这是用户在 2024-8-8 11:29 为 https://app.immersivetranslate.com/pdf-pro/1b65c988-a2f3-4e2a-919c-dc2664110420 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_08_08_ecea115e4620b9a70113g

Passivation in perovskite solar cells: A review
过氧化物太阳能电池中的钝化:综述

Pengjun Zhao, Byeong Jo Kim, Hyun Suk Jung*
赵鹏俊、Byeong Jo Kim、Hyun Suk Jung*
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea
成均馆大学先进材料科学与工程学院,韩国水原,440-746

A R T I C L E I N F O

Article history: 文章历史:

Received 18 November 2017
2017 年 11 月 18 日收到
Received in revised form 收到修订稿
18 December 2017 2017 年 12 月 18 日
Accepted 9 January 2018 已于 2018 年 1 月 9 日接受
Available online 1 February 2018
2018 年 2 月 1 日在线提供

Keywords: 关键词:

Passivation 钝化
Perovskite solar cell 过氧化物太阳能电池
Interface 界面
Defect states 缺陷状态

Abstract 摘要

A B S T R A C T Photovoltaic device based on inorganic-organic hybrid perovskite structured materials have been one of the brightest spotlights in the energy-conversion research field in recent years. However, due to their inherent properties and the architecture of the fabricated device, many defects trap states or carrier transport barriers are present at the interfaces between each functional layer and at the grain boundaries of the perovskite. These defects cause undesirable phenomena such as hysteresis and instability in the perovskite solar cells, which has slowed their commercialization. To address these issues, intensive research effort has been devoted recently to the development of passivation materials and approaches that can reduce the amount of interface and surface defect states in perovskite solar cells. Here, we have reviewed the state of the research progress in the development of passivation of different interfaces in the perovskite solar cell, including the interface (a) between transparent conductive oxide and electron transport material; (b) between the electron transport material and perovskite; (c) between the perovskite grains (grain boundaries); (d) between the perovskite and hole transport layer; (e) between the hole transport layer and electrode, and (f) between the electrode material and atmospheric environment. We also look into the prospects and challenges in the passivation of hybrid perovskite solar cells
A B S T R A C T 基于无机-有机混合包晶结构材料的光伏器件是近年来能源转换研究领域最耀眼的焦点之一。然而,由于其固有特性和所制造器件的结构,在各功能层之间的界面和过氧化物的晶界上存在许多缺陷陷阱态或载流子传输障碍。这些缺陷会导致包晶体太阳能电池出现滞后和不稳定等不良现象,从而延缓了其商业化进程。为了解决这些问题,近来人们致力于开发钝化材料和方法,以减少包晶体太阳能电池中界面和表面缺陷状态的数量。在此,我们回顾了开发钝化包晶太阳能电池中不同界面的研究进展,包括(a) 透明导电氧化物与电子传输材料之间的界面;(b) 电子传输材料与包晶之间的界面;(c) 包晶晶粒(晶界)之间的界面;(d) 包晶与空穴传输层之间的界面;(e) 空穴传输层与电极之间的界面;以及(f) 电极材料与大气环境之间的界面。我们还探讨了混合型过氧化物太阳能电池钝化的前景和挑战

(c) 2018 Elsevier Ltd. All rights reserved
(c) 2018 爱思唯尔有限公司。保留所有权利

1. Introduction 1.导言

In the five years since the first fabrication of the all solid-state perovskite solar cell (PSC) by Nam Gyu Park et al. in 2012 [1], the photoelectric conversion efficiencies (PCEs) of PSCs have experienced an explosive growth. Certified PCEs of and for small area PSCs with areas of and , respectively [2], and of for large area of [3] have been achieved. This remarkable achievement has resulted in PSCs being considered the most promising class of third generation photovoltaic devices to replace the currently widely used silicon solar cells.
自2012年Nam Gyu Park等人首次制造出全固态包晶体太阳能电池(PSC)[1]以来的五年间,PSC的光电转换效率(PCE)经历了爆炸式的增长。面积为 的小面积 PSC 的认证 PCE 分别达到了 [2],而面积为 的大面积 PSC 的认证 PCE 则达到了 [3]。这一卓越成就使 PSC 被认为是最有希望取代目前广泛使用的硅太阳能电池的第三代光伏设备。
In order to commercialize PSCs, three major barriers remain to be overcome [4,5]: (a) The environmental toxicity caused by the use of Pb in PSCs, (b) their unsatisfactory stability against temperature, humidity and light exposure, and (c) the dependence of their differential curves on the scan directions (i.e., from open circuit voltage to short circuit current or vice versa), which is the so-called "hysteresis" phenomenon [6].
要实现 PSC 的商业化,仍需克服三大障碍[4,5]:(a) PSC 中使用铅造成的环境毒性;(b) PSC 对温度、湿度和光照的稳定性不理想;(c) PSC 的差分 曲线取决于扫描方向(即从开路电压到短路电流或反之亦然),即所谓的 "滞后 "现象[6]。
The searching for Lead-free perovskite with high photovoltaic performance still has a long way to go. Theoretical investigation has
寻找具有高光电性能的无铅过氧化物还有很长的路要走。理论研究
implied that a promising perovskite absorber should exhibit high electronic dimensionality, a criterion that presently fulfilled only by Pb -based three dimensioned (3D) structured perovskite. Some reported double perovskites, such as the Ag - and Bi-based halide double perovskites are structurally 3D but electronically 0 dimensioned ( 0 D ), making it quite difficult to find promising candidates to replace the current Pb -based perovskite [7].
这意味着一种有前途的过氧化物吸收剂应表现出较高的电子维度,目前只有基于铅的三维(3D)结构过氧化物符合这一标准。一些已报道的双包晶石,如银基和铋基卤化物双包晶石,在结构上是三维的,但电子维数为 0(0 D),因此很难找到有前途的候选物质来取代目前的铅基包晶[7]。
Fortunately, research into eliminating hysteresis and improving stability has resulted in many substantial achievements recently. PSCs with low or even no hysteresis [8-13], and with outstanding stability towards temperature [14], humidity [15-19], and light exposure [20-25] have been successfully fabricated.
幸运的是,消除滞后和提高稳定性的研究最近取得了许多重大成果。目前已成功制造出低滞后甚至无滞后 [8-13]、对温度 [14]、湿度 [15-19] 和光照 [20-25] 具有出色稳定性的 PSC。
Interface passivation is one of the most commonly used and efficient strategies to improve the photovoltaic performance of PSCs.
界面钝化是提高 PSC 光伏性能最常用、最有效的策略之一。
According to International Union of Pure and Applied Chemistry (IUPAC), passivation, in physical chemistry and engineering, refers to a material becoming "passive," that is, less affected or corroded by the environment in which it will be used. Passivation involves the application of an outer layer of a shielding material as a microcoating, created by chemical reaction with the base material [26]. The transition process from the "active state" to the "passive state" by the formation of a passivating film [27]. For perovskite solar cells, passivation generally refers to either chemical passivation,
根据国际纯粹与应用化学联合会(IUPAC)的定义,在物理化学和工程学中,钝化是指材料变得 "被动",即减少受使用环境的影响或腐蚀。钝化是指在屏蔽材料的外层涂上一层微涂层,通过与基体材料发生化学反应而形成[26]。通过形成钝化膜,实现从 "有源状态 "到 "无源状态 "的过渡过程 [27]。对于包晶体太阳能电池,钝化一般指化学钝化、

