Polishchuk, E. A.; Fetch, T.; van der Kamp, B. J.; McKendry, I. G.; Bertram, A. K. Ice nucleation properties of rust and bunt fungal spores and their transport to high altitudes, where they can cause heterogeneous freezing. J. Geophys. Res. Atmos. 2013, 118, 7260– 7272, DOI: 10.1002/jgrd.5055677Ice nucleation properties of rust and bunt fungal spores and their transport to high altitudes, where they can cause heterogeneous freezingHaga, D. I.; Iannone, R.; Wheeler, M. J.; Mason, R.; Polishchuk, E. A.; Fetch, T., Jr.; van der Kamp, B. J.; McKendry, I. G.; Bertram, A. K.Journal of Geophysical Research: Atmospheres (2013), 118 (13), 7260-7272CODEN: JGRDE3; ISSN:2169-8996. (Wiley-Blackwell)Rust and bunt spores that act as ice nuclei (IN) could change the formation characteristics and properties of ice-contg. clouds. In addn., ice nucleation on rust and bunt spores, followed by pptn., may be an important removal mechanism of these spores from the atm. Using an optical microscope, we studied the ice nucleation properties of spores from four rust species (Puccinia graminis, Puccinia triticina, Puccinia allii, and Endocronartium harknesssii) and two bunt species (Tilletia laevis and Tilletia tritici) immersed in water droplets. We show that the cumulative no. of IN per spore is 5 × 10-3, 0.01, and 0.10 at temps. of roughly -24°C, -25°C, and -28°C, resp. Using a particle dispersion model, we also investigated if these rust and bunt spores will reach high altitudes in the atm. where they can cause heterogeneous freezing. Simulations suggest that after 3 days and during periods of high spore prodn., between 6 and 9% of 15 μm particles released over agricultural regions in Kansas (U.S.), North Dakota (U.S.), Saskatchewan (Canada), and Manitoba (Canada) can reach at least 6 km in altitude. An altitude of 6 km corresponds to a temp. of roughly -25°C for the sites chosen. The combined results suggest that (a) ice nucleation by these fungal spores could play a role in the removal of these particles from the atm. and (b) ice nucleation by these rust and bunt spores are unlikely to compete with mineral dust on a global and annual scale at an altitude of approx. 6 km.
- 78Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Goncalves, F. L. T.; Bigg, E. K. Urediospores of rust fungi are ice nucleation active at > −10 degrees C and harbor ice nucleation active bacteria. Atmos. Chem. Phys. 2013, 13, 4223– 4233, DOI: 10.5194/acp-13-4223-2013There is no corresponding record for this reference.
- 79Haga, D. I.; Burrows, S. M.; Iannone, R.; Wheeler, M. J.; Mason, R. H.; Chen, J.; Polishchuk, E. A.; Poschl, U.; Bertram, A. K. Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores. Atmos. Chem. Phys. 2014, 14, 8611– 8630, DOI: 10.5194/acp-14-8611-2014There is no corresponding record for this reference.
- 80O’Sullivan, D.; Murray, B. J.; Ross, J. F.; Whale, T. F.; Price, H. C.; Atkinson, J. D.; Umo, N. S.; Webb, M. E. The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci. Rep. 2015, 5, 8082 DOI: 10.1038/srep0808280The relevance of nanoscale biological fragments for ice nucleation in cloudsO'Sullivan, D.; Murray, B. J.; Ross, J. F.; Whale, T. F.; Price, H. C.; Atkinson, J. D.; Umo, N. S.; Webb, M. E.Scientific Reports (2015), 5 (), 8082/1-8082/7CODEN: SRCEC3; ISSN:2045-2322. (Nature Publishing Group)Most studies of the role of biol. entities as atm. ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient nos. of these particles in the atm. to strongly influence clouds. Here, we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometer-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addn., we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biol. nano-INPs present in the environment which may, for example, become aerosolised in assocn. with fertile soil dust particles.
- 81Knackstedt, K. A.; Moffett, B. F.; Hartmann, S.; Wex, H.; Hill, T. C. J.; Glasgo, E. D.; Reitz, L. A.; Augustin-Bauditz, S.; Beall, B. F. N.; Bullerjahn, G. S.; Frohlich-Nowoisky, J.; Grawe, S.; Lubitz, J.; Stratmann, F.; McKay, R. M. L. Terrestrial Origin for Abundant Riverine Nanoscale Ice-Nucleating Particles. Environ. Sci. Technol. 2018, 52, 12358– 12367, DOI: 10.1021/acs.est.8b0388181Terrestrial Origin for Abundant Riverine Nanoscale Ice-Nucleating ParticlesKnackstedt, Kathryn A.; Moffett, Bruce F.; Hartmann, Susan; Wex, Heike; Hill, Thomas C. J.; Glasgo, Elizabeth D.; Reitz, Laura A.; Augustin-Bauditz, Stefanie; Beall, Benjamin F. N.; Bullerjahn, George S.; Frohlich-Nowoisky, Janine; Grawe, Sarah; Lubitz, Jasmin; Stratmann, Frank; McKay, Robert Michael L.Environmental Science & Technology (2018), 52 (21), 12358-12367CODEN: ESTHAG; ISSN:0013-936X. (American Chemical Society)Ice-nucleating particles (INPs) assocd. with fresh waters are a neglected, but integral component of the water cycle. Abundant INPs were identified from surface waters of both the Maumee River and Lake Erie with ice nucleus spectra spanning a temp. range from -3 to -15 °C. The majority of river INPs were submicron in size and attributed to biogenic macromols., inferred from the denaturation of ice-nucleation activity by heat. In a watershed dominated by row-crop agriculture, higher concns. of INPs were found in river samples compared to lake samples. Further, ice-nucleating temps. differed between river and lake samples, which indicated different populations of INPs. Seasonal anal. of INPs that were active at warmer temps. (≥-10 °C; INP-10) showed their concn. to correlate with river discharge, suggesting a watershed origin of these INPs. A terrestrial origin for INPs in the Maumee River was further supported by a correspondence between the ice-nucleation signatures of river INPs and INPs derived from the soil fungus Mortierella alpina. Aerosols derived from turbulence features in the river carry INP-10, although their potential influence on regional weather is unclear. INP-10 contained within aerosols generated from a weir spanning the river, ranged in concn. from 1 to 11 INP m-3, which represented a fold-change of 3.2 over av. INP-10 concns. sampled from aerosols at control locations.
- 82Hoose, C.; Möhler, O. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys. 2012, 12, 9817– 9854, DOI: 10.5194/acp-12-9817-201282Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experimentsHoose, C.; Moehler, O.Atmospheric Chemistry and Physics (2012), 12 (20), 9817-9854CODEN: ACPTCE; ISSN:1680-7316. (Copernicus Publications)A review. A small subset of the atm. aerosol population has the ability to induce ice formation at conditions under which ice would not form without them (heterogeneous ice nucleation). While no closed theor. description of this process and the requirements for good ice nuclei is available, numerous studies have attempted to quantify the ice nucleation ability of different particles empirically in lab. expts. In this article, an overview of these results is provided. Ice nucleation "onset" conditions for various mineral dust, soot, biol., org. and ammonium sulfate particles are summarized. Typical temp.-supersatn. regions can be identified for the "onset" of ice nucleation of these different particle types, but the various particle sizes and activated fractions reported in different studies have to be taken into account when comparing results obtained with different methodologies. When intercomparing only data obtained under the same conditions, it is found that dust mineralogy is not a consistent predictor of higher or lower ice nucleation ability. However, the broad majority of studies agrees on a redn. of deposition nucleation by various coatings on mineral dust. The ice nucleation active surface site (INAS) d. is discussed as a simple and empirical normalized measure for ice nucleation activity. For most immersion and condensation freezing measurements on mineral dust, ests. of the temp.-dependent INAS d. agree within about two orders of magnitude. For deposition nucleation on dust, the spread is significantly larger, but a general trend of increasing INAS densities with increasing supersatn. is found. For soot, the presently available results are divergent. Estd. av. INAS densities are high for ice-nucleation active bacteria at high subzero temps. At the same time, it is shown that INAS densities of some other biol. aerosols, like certain pollen grains, fungal spores and diatoms, tend to be similar to those of dust. These particles may owe their high ice nucleation onsets to their large sizes. Surface-area-dependent parameterizations of heterogeneous ice nucleation are discussed. For immersion freezing on mineral dust, fitted INAS densities are available, but should not be used outside the temp. interval of the data they were based on. Classical nucleation theory, if employed with only one fitted contact angle, does not reproduce the obsd. temp. dependence for immersion nucleation, the temp. and supersatn. dependence for deposition nucleation, and the time dependence of ice nucleation. Formulations of classical nucleation theory with distributions of contact angles offer possibilities to overcome these weaknesses.