which reduces the defects trap states in order to optimize the charge transfer between various interfaces [9,28-31], or physical passivation, which isolates certain functional layers from the external environment to avoid degradation of the device.
或物理钝化,将某些功能层与外部环境隔离,以避免器件降解。
Typical PSC devices contain six main interface, including (a) the interface between the transparent conductive oxide and electron transport layer (ETL); (b) the interface between the electron transport material and perovskite; (c) the interface between the perovskite grains (grain boundaries); (d) the interface between the perovskite and hole transport layer (HTL); (e) the interface between the hole transport layer and electrode, and ( f ) the interface between the electrode material and atmospheric environment [32].
典型的 PSC 器件包含六个主要界面,包括(a)透明导电氧化物与电子传输层(ETL)之间的界面;(b)电子传输材料与包晶之间的界面;(c)包晶晶粒(晶界)之间的界面;(d)包晶与空穴传输层(HTL)之间的界面;(e)空穴传输层与电极之间的界面;以及(f)电极材料与大气环境之间的界面[32]。
In this review, we summarize the research advances of the past several years, and focus on interface passivation in perovskite solar cells, organized according to the interface classifications listed above. A brief prospective on the challenges and opportunities in passivation technology for enhancing the performance and stability of perovskites solar cells is also provided. It should be noted that in addition to perovskite solar cells, passivation strategies have also been applied to perovskite nanocrystals/quantum dots [33-35] and light emitting devices [36-39]; however, these will not be discussed here.
在这篇综述中,我们总结了过去几年的研究进展,并根据上述界面分类,重点介绍了过氧化物太阳能电池中的界面钝化技术。我们还简要展望了钝化技术在提高过氧化物太阳能电池性能和稳定性方面所面临的挑战和机遇。值得注意的是,除包晶石太阳能电池外,钝化策略还被应用于包晶石纳米晶体/量子点[33-35]和发光器件[36-39];但在此不做讨论。

2. Passivation at the interface between ETL and perovskite
2.ETL 与包晶之间界面的钝化

2.1. Passivation of surface
2.1. 表面钝化

The most popularly used electron transfer material in perovskite solar cells is titanium dioxide , with a planar or mesoporous structure. Due to its inherent properties, the surface trap states are highly abundant, which limits the photovoltaic performance of the resulting perovskite solar cells. In addition, is an outstanding photocatalyst under UV light, however UV light can decompose organic groups, and thus attenuate the photovoltaic performance of perovskite solar cells under sunlight.
在过氧化物太阳能电池中,最常用的电子传递材料是具有平面或介孔结构的二氧化钛 。由于其固有特性,表面阱态非常丰富,从而限制了所制成的过氧化物太阳能电池的光电性能。此外, 在紫外光下是一种出色的光催化剂,但紫外光会分解有机基团,从而削弱透晶石太阳能电池在阳光下的光电性能。
Numerous strategies have been attempted to resolve this problem and many passivators have been utilized to eliminate the surface trap state of . Common methods to passivate the surface trap states of are to deposit another layer to coat the original surface, for example, chemical bath deposition (CBD) [40], or ultrathin film deposited by atomic layer deposition (ALD) [41], or the deposition of an insulator layer [42-47]). itself can also act as a passivation layer on ZnO electron transfer material, to slow down the charge recombination rate in the ZnO layer [48]. While the above approaches can reduce the surface defects of , the use of as the electron transport layer in perovskite solar cells still has an apparent disadvantage. In based perovskite solar cells, the curves usually exhibit a large discrepancy between the reverse and forward scan directions (Fig. 1 (a)) [9], partly due to the non-equilibrium injection rate of electrons and holes at the two electrodes. This hysteresis phenomenon causes uncertainty as to true efficiency of the cells.
为解决这一问题,人们尝试了许多策略,并利用许多钝化剂来消除 的表面陷阱态。钝化 表面陷阱态的常用方法是沉积另一层 来覆盖原始表面,例如, 化学浴沉积(CBD)[40],或通过原子层沉积(ALD)沉积超薄 膜[41],或沉积绝缘体层 [42-47])。 本身也可以作为氧化锌电子传输材料上的钝化层,减缓氧化锌层中的电荷重组速率 [48]。虽然上述方法可以减少 的表面缺陷,但在过氧化物太阳能电池中使用 作为电子传输层仍有明显的缺点。在基于 的过氧化物太阳能电池中, 曲线通常在反向和正向扫描方向上表现出很大的差异(图 1 (a))[9],部分原因是电子和空穴在两个电极上的非平衡注入率。这种滞后现象导致电池真实效率的不确定性。
To solve this issue, lithium ( ) doped was successfully developed to improve the electronic properties of the mesoporous layer, by reducing electronic trap states. The monovalent causes a partial reduction of to within the lattice and passivation of the electronic defect states that act as nonradiative recombination centers [49]. Perovskite solar cells with enhanced efficiency as well as reduced hysteresis have been obtained using doped
为了解决这个问题,我们成功地开发出了掺锂( )的 ,通过减少电子陷阱态来改善 介孔层的电子特性。单价 使 部分还原为 晶格内的 并使作为非辐射重组中心的电子缺陷态钝化 [49]。使用掺杂了 的过氧化物太阳能电池可以提高效率并减少滞后。
Additionally, high electron mobility materials, such as selfassembled fullerene derivatives [8,28,51,52], pyridine [53], carboxyl groups [54], or other semiconductor shell layers [55] have been developed to passivate the surface. These materials create a physical barrier between and the perovskite layer and decrease the trap states, thus enhancing the efficiencies of the perovskite solar cells as well as improving their light-stability [28]. One example of effective solution using this strategy was inserting [6]-phenyl-C61-butyric acid methyl ester (PCBM) or another fullerene/graphene derivative [28,56-64] as a thin layer between and the perovskite (Fig. 1 (b)) or as individual electron transport materials [63,65]. Because of the high carrier mobility of PCBM, hysteresis can be significantly reduced (Fig. 1 (c)). More importantly, the constant power output at the maximum power point (MPP) becomes comparable to the performance obtained from the J-V curve (Fig. 1 (d)) [9]. This is a key parameter that should be noted when using PCBM for the passivation of surfaces. Because PCBM absorbs part of the incident illumination, slightly reducing the photo-generated current, an ultra-thin PCBM coating should be used [13].
此外,人们还开发了高电子迁移率材料,如自组装富勒烯衍生物 [8,28,51,52]、吡啶 [53]、羧基 [54] 或其他半导体外壳层 [55],用于钝化 表面。这些材料在 和包晶石层之间形成了物理屏障,减少了 陷阱态,从而提高了包晶石太阳能电池的效率,并改善了其光稳定性 [28]。使用这种策略的一个有效解决方案是在 和包晶石之间插入 [6]- 苯基-C61-丁酸甲酯(PCBM)或其他富勒烯/石墨烯衍生物 [28,56-64] 作为薄层(图 1 (b)),或作为单独的电子传输材料 [63,65]。由于 PCBM 具有很高的载流子迁移率,因此可以显著减少滞后现象(图 1 (c))。更重要的是,最大功率点 (MPP) 的恒定功率输出可与根据 J-V 曲线获得的性能相媲美(图 1 (d))[9]。这是使用 PCBM 对 表面进行钝化时应注意的一个关键参数。由于 PCBM 会吸收部分入射光,从而略微降低光生电流,因此应使用超薄 PCBM 涂层 [13]。
More than the conductive interlayer, insulating polymers can form interface chemical interactions between the thin insulating layer and the perovskite films, resulting in significant improvement of the device stability while high PCE can still be maintained [66].
与导电夹层相比,绝缘聚合物能在绝缘薄层和过氧化物薄膜之间形成界面化学作用,从而显著提高器件的稳定性,同时仍能保持较高的 PCE [66]。
Sargent et al. [67] developed a contact-passivation method using a chlorine-capped colloidal nanocrystal film that mitigated interfacial recombination and improved interface binding in planar structured perovskite solar cells. Certified efficiencies of and were achieved for active areas of 0.049 and , respectively. These excellent photovoltaic performances resulted from the reduction in trap-like localized anti-site defects between bonds by replacing them with bonds (see Fig. 2 (a and b)). After contact doping, the hysteresis almost disappeared in Fig. 2 (c), and both the transient photocurrent decay and transient photovoltage decay lifetimes were longer in the samples than that of in the sample (Fig. 2 (d and e)). This analysis indicates that the strong binding at the perovskite interface suppressed the interfacial recombination, which accounts for the superior stability of planar PSCs based on (Fig. 2 (f-h)).
Sargent 等人[67]开发了一种接触钝化方法,使用氯封盖的 胶体纳米晶体薄膜,可减轻界面重组并改善平面结构过氧化物太阳能电池的界面结合。当活性面积为 0.049 和 时,认证效率分别达到 。这些优异的光伏性能得益于用 键取代 键,从而减少了 键之间的陷阱状局部反位缺陷(见图 2(a 和 b))。接触掺杂后,图 2 (c) 中的滞后现象几乎消失,而且 样品的瞬态光电流衰减和瞬态光电压衰减寿命均长于 样品(图 2 (d 和 e))。这一分析表明, 包晶界面的强结合抑制了界面重组,这也是基于 的平面 PSCs 具有出色稳定性的原因(图 2 (f-h))。

2.2. Interface passivation by self-assembled monolayer
2.2.通过自组装单层实现界面钝化

Self-assembled monolayers (SAMs) of organic molecules are molecular assemblies that form spontaneously on surfaces by adsorption and are organized into ralatively large ordered domains [68]. SAMs can be formed on semiconductors or on other dielectric substrates, and have been used in a variety of technological applications [69-72]. SAMs containing different functional groups have been utilized to passivate the interface between the electron transfer and perovskite layer [73-76]. Zuo et al. studied four SAMs (BA-SAMs, PA-SAMs, CBA-SAMs, ABA-SAMs, and C3-SAMs, see Fig. 3 (a)) on compact planar layers [74]. The chemical groups of the different SAMs exhibited two different interactions with the and perovskite layers: van der Waals interactions with benzoic acid (BA) and dipolar interactions with the 4 pyridinecarboxylic acid (PA), 3-aminopropanoic acid (C3) [75], 4aminobenzoic acid (ABA), or 4 -cyanobenzoic acid (CBA). As seen in Fig. 3 (b), the work functions of the SAMs showed a negative correlation with the efficiencies of the corresponding perovskite solar cells, which is the opposite of what would be expected from the energy level alignment theory. The photoluminescence (PL) quenching exhibited the same tendency as the efficiency, as shown in Fig. 3 (c) and (d). These results indicate that the interfacial optoelectronic properties were mainly governed by chemical interactions, rather than the energy level alignment. The PA-SAM passivated cell exhibited the highest efficiency of . To explain this, the schematic diagram in Fig. 3 (f) shows the carrier dynamics of the transfer stages and the mechanism of enhanced photovoltaic performance in the PA-SAM devices. Firstly, in order to generate a
有机分子的自组装单分子层(SAMs)是通过吸附作用在表面上自发形成的分子集合体,并组织成相对较大的有序结构域[68]。SAM 可在半导体或其他电介质基底上形成,已被用于多种技术应用中 [69-72]。含有不同官能团的 SAM 被用来钝化电子转移层和包晶层之间的界面 [73-76]。Zuo 等人研究了 紧凑型平面层上的四种 SAM(BA-SAM、PA-SAM、CBA-SAM、ABA-SAM 和 C3-SAM,见图 3 (a))[74]。不同 SAM 的化学基团与 层和包晶层有两种不同的相互作用:与苯甲酸(BA)的范德华相互作用和与 4-吡啶甲酸(PA)、3-氨基丙酸(C3)[75]、4-氨基苯甲酸(ABA)或 4-氰基苯甲酸(CBA)的双极相互作用。如图 3 (b) 所示,SAM 的功函数与相应的包光体太阳能电池的效率呈负相关,这与能级排列理论的预期相反。如图 3 (c) 和 (d) 所示,光致发光(PL)熄灭与效率呈现出相同的趋势。这些结果表明,界面光电特性主要受化学相互作用而非能级排列的影响。PA-SAM 钝化电池的效率 最高。为了解释这一点,图 3 (f) 中的示意图显示了 PA-SAM 器件中转移阶段的载流子动力学以及光伏性能增强的机理。首先,为了产生
Fig. 1. (a) A typical hysteresis J-V loop for a perovskite solar cell. (b) Electronic band structure of the PCBM passivated device (c) J-V curve showing reduced hysteresis after PCBM interposition and (d) a static PCE scan with the voltage held at the MPP voltage. Open squares represent the device without PCBM, while closed circles indicate the device with a PCBM layer.
图 1. (a) 典型的过氧化物太阳能电池滞后 J-V 曲线。(b) PCBM 钝化器件的电子带结构 (c) J-V 曲线显示 PCBM 填充后滞后现象的减少;(d) 电压保持在 MPP 电压时的静态 PCE 扫描。开放的正方形表示没有 PCBM 的器件,而封闭的圆形表示有 PCBM 层的器件。
Reprinted with permission from Ref. [9]. Copyright 2015 AIP Publishing LLC.
参考文献 [9] 授权转载。[9].2015 AIP 出版有限责任公司版权所有。
photocurrent, the photo-generated carriers must be transferred from the perovskite to the electrode. There are two trap-stateinduced barriers that reduce the charge injection efficiency: PL quenching via trap states, and charge recombination via trap states. In most cases, the terminal groups of SAM contain nitrogen atoms, which tend to form hydrogen-bonding interactions with the methylamine groups of the perovskite crystal lattice. This can improve their miscibility with the perovskite substrate, further enhancing the crystallization of perovskite and reducing surface trap states . Therefore, modification with PA-SAM suppressed the surface trap states, as evidenced by the enhanced TPV decay time in Fig. 3 (e). Meanwhile, due to the reduced work function, carrier transfer between the perovskite and became more efficient .
要获得光电流,光产生的载流子必须从包晶石转移到电极上。有两种陷阱态引起的障碍会降低电荷注入效率:通过陷阱态淬火的光致发光和通过陷阱态的电荷重组。在大多数情况下,SAM 的末端基团含有氮原子,这些氮原子往往会与包晶晶格的甲胺基团形成氢键相互作用 。这可以改善它们与包晶基底的混溶性,进一步提高包晶的结晶度,减少表面陷阱态 。因此,用 PA-SAM 进行修饰可以抑制表面陷阱态,图 3 (e) 中增强的 TPV 衰减时间就是证明。同时,由于功函数降低,包晶和 之间的载流子转移 变得更加有效。
Investigations of the surface chemistry combined with timeresolved photoluminescence spectroscopy have indicated that charge recombination centers in hybrid metal-halide perovskites are almost exclusively localized on the surfaces of the crystals, rather than in the bulk [34]. Thus, passivation of these surface defects could be the most efficient method to prolong charge carrier lifetimes and further improve solar cell performance.
结合时间分辨光致发光光谱法进行的表面化学研究表明,混合金属卤化物过氧化物晶体中的电荷重组中心几乎全部位于晶体表面,而非晶体内部[34]。因此,钝化这些表面缺陷可能是延长电荷载流子寿命和进一步提高太阳能电池性能的最有效方法。