- 83Daily, M. I.; Tarn, M. D.; Whale, T. F.; Murray, B. J. An evaluation of the heat test for the ice-nucleating ability of minerals and biological material. Atmos. Meas. Technol. 2022, 15, 2635– 2665, DOI: 10.5194/amt-15-2635-2022There is no corresponding record for this reference.
- 84Passow, U. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 2002, 55, 287– 333, DOI: 10.1016/S0079-6611(02)00138-6There is no corresponding record for this reference.
- 85Meng, S.; Liu, Y. New insights into transparent exopolymer particles (TEP) formation from precursor materials at various Na+/Ca2+ ratios. Sci. Rep. 2016, 6, 19747 DOI: 10.1038/srep19747There is no corresponding record for this reference.
- 86Qiu, Y.; Odendahl, N.; Hudait, A.; Mason, R.; Bertram, A. K.; Paesani, F.; DeMott, P. J.; Molinero, V. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice. J. Am. Chem. Soc. 2017, 139, 3052– 3064, DOI: 10.1021/jacs.6b1221086Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to IceQiu, Yuqing; Odendahl, Nathan; Hudait, Arpa; Mason, Ryan; Bertram, Allan K.; Paesani, Francesco; DeMott, Paul J.; Molinero, ValeriaJournal of the American Chemical Society (2017), 139 (8), 3052-3064CODEN: JACSAT; ISSN:0002-7863. (American Chemical Society)The authors use mol. dynamic simulations and lab. expts. to investigate the relationship between the structure and fluctuations of hydroxylated org. surfaces and the temp. at which they nucleate ice. These surfaces order interfacial water to form domains with ice-like order that are the birthplace of ice. Both mismatch and fluctuations decrease the size of the preordered domains and monotonously decrease the ice freezing temp. The simulations indicate that fluctuations depress the freezing efficiency of monolayers of alcs. or acids to half the value predicted from lattice mismatch alone. The model captures the exptl. trend in freezing efficiencies as a function of chain length and predicts that alcs. have higher freezing efficiency than acids of the same chain length. These trends are mostly controlled by the modulation of the structural mismatch to ice. Classical nucleation theory is used to show that the freezing efficiencies of the monolayers are directly related to their free energy of binding to ice.
- 87Bieber, P.; Darwish, G. H.; Algar, W. R.; Borduas-Dedekind, N. The presence of nanoparticles in aqueous droplets containing plant-derived biopolymers plays a role in heterogeneous ice nucleation. J. Chem. Phys. 2024, 161, 094304 DOI: 10.1063/5.0213171There is no corresponding record for this reference.
- 88Booth, B. C.; Horner, R. A. Microalgae on the arctic ocean section, 1994: species abundance and biomass. Deep Sea Res., Part II 1997, 44, 1607– 1622, DOI: 10.1016/S0967-0645(97)00057-XThere is no corresponding record for this reference.
- 89Duarte, C. M.; Gattuso, J.-P.; Hancke, K.; Gundersen, H.; Filbee-Dexter, K.; Pedersen, M. F.; Middelburg, J. J.; Burrows, M.; Krumhansl, K. A.; Wernberg, T.; Moore, P.; Pessarrodona, A.; Ørberg, S. B.; Pinto, I. S.; Assis, J.; Queirós, A.; Smale, D. A.; Bekkby, T.; Serrão, E.; Krause-Jensen, D. Global estimates of the extent and production of macroalgal forests. Global Ecol. Biogeogr. 2022, 31, 1422– 1439, DOI: 10.1111/geb.13515There is no corresponding record for this reference.
- 90Caetano, P. A.; do Nascimento, T. C.; Fernandes, A. S.; Nass, P. P.; Vieira, K. R.; Maróstica Junior, M. R.; Jacob-Lopes, E.; Zepka, L. Q. Microalgae-based polysaccharides: Insights on production, applications, analysis, and future challenges. Biocatal. Agric. Biotechnol. 2022, 45, 102491 DOI: 10.1016/j.bcab.2022.102491There is no corresponding record for this reference.
- 91Louw, S. D. V.; Walker, D. R.; Fawcett, S. E. Factors influencing sea-ice algae abundance, community composition, and distribution in the marginal ice zone of the Southern Ocean during winter. Deep Sea Res., Part I 2022, 185, 103805 DOI: 10.1016/j.dsr.2022.103805There is no corresponding record for this reference.
- 92Pereira Freitas, G.; Adachi, K.; Conen, F.; Heslin-Rees, D.; Krejci, R.; Tobo, Y.; Yttri, K. E.; Zieger, P. Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic. Nat. Commun. 2023, 14, 5997 DOI: 10.1038/s41467-023-41696-7There is no corresponding record for this reference.