3. Passivation in perovskite grain boundaries
3.过氧化物晶界的钝化

3.1. Grain boundary self-passivation by
3.1.通过 实现晶界自钝化

Controlling charge carrier trapping, which introduces competitive recombination channels, is an extremely important issue in the development of high-performance solar cells. As a kind of polycrystalline thin film, it is necessary for perovskite thin film to have a low density of charge carrier traps, at both grain boundaries and at interfaces with electron or hole extraction layers [78].
电荷载流子陷阱会引入竞争性重组通道,控制电荷载流子陷阱是开发高性能太阳能电池的一个极其重要的问题。作为一种多晶薄膜,包晶体薄膜必须在晶界以及与电子或空穴萃取层的界面上具有低密度的电荷载流子陷阱 [78]。
Supasai et al. first reported the passivation effect of a layer on perovskites in 2013 [79]. The evidence for this effect was then investigated, by Wang et al. using femtosecond time-resolved transient absorption spectroscopy technology (fs-TA) [80]. The injection rates were found to be slowed in the presence of a greater mount of , and carrier recombination lifetimes were also lengthened upon passivation [81,82]. Moreover, in a typical structured perovskite solar cell, the formation of the passivation layer is highly related to the architecture. Mesoporous is more likely to induce the formation of than compact , which leads to the passivation of perovskite grain boundaries
Supasai 等人于 2013 年首次报道了过氧化物上 层的钝化效应 [79]。随后,Wang 等人利用飞秒时间分辨瞬态吸收光谱技术(fs-TA)研究了这种效应的证据[80]。研究发现,在 装载较多的情况下,注入速率会减慢,钝化后载流子的重组寿命也会延长 [81,82]。此外,在典型的 结构的过氧化物太阳能电池中, 钝化层的形成与 结构密切相关。介孔 比致密 更有可能诱导 的形成,从而导致过氧化物晶界的钝化。
Fig. 3. (a) Schematic diagram of the SAM between and the perovskite film. (b) Work functions and efficiencies of perovskite and organic solar cells with different SAMs. (c) Steady state and (d) transient PL spectra of the perovskite film on with different SAMs. (e) Transient photo-voltage of perovskite solar cells with different SAMs. (f) Schematic diagram of the charge dynamics at the perovskite/ interface in perovskite solar cells: (1) Photoluminescence process, (2) PL quenching via trap states, (3) charge transfer process, (4) charge recombination via trap states, (5) power generation.
图 3. (a) 与包晶薄膜之间的 SAM 示意图。(b) 使用不同 SAM 的包晶和有机太阳能电池的功函数和效率。(c) 使用不同 SAM 的 上的包晶石薄膜的稳态和 (d) 瞬态 PL 光谱。(e) 使用不同表面活性剂的包晶太阳能电池的瞬态光电压。(f) 包晶体太阳能电池中包晶石/ 界面的电荷动态示意图:(1) 光致发光过程,(2) 通过陷阱态淬灭 PL,(3) 电荷转移过程,(4) 通过陷阱态进行电荷重组,(5) 发电。
Reprinted with permission from Ref. [74]. Copyright 2017 American Chemical Society.
参考文献 [74] 授权转载。[74].2017 美国化学学会版权所有。
(Fig. 4 and Table 1). A systematical study indicated that the present of suitable amount of species in the film led to improved carrier behavior, possibly due to reduced recombination at the grain boundaries (GBs) and the perovskite interface.
(图 4 和表 1)。系统研究表明, 薄膜中含有适量的 物种可改善载流子行为,这可能是由于晶界(GBs)和 包晶界面的重组减少所致。

Before passivation with , the trap density of was . This value decreased to after passivation, suggesting that the surface traps can be passivated by bonding [83]. Additionally, the properties of GBs of the perovskite film were
在使用 钝化之前, 的陷阱密度为 。在 钝化后,该值降至 ,这表明 表面陷阱可以通过 键来钝化 [83]。此外,还研究了过氧化物薄膜的 GB 特性。
Fig. 2. (a) Trap-like localized antisite defects form near the valence band edge of the -terminated perovskite interface (left). Shallow and delocalized anti-site defects are seen for the -terminated interface (right). (b) Device structure and cross-sectional scanning electron microscopy (SEM) image of planar PSC. (c) curves of PSCs containing and as ESLs measured at reverse and forward scans. (d) Normalized transient photocurrent decay and (e) normalized transient photovoltage decay of solar cells containing and as ESLs. (f) curves of the best-performing small-area ( ) CsMAFA PSC measured using reverse and forward scans. (g) Dark storage stability of non-encapsulated PSCs containing and . The unsealed cells were kept in a dry cabinet ( relative humidity) in the dark and measured regularly under nitrogen. (h) curves of PSC (CSMAFA) at various stages: fresh, immediately after 500 h of MPP operation, and after recovery overnight in the dark.
图 2. (a) 在 包晶界面(左)的价带边缘附近形成陷阱状局部反位缺陷。在 端接的 包晶界面(右图)上,可以看到浅层和分散的 反位缺陷。(b) 平面 PSC 的器件结构和横截面扫描电子显微镜 (SEM) 图像。(c) 在反向和正向扫描时测量的含有 ESL 的 PSC 的 曲线。(d) 含有 作为 ESL 的太阳能电池的归一化瞬态光电流衰减和 (e) 归一化瞬态光电压衰减。(f) 使用反向和正向扫描测量的性能最佳的小面积 ( ) CsMAFA PSC 的 曲线。(g) 含有 的非封装 PSC 的暗储存稳定性。将未封装的电池置于干燥柜( 相对湿度)中暗处保存,并在氮气环境下定期测量。(h) PSC(CSMAFA)在不同阶段的 曲线:新鲜、MPP 运行 500 小时后立即和在黑暗中过夜恢复后。
Reprinted with permission from Ref. [67]. Copyright 2017 American Association for the Advancement of Science.
参考文献 [67] 授权转载。[67].2017 美国科学促进会版权所有。
Fig. 4. Transient band edge bleaching kinetics (symbols) and their fits (lines) for A-D perovskite architectures (inset) at the probe wavelengths noted in Table 1. Reprinted with permission from Ref. [80]. Copyright 2016 American Chemical Society.
图 4.表 1 中所示探针波长 下 A-D 包晶结构(插图)的瞬态带边漂白动力学(符号)及其拟合(线条)。经参考文献 [80] 授权转载。[80].2016 美国化学学会版权所有。
Table 1 表 1
Kinetic fitting parameters for the perovskite architectures.
过氧化物结构的动力学拟合参数。
Architecture 建筑学
perovskite/FTO 珍珠岩/FTO 748
perov/comp/FTO 750
perov/meso/FTO 728
perov/meso/comp/FTO 722
Reprinted from Ref. [80]. Copyright 2016 American Chemical Society.
转载自参考文献。[80].2016 美国化学学会版权所有。
altered by passivation [81]. Several possible passivation mechanisms were proposed (Fig. 5) [81,84] based on the fact that the interface between and perovskite in the film shows a type I band edge alignment. The schematic structure is shown at the bottom left of Fig. 5 (a). The perovskite interface (I) is shown at the top right of Fig. 5 (a); the recombination of the electrons from and holes from the perovskite is reduced by the introduction of . The perovskite/HTM interface (II) described at the bottom right of Fig. 5 (a); the presence of changes the grain-to-grain boundary-bending from downward to upward, which helps to reduce recombination between the electrons from the perovskite and the holes from the HTM.
钝化改变[81]。根据薄膜中 与包晶之间的界面呈现 I 型带边排列这一事实,提出了几种可能的钝化机制(图 5)[81,84]。图 5 (a) 左下方显示了 结构示意图。包晶 界面 (I) 如图 5 (a) 右上方所示;通过引入 减少了来自 的电子和来自包晶的空穴的重组。图 5 (a) 右下方描述的包晶/HTM 界面 (II); 的存在使晶粒间的边界弯曲从向下变为向上,这有助于减少来自包晶的电子和来自 HTM 的空穴之间的重组。
Some other reports in the literature have asserted that energy level alignment is the key factor for the passivation effect of . Due to band edge matching between , and the perovskite, is able to passivate the interface and further decrease hole recombination (Fig. 5 (b)). Moreover, can facilitate electron injection into . At the perovskite/hole transport layer (HTL) interface, can act as an electron blocking layer, facilitating hole injection and thereby decreasing recombination (Fig. 5 (c)). In contrast, if the layers are too thick, or if the energy matching is unsuitable, they may instead insulate individual grains and block charge transfer (Fig. 5 (d and e)). may also influence the chemical composition at the grain boundaries. The composition of the interior of the perovskite grains could be ralatively insensitive toward small changes in overall stoichiometry. The grain boundaries and the regions between the grains would thus by necessity be highly sensitive to the overall composition (Fig. 5 (f-h)). This could affect defect states, dangling bonds, conductivity, doping, and ion migration of the perovskite absorber layer. Some results indicate that recombination is faster within grain boundaries that are deficient in . Thus, acts as a passivation layer between the grains [84].
其他一些文献报告认为,能级对齐是 产生钝化效应的关键因素。由于 和过氧化物之间的带边匹配, 能够钝化 界面,进一步减少空穴重组(图 5 (b))。此外, 还能促进电子注入 。在包晶/空穴传输层 (HTL) 界面, 可以充当电子阻挡层,促进空穴注入,从而减少重组(图 5 (c))。相反,如果 层太厚,或者能量匹配不合适,它们反而会隔绝单个晶粒,阻碍电荷转移(图 5 (d 和 e))。 还可能影响晶界的化学成分。包晶晶粒内部的组成可能对整体化学计量的微小变化不敏感。因此,晶界和晶粒之间的区域必然对总体成分高度敏感(图 5 (f-h))。这可能会影响包晶吸收层的缺陷态、悬空键、导电性、掺杂和离子迁移。一些结果表明,在缺乏 的晶界内,重组速度更快。因此, 在晶粒之间起着钝化层的作用 [84]。