- 93Gómez Maqueo Anaya, S.; Althausen, D.; Faust, M.; Baars, H.; Heinold, B.; Hofer, J.; Tegen, I.; Ansmann, A.; Engelmann, R.; Skupin, A.; Heese, B.; Schepanski, K. The implementation of dust mineralogy in COSMO5.05-MUSCAT. EGUsphere 2023, 2023, 1– 37, DOI: 10.5194/egusphere-2023-1558There is no corresponding record for this reference.
- 94Burrows, S. M.; Easter, R. C.; Liu, X.; Ma, P. L.; Wang, H.; Elliott, S. M.; Singh, B.; Zhang, K.; Rasch, P. J. OCEANFILMS (Organic Compounds from Ecosystems to Aerosols: Natural Films and Interfaces via Langmuir Molecular Surfactants) sea spray organic aerosol emissions - implementation in a global climate model and impacts on clouds. Atmos. Chem. Phys. 2022, 22, 5223– 5251, DOI: 10.5194/acp-22-5223-2022There is no corresponding record for this reference.
- 95Turnock, S. T.; Allen, R. J.; Andrews, M.; Bauer, S. E.; Deushi, M.; Emmons, L.; Good, P.; Horowitz, L.; John, J. G.; Michou, M.; Nabat, P.; Naik, V.; Neubauer, D.; O’Connor, F. M.; Olivié, D.; Oshima, N.; Schulz, M.; Sellar, A.; Shim, S.; Takemura, T.; Tilmes, S.; Tsigaridis, K.; Wu, T.; Zhang, J. Historical and future changes in air pollutants from CMIP6 models. Atmos. Chem. Phys. 2020, 20, 14547– 14579, DOI: 10.5194/acp-20-14547-202095Historical and future changes in air pollutants from CMIP6 modelsTurnock, Steven T.; Allen, Robert J.; Andrews, Martin; Bauer, Susanne E.; Deushi, Makoto; Emmons, Louisa; Good, Peter; Horowitz, Larry; John, Jasmin G.; Michou, Martine; Nabat, Pierre; Naik, Vaishali; Neubauer, David; O'Connor, Fiona M.; Olivie, Dirk; Oshima, Naga; Schulz, Michael; Sellar, Alistair; Shim, Sungbo; Takemura, Toshihiko; Tilmes, Simone; Tsigaridis, Kostas; Wu, Tongwen; Zhang, JieAtmospheric Chemistry and Physics (2020), 20 (23), 14547-14579CODEN: ACPTCE; ISSN:1680-7324. (Copernicus Publications)Poor air quality is currently responsible for large impacts on human health across the world. In addn., the air pollutants ozone (O3) and particulate matter less than 2.5μm in diam. (PM2.5) are also radiatively active in the atm. and can influence Earth's climate. It is important to understand the effect of air quality and climate mitigation measures over the historical period and in different future scenarios to ascertain any impacts from air pollutants on both climate and human health. The Coupled Model Intercomparison Project Phase 6 (CMIP6) presents an opportunity to analyze the change in air pollutants simulated by the current generation of climate and Earth system models that include a representation of chem. and aerosols (particulate matter). The shared socio-economic pathways (SSPs) used within CMIP6 encompass a wide range of trajectories in precursor emissions and climate change, allowing for an improved anal. of future changes to air pollutants. Firstly, we conduct an evaluation of the available CMIP6 models against surface observations of O3 and PM2.5. CMIP6 models consistently overestimate obsd. surface O3 concns. across most regions and in most seasons by up to 16 ppb, with a large diversity in simulated values over Northern Hemisphere continental regions. Conversely, obsd. surface PM2.5 concns. are consistently underestimated in CMIP6 models by up to 10μg m-3, particularly for the Northern Hemisphere winter months, with the largest model diversity near natural emission source regions. The biases in CMIP6 models when compared to observations of O3 and PM2.5are similar to those found in previous studies. Over the historical period (1850-2014) large increases in both surface O3 and PM2.5 are simulated by the CMIP6 models across all regions, particularly over the mid to late 20th century, when anthropogenic emissions increase markedly. Large regional historical changes are simulated for both pollutants across East and South Asia with an annual mean increase of up to 40 ppb for O3 and 12μg m-3 for PM2.5. In future scenarios contg. strong air quality and climate mitigation measures (ssp126), annual mean concns. of air pollutants are substantially reduced across all regions by up to 15 ppb for O3 and 12μg m-3 for PM2.5. However, for scenarios that encompass weak action on mitigating climate and reducing air pollutant emissions (ssp370), annual mean increases in both surface O3 (up 10 ppb) and PM2.5 (up to 8μg m-3) are simulated across most regions, although, for regions like North America and Europe small redns. in PM2.5 are simulated due to the regional redn. in precursor emissions in this scenario. A comparison of simulated regional changes in both surface O3 and PM2.5 from individual CMIP6 models highlights important regional differences due to the simulated interaction of aerosols, chem., climate and natural emission sources within models. The projection of regional air pollutant concns. from the latest climate and Earth system models used within CMIP6 shows that the particular future trajectory of climate and air quality mitigation measures could have important consequences for regional air quality, human health and near-term climate. Differences between individual models emphasize the importance of understanding how future Earth system feedbacks influence natural emission sources, e.g. response of biogenic emissions under climate change.