When is used as a passivator, it is usually found at the grain boundaries of perovskite grains. The grain boundaries usually appear relatively brighter contrast than the grains nearby [81,85,86] in scanning electron microscopy (SEM) images, possibly because of their low conductivity results in the accumulated charge accumulated.
用作钝化剂时,通常会出现在过氧化物晶粒的晶界处。在扫描电子显微镜(SEM)图像中,晶界的对比度通常比附近的晶粒要亮[81,85,86],这可能是因为晶界的低电导率导致了电荷的累积。
There are three methods to introduce a passivation layer at perovskite grain boundaries. The first one is self-induced formation of from the controlled degradation of pristine perovskite thin films by thermal or water vapor treatment [88-90]; the second is the preparation of a nonstoichiometric perovskite precursor solution with excess of (usually molar ratio relative to the perovskite) ; and the final one is the incomplete reaction of through a two-step solution or vapor reaction method [92-94].
在包晶晶界引入 钝化层有三种方法。第一种是通过热 或水蒸气处理使原始的包晶体薄膜受控降解,自诱导形成 [88-90];第二种是用过量的 (通常是 相对于包晶的摩尔比) 制备非全度包晶前驱体溶液;最后一种是通过两步溶液或气相反应法使 发生不完全反应 [92-94]。
Many previous articles have reported that an excess of can have beneficial effects on the photovoltaic performance of a perovskite solar cell, including suppressed charge recombination, increased fluorescence emission lifetime [92] and increased polaron binding energy [95] in perovskite thin films, thus enhancing the open circuit voltage (as high as 1.15 V for ) [91], and reducing hysteresis between the forward and reverse scans .
之前有许多文章报道,过量的 会对包晶体太阳能电池的光电性能产生有利影响,包括抑制电荷重组、增加荧光发射寿命 [92] 和增加包晶体薄膜中的极子结合能 [95],从而提高开路电压( 高达 1.15 V)[91],并减少正向扫描和反向扫描 之间的滞后。
Because is a commonly observed byproduct during the aging and degradation processes of perovskite solar cells, identifying and quantifying formation is necessary to improving the performance and stability of perovskite solar cells.
由于 是一种在过氧化物太阳能电池老化和降解过程中经常观察到的副产品,因此识别和量化 的形成对于提高过氧化物太阳能电池的性能和稳定性非常必要。
Nazeeruddin et al. reported the influence of non-stoichiometric ratios in the precursor solution on the passivation effect of [98]. In stoichiometric of was tuned from to in regular mesoporous structured perovskite solar cells (Fig. 6 (a)). As indicated in the J-V curves in Fig. 6 (b), the photovoltaic performance of the cells was improved at all tested non-stoichiometric precursor ratios, and the optimized excess ratio was . The X-ray diffraction (XRD) and SEM images in Fig. 6 (c) and (d) suggest that the presence of unreacted improved the crystallinity as well as the grain sizes of the perovskite film, thus enhancing the electron transfer capacity from perovskite to the layer.
Nazeeruddin 等人报告了前驱体溶液中非化学计量 比对 钝化效果的影响 [98]。在规则的 介孔 结构的过氧化物太阳能电池中, 的化学计量从 调整到 (图 6 (a))。如图 6 (b) 中的 J-V 曲线所示,在所有测试的非化学计量前驱体比率下,电池的光伏性能都得到了改善,优化的 过量比率为 。图 6 (c) 和 (d) 中的 X 射线衍射 (XRD) 和 SEM 图像表明,未反应的 的存在提高了包晶石薄膜的结晶度和晶粒尺寸,从而增强了从包晶石到 层的电子转移能力。
By using confocal based PL/time resolved photoluminescence (TRPL) spectroscopy and microscopy, Chen et al. [35] observed the spatial distribution of between perovskite boundaries. Their results showed that the perovskites in -rich grains exhibited a longer lifetime than that of -poor grains, due to the suppression of defect trapping.
通过使用基于共焦的聚光/时间分辨光致发光(TRPL)光谱和显微镜,Chen 等人[35] 观察了包晶边界之间 的空间分布。他们的研究结果表明,由于缺陷捕获的抑制作用,富含 晶粒中的包晶寿命比贫含 晶粒中的包晶寿命长。
In addition to the commonly used fluorescence spectrum technique [92,93,95,99], light-modulated scanning tunneling microscopy (LMSTM) enables spatially resolved mapping of the photoinduced interfacial band bending of valence and conduction bands, and of the photo-generated electron and hole carriers at the hetero-interfaces of perovskite crystal grains. Shih et al. explored the interfacial electronic structures of individual perovskite grains, and directly observed enhanced charge separation and reduced back recombination when interfacial passivation layers were applied to the perovskite crystal grains [100]. They also concluded that the thickness of the passivation layers should be less than 20 nm , in order to maintain high photo-induced charge separation and transfer efficiency at the hetero-interfaces between the perovskite crystals and the passivation layers.
除了常用的荧光光谱技术 [92,93,95,99],光调制扫描隧道显微镜(LMSTM)还能在空间上分辨绘制光诱导的价带和导带的界面带弯曲图,以及光在包晶晶粒的异质界面上产生的电子和空穴载流子图。Shih 等人探索了单个包晶晶粒的界面电子结构,并直接观察到当在包晶晶粒上施加界面 钝化层时,电荷分离增强,反向重组减少 [100]。他们还得出结论, 钝化层的厚度应小于 20 nm,以便在 包晶和 钝化层之间的异质界面上保持较高的光诱导电荷分离和转移效率。
However, the influence of excess in perovskite thin films is still disputed. Some researchers believe that unreacted acts as a "double-edged sword" for the enhancement of the performance of perovskite solar cells [84,85,101]. Liu et al. [85] reported that due to their inferior film morphology (i.e., smaller grain size and the presence of pinholes), perovskite films without have lower
然而,对于过量的 在过氧化物薄膜中的影响仍存在争议。一些研究人员认为,未反应的 是提高过氧化物太阳能电池性能的一把 "双刃剑" [84,85,101]。Liu 等人 [85] 报告说,不含 的过氧化物薄膜由于薄膜形貌较差(即晶粒尺寸较小且存在针孔),因此其性能较低。
Fig. 5. (a) A diagram of the possible mechanism of the passivation effect, and the effects of on the perovskite film related to possible energy alignments suggested in the literature and an artistic illustration of different grain boundary types as a function of overall stoichiometry. (b) Schematic of as a passivating layer on the back contact. (c) Schematic of as a passivation layer next to the hole-selective layer. (d) Schematic of as an electron blocking layer next to the back contact. (e) of as a charge carrier barrier between perovskite grains. (f) Grain boundary with a large surplus of . (g) Grain boundary with a small deficiency of organic species. (h) Grain boundary with a large surplus of organic species.
图 5. (a) 钝化效应的可能机制示意图、 对与文献中提出的可能能量排列相关的过氧化物薄膜的影响,以及不同晶界类型作为整体化学计量学函数的艺术示意图。(b) 作为背面接触钝化层的 示意图。(c) 作为孔选择层旁边的钝化层示意图。(d) 作为背触点旁边的电子阻挡层的示意图。(e) 作为过氧化物晶粒之间的电荷载流子势垒。(f) 有大量剩余的晶界。(g) 有机物少量缺乏的晶界。(h) 有机物大量过剩的晶界。
Reprinted with permission from Refs. [81,84]. Copyright 2016 American Chemical Society.
经参考文献 [81,84] 授权转载。2016 美国化学学会版权所有。
Fig. 6. (a) Diagram showing the device architecture of a mesoporous structured perovskite solar cell, where : represents the active film with different stoichiometric ratios of the precursors. (b) Current density-voltage (J-V) curves obtained for devices containing a or molar excess of in the perovskite layer measured under AM1.5G solar irradiation of and with scan-rate fixed at . (c) XRD patterns of the different perovskite films, with the composition of each indicated in the legend. The inset shows a magnified graph in the range of corresponding to the characteristic peak ( 110 ) of the perovskite structure as well as the FWHM values. (d) SEM pictures corresponding to the surface analysis of the films.
图 6 (a) 介孔 结构的过氧化物太阳能电池的器件结构示意图,其中 : 表示具有不同前驱体化学计量比的活性薄膜。(b) 在 AM1.5G 太阳辐照 和扫描速率固定为 的条件下,测量过氧化物层中 摩尔过量 的器件的电流密度-电压 (J-V) 曲线。(c) 不同包晶石薄膜的 XRD 图,图例中标明了每种薄膜的成分。插图显示了 范围内 的放大图,对应于透辉石结构的特征峰 ( 110 ) 以及 FWHM 值。(d) 与薄膜表面分析相对应的 SEM 照片。
Reprinted with permission from Ref. [98]. Copyright 2015 Royal Society of Chemistry.
参考文献 [98] 授权转载。[98].版权所有 2015 皇家化学学会。