- 96Carslaw, K. S.; Lee, L. A.; Reddington, C. L.; Pringle, K. J.; Rap, A.; Forster, P. M.; Mann, G. W.; Spracklen, D. V.; Woodhouse, M. T.; Regayre, L. A.; Pierce, J. R. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 2013, 503, 67– 71, DOI: 10.1038/nature1267496Large contribution of natural aerosols to uncertainty in indirect forcingCarslaw, K. S.; Lee, L. A.; Reddington, C. L.; Pringle, K. J.; Rap, A.; Forster, P. M.; Mann, G. W.; Spracklen, D. V.; Woodhouse, M. T.; Regayre, L. A.; Pierce, J. R.Nature (London, United Kingdom) (2013), 503 (7474), 67-71CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)The effect of anthropogenic aerosols on cloud droplet concns. and radiative properties is the source of large uncertainty in the radiative forcing of climate over the industrial period. This uncertainty affects the ability to est. how sensitive climate is to greenhouse gas emissions. This work performed a sensitivity anal. on a global model to quantify uncertainty in cloud radiative forcing over the industrial period caused by uncertainties in aerosol emissions and processes. Results showed 45% of the variance of aerosol forcing since ∼1750 arises from uncertainties in natural emissions of volcanic SO2, marine di-Me sulfide, biogenic volatile org. C, biomass burning, and sea spray. Only 34% of the variance was assocd. with anthropogenic emissions. Results point to the importance of understanding pristine pre-industrial-like environments, with natural aerosols only, and suggest improved measurements and evaluation of simulated aerosols in polluted present-day conditions will not necessarily result in commensurate redns. in uncertainty of forcing ests.
- 97Jia, H.; Quaas, J. Nonlinearity of the cloud response postpones climate penalty of mitigating air pollution in polluted regions. Nat. Clim. Chang. 2023, 13, 943– 950, DOI: 10.1038/s41558-023-01775-5There is no corresponding record for this reference.
- 98Notaro, M.; Yu, Y.; Kalashnikova, O. V. Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought. Geophys. Res. Atmos. 2015, 120, 10,229– 10,249, DOI: 10.1002/2015JD023855There is no corresponding record for this reference.
- 99Wu, C.; Lin, Z.; Shao, Y.; Liu, X.; Li, Y. Drivers of recent decline in dust activity over East Asia. Nat. Commun. 2022, 13, 7105 DOI: 10.1038/s41467-022-34823-3There is no corresponding record for this reference.
- 100Liu, J.; Wang, X.; Wu, D.; Wei, H.; Li, Y.; Ji, M. Historical footprints and future projections of global dust burden from bias-corrected CMIP6 models. npj Clim. Atmos. Sci. 2024, 7, 1 DOI: 10.1038/s41612-023-00550-9There is no corresponding record for this reference.
- 101Chen, J.; Wu, Z.; Augustin-Bauditz, S.; Grawe, S.; Hartmann, M.; Pei, X.; Liu, Z.; Ji, D.; Wex, H. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China. Atmos. Chem. Phys. 2018, 18, 3523– 3539, DOI: 10.5194/acp-18-3523-2018There is no corresponding record for this reference.
- 102Hartmann, M.; Blunier, T.; Brugger, S. O.; Schmale, J.; Schwikowski, M.; Vogel, A.; Wex, H.; Stratmann, F. Variation of Ice Nucleating Particles in the European Arctic Over the Last Centuries. Geophys. Res. Lett. 2019, 46, 4007– 4016, DOI: 10.1029/2019GL082311There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.4c08014.
Additional details of the experimental setup, methods, and modeling approach (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.