(a)
(b)
(c)
(e)
Fig. 8. (a) Pristine perovskite solution (left) and the formulated perovskite-PCBM hybrid solution. (b) A schematic of in situ passivation of the halide-induced deep trap. (c) Ultraviolet-visible absorption spectroscopy of the hybrid solution shows the interaction between PCBM and perovskite ions. The inset of (c) shows the details of such interaction (d) The wavefunction overlap shows the hybridization between PCBM and defective surface, enabling the electron/hole transfer for absorbance and passivation. (e) DFT calculation of density of states (DOS) shows that deep trap state (black) induced by Pb-I anti-site defect is reduced and becomes much shallower (red) upon the adsorption of PCBM on defective halide. (f) The instantaneous curve of the control device (perovskite film) with high hysteresis. The black point indicates the 'maximum-power output point' (MPP). (g) The scan of a hybrid device shows very low hysteresis and low current loss. The inset of figure (g) shows the external quantum efficiency (EQE) of a hybrid device. The inset figure of (f) shows the thickness of the active layer.
图 8. (a) 原始包晶溶液(左)和配制的包晶-PCBM 混合溶液。(b) 卤化物诱导的深阱原位钝化示意图。(c) 混合溶液的紫外可见吸收光谱显示了 PCBM 与包晶离子之间的相互作用。(c) 的插图显示了这种相互作用的细节 (d) 波函数重叠显示了 PCBM 与缺陷表面之间的杂化作用,使电子/空穴传输得以实现吸收和钝化。(e) 对状态密度(DOS)的 DFT 计算显示,当 PCBM 吸附在有缺陷的卤化物上时,由 Pb-I 反位缺陷引起的深陷阱状态(黑色)会减弱,并变得更浅(红色)。(f) 具有高滞后的控制器件(过氧化物薄膜)的瞬时 曲线。黑点表示 "最大功率输出点"(MPP)。(g) 混合装置的 扫描显示了极低的滞后和低电流损耗。图 (g) 的插图显示了混合器件的外部量子效率 (EQE)。图(f)的插图显示了有源层的厚度。
Reprinted with permission from Ref. [37]. Copyright 2015 Nature publication group.
参考文献 [37] 授权转载。[37].2015 年《自然》出版集团版权所有。
(g)
Fig. 9. KPFM measurements were performed on a glass devices. (a, d) Topography images and (b, e) surface potential images of the topography of two devices. The GB regions can be easily distinguished in the reverse topography images. In the sample, a positive surface potential is observed at the GB, and a negative potential is exhibited on the surface of the intra-grains (IGs). (c, f) One-dimensional potentials and topography line profiles near the GBs in the perovskite thin films. The region of the line profiles is marked in (a) and (d). The potential value at the GBs is , and that at the IGs is -150 mV . (g) Structure of mesoporous with a mixed halide perovskite absorber. ( h ) The schematic band diagram near the GBs in Br containing thin films. The electron-hole carrier separates the mesoporous layer from the perovskite layer. The charged GBs (potential value at ) have a high local built-in potential, which improves the carrier separation. The electrons are attracted to the TiO layer, and the holes move to the HTM layer
图 9.对 玻璃器件进行了 KPFM 测量。(a、d)两个器件的形貌图像和(b、e)表面电位图像。从反向形貌图像中可以很容易地分辨出 GB 区域。在 样品中,在 GB 处观察到正表面电位,而在晶粒内 (IG) 表面则显示出负表面电位。(c、f)包晶薄膜 GB 附近的一维电位和地形线剖面图。(a)和(d)中标注了线剖面区域。GB 处的电位值为 ,IG 处的电位值为 -150 mV。 (g) 中孔 与混合卤化物过氧化物吸收体的结构。( h ) 含 Br 的 薄膜中 GB 附近的能带示意图。电子-空穴载流子将介孔 层与过氧化物层隔开。带电的 GB( 处的电位值)具有较高的局部内置电位,从而提高了载流子分离效果。电子被吸引到 TiO 层,而空穴则移动到 HTM 层。
Reprinted with permission from Ref. [122]. Copyright 2014 American Chemical Society.
参考文献 [122] 授权转载。[122].2014 美国化学学会版权所有。
efficiency. On the other hand, although perovskite devices with excess can exhibit high initial efficiency , a small amount of excess has detrimental effects on the perovskite film stability. The presence of unreacted results in intrinsic instability of the film under illumination, leading to degradation of the film even under an inert atmosphere, as well as causing faster degradation upon exposure to illumination and humidity. In addition, by optimizing the spin-coating process, the -free perovskite films can achieve efficiency comparable to that of with excess ), and significantly improve film stability. However, the photostability of perovskite film appears to represent only a minor contribution to overall device degradation, and encapsulated devices with excess can still exhibit good stability.
效率。另一方面,虽然过量 的包晶器件可以显示出较高的初始效率 ,但少量过量 会对包晶薄膜的稳定性产生不利影响。未反应的 的存在会导致薄膜在光照下的内在不稳定性,即使在惰性气氛下也会导致薄膜降解,并且在暴露于光照和湿度时会导致更快的降解。此外,通过优化旋涂工艺,不含 的过氧化物薄膜可以达到与含过量 的薄膜相当的效率,并显著提高薄膜的稳定性。不过,包晶体薄膜的光稳定性似乎只对整个器件的降解起到了微不足道的作用,而过量 的封装器件仍能表现出良好的稳定性。

Du et al. also found that the presence of a residual layer had undesirable effects on the performance of planar PSC [101], the residual layer not only greatly impeded carrier extraction and transport, but also accelerated the degradation of the film. The perovskite film with an excess of decomposed rapidly at high temperature .
Du 等人还发现,残余 层的存在对平面 PSC 的性能产生了不良影响 [101],残余 层不仅极大地阻碍了载流子的萃取和传输,还加速了 薄膜的降解。过量 的过氧化物薄膜在高温 下迅速分解。

3.2. Grain boundary self-passivation by (MAI)
3.2.通过 实现晶界自钝化(MAI)

Interestingly, in perovskite materials with either an excess of or a deficiency of , the grain boundaries can be passivated by unreacted or MAI [84]. Son et al. [102] discovered that excess MAI could self-assemble at perovskite grain boundaries, and
有趣的是,在 过量或 不足的包晶材料中,晶界可以被未反应的 或 MAI 钝化 [84]。Son 等人 [102] 发现过量的 MAI 可以在过氧化物晶界自组装,并且
Fig. 10. (a) A diagram of the structure of a device with PCBM passivation layer. (b) Photocurrent upon turning on and turning off the incident light for the devices without PCBM layer (yellow) and with PCBM layer (blue). (c) Schematic of the blue-shift of the PL peaks due to the passivation effect. (d) The PL spectra of samples after thermal annealing PCBM layer with 532 nm green laser as excitation source from the air side (dark blue), from the ITO side (pink), and samples without a PCBM layer from the air side (orange), and from the ITO side (sky blue)
图 10. (a) 带 PCBM 钝化层的器件结构图。(b) 无 PCBM 层(黄色)和有 PCBM 层(蓝色)器件在开启和关闭入射光时的光电流。(c) 钝化效应导致的 PL 峰蓝移示意图。(d) 以 532 nm 绿色激光为激发光源,热退火 PCBM 层后样品的 PL 光谱,从空气侧(深蓝色)、ITO 侧(粉红色),以及没有 PCBM 层的样品,从空气侧(橙色)、ITO 侧(天蓝色)。
Reprinted with permission from Ref. [97]. Copyright 2014 Nature publication group.
参考文献 [97] 授权转载。[97].2014 年《自然》出版集团版权所有。
that is significantly increased the efficiency and decreased the hysteresis of the cells. The excess MAI is expected to form at the perovskite grain boundaries because it cannot be accommodated in the perovskite lattice. The optical images in Fig. 7 (a and b) clearly show that the films developed a slightly turbid appearance for , and that the turbidity increased with increasing MAI content. In addition, the c-AFM images (Fig. 7 (c) and (d)) suggest that the conductivity of the perovskite thin film improved after MAI passivation. The grain boundaries in Fig. 7 (d) appear brighter than those of the pristine film (Fig. 7 (c)), indicating that MAI might be considered as charge transporting channels. The content of excess MAI was optimized, and the most efficient perovskite can be obtained was for , (overall PCE , reverse scan: , and forward scan: and a PCE ), and with slight hysteresis (Fig. ).
这大大提高了电池的效率,减少了滞后。多余的 MAI 预计会在包晶晶界形成,因为包晶晶格无法容纳它。图 7(a 和 b)中的光学图像清楚地表明,当 时,薄膜的外观略显浑浊,而且浑浊度随着 MAI 含量的增加而增加。此外,c-AFM 图像(图 7 (c) 和 (d))表明,MAI 钝化后,包晶体薄膜的导电性有所提高。图 7 (d) 中的晶界比原始薄膜(图 7 (c))的晶界更亮,这表明 MAI 可被视为电荷传输通道。对过量 MAI 的含量进行了优化, 的过氧化物晶系效率最高(总 PCE ,反向扫描: 正向扫描: 和 PCE ),并有轻微的滞后现象(图 )。
Yabing Qi et al. [103] further clarified the role of excess MAI at the interface between perovskite and spiro-MeOTAD hole-transport layer in PSCs. By controlling the thickness ( ) of excess MAI at the interface, it was found that the interfacial energy-level tuning was induced by the dissociated species, rather than the MAI layer.
Yabing Qi 等人[103] 进一步阐明了过剩 MAI 在 PSCs 中包晶石与螺纤毛膜空穴传输层之间界面的作用。通过控制界面上过量 MAI 的厚度( ),他们发现界面能级的调整是由解离物种而不是 MAI 层引起的。
Because MAI can be transformed from a solid to vapor at a relatively low temperature (around ) [23,104-106], MAI vapor post-treatment is an efficient method to passivate defect sites on the perovskite grain surface [107,108]. Unlike unreacted , MAI can passivate not only the grain boundaries but also the bulk defects in films, as the MAI vapor can diffuse into the perovskite lattice. While excess usually lowers the device stability, the presence of MA-rich species in the perovskite introduces an anti-degradation reaction in the presence of moisture. Excess-MA has been proven to not only result in surface passivation through coordination to lead(II), but also through reaction with to produce the derivative perovskite , which lead to high stability at high humidity (65%) [109].
由于 MAI 可以在相对较低的温度下( 左右)从固体转化为蒸汽 [23,104-106],因此 MAI 蒸汽后处理是钝化包晶晶粒表面缺陷点的有效方法 [107,108]。与未反应的 不同,MAI 不仅可以钝化 薄膜中的晶界,还可以钝化块状缺陷,因为 MAI 蒸汽可以扩散到包晶晶格中。虽然过量的 通常会降低设备的稳定性,但包晶体中富含 MA 的物种会在潮湿条件下产生抗降解反应。事实证明,过量的 MA 不仅能通过与铅(II)配位而导致表面钝化,还能通过与 反应生成衍生物包晶 ,从而在高湿度(65%)条件下实现高稳定性 [109]。

3.3. Grain boundary passivation by organic molecules
3.3.有机分子对晶界的钝化作用

In addition to self-passivation by and MAI, the passivation of perovskite grain boundaries can be achieved by the addition of organic molecules to the perovskite precursor solution. A common and valid additive is PCBM. As shown in Fig. 8 (a), the resulting perovskite-PCBM hybrid solution became brown. PCBM is believed to passivate the anti-site defects during the formation of perovskite grains (Fig. 8 (b-d)) [37]. Theoretical calculations (DFT) also indicated that through the incorporation of PCBM near such anti-site defects, the deep trap state (black peak in Fig. 8 (e)) induced by anti-site defect is reduced and becomes much shallower (red peak) upon the adsorption of PCBM on the defective halide [37]. The elimination of the hysteresis index after passivation is clearly observable. (Fig. 8 (f and g)).
除了通过 和 MAI 实现自钝化外,还可以通过在包晶前驱体溶液中添加有机分子来实现包晶晶界的钝化。PCBM 是一种常见且有效的添加剂。如图 8 (a) 所示,生成的包晶石-PCBM 混合溶液变成了棕色。PCBM 被认为可以在包晶形成过程中钝化 反位缺陷(图 8 (b-d))[37]。理论计算(DFT)也表明,通过在此类 反位点缺陷附近加入 PCBM,当 PCBM 吸附在有缺陷的卤化物上时,由 反位点缺陷引起的深陷阱状态(图 8 (e) 中的黑峰)会减弱,并变得更浅(红峰) [37]。钝化后磁滞指数的消除是显而易见的。(图 8(f 和 g))。
PCBM has also been used to passivate the perovskite thin film surface, which will be discussed later. The use of a grain boundary passivator seems to affect the crystallization kinetics of perovskite grains. According to a report by Fang et al., when different concentrations of graphene quantum dots (GQDs) are incorporated
PCBM 还可用于钝化包晶石薄膜表面,这一点将在后面讨论。晶界钝化剂的使用似乎会影响包晶石晶粒的结晶动力学。根据 Fang 等人的报告,当加入不同浓度的石墨烯量子点(GQDs)
Fig. 11. (a) Device configuration of a planar heterojunction (PHJ) PVSC and the chemical structures of the n-type fullerene derivatives, , and used for the study. (b) The energy diagram of each layer of the devices. (c) Steady-state PL spectra and (d) characteristics of the perovskite in the presence of the studied fullerene quenchers. Reprinted with permission from Ref. [136]. Copyright 2015 John Wiley and Sons.
图 11.(a) 平面异质结 (PHJ) PVSC 的器件配置以及用于研究的 n 型富勒烯衍生物 的化学结构。(b) 器件各层的能量图。(c) 在所研究的富勒烯淬灭剂存在的情况下,过氧化物的稳态聚光光谱和 (d) 特性。参考文献 [136] 授权转载。[136].Copyright 2015 John Wiley and Sons.
Table 2 表 2
Electrical characteristics and photovoltaic performance of the studied PVSCs using different fullerene-based ETLs.
所研究的使用不同富勒烯基 ETL 的 PVSCs 的电气特性和光伏性能。
Employed Fullerene 采用富勒烯 VOC Jsc FF PCE [%] Mobility [cm  流动性 [cm Conductivity  导电性
IC60BA 0.95 11.27 0.75 8.06
PC61BM 0.89 18.85 0.80 13.37
C60 0.92 21.07 0.80 15.44 1.6
Reprinted from Ref. [136]. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
转载自参考文献。[136].版权所有 2015 WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.
into perovskite films, the grain size enlarges with increasing GQD concentration (from about 100 nm for pristine perovskite to 250 nm for GQD), which could be explained as result of the merging of adjacent crystals [110].
随着 GQD 浓度的增加,晶粒尺寸也随之增大(从原始包晶的约 100 nm 到 GQD 的 250 nm),这可以解释为相邻晶体合并的结果 [110]。
Some organic additives with functionalized hydrophobic groups displayed superior passivation effects compared to the PCBM molecule. An instance is that the 2-(6-bromo-1,3-dioxo-1H-benzo [de]isoquinolin-2(3H)-yl)ethan-1-ammonium iodide (2-NAM) cation, which is recently reported by Qi et al. [111]. Due to the strong Lewis acid and base interaction between group and in perovskite lattice, can effectively increase crystalline, the 2NAM molecule can effectively increase crystalline grain size and reduce charge carrier recombination in perovskite film, and the efficiency as high as was achieved with 2-NAM additives. Meanwhile, the hydrophobic groups, hydrophobic self-assembled 2-NAM molecules at the grain boundaries behaves as molecular locks to isolate the moisture, which contributes to improve the moisture stability of PSCs ( RH level and dark environment).
与 PCBM 分子相比,一些带有官能化疏水基团的有机添加剂显示出更优越的钝化效果。例如,Qi 等人最近报道的 2-(6-溴-1,3-二氧代-1H-苯并[de]异喹啉-2(3H)-基)乙烷-1-碘化铵(2-NAM)阳离子[111]。由于 基团与包晶晶格中的 之间具有很强的路易斯酸碱作用,能有效增加晶粒,2-NAM分子能有效增加晶粒尺寸,减少包晶薄膜中电荷载流子的重组,2-NAM添加剂的效率高达 。同时,疏水基团、疏水自组装的 2-NAM 分子在晶界处起到了分子锁的作用,隔离了水分,有助于提高 PSC 的湿度稳定性( 相对湿度水平和黑暗环境)。

3.4. Grain boundary passivation by
3.4.通过 实现晶界钝化

Several previous reports have demonstrated that the efficiency and stability of perovskite solar cells can be enhanced by substituting various proportions of bromide or chloride ions for the iodide in with [112-117]. The effects of bromide substitution include tuning of the band gap (from 1.5 to 2.2 eV )
之前的一些报告表明,用不同比例的溴离子或氯离子取代 中的碘离子 [112-117],可以提高过氧化物晶体 太阳能电池的效率和稳定性。溴化物替代的效果包括调整带隙(从 1.5 到 2.2 eV)

(a)
Halogen bond donor Halogen bond acceptor (IPFB, Lewis Acid) ( , Lewis Base) (b)
卤素键供体 卤素键受体(IPFB,路易斯酸) ( , Lewis Base) (b)
(d)
  • i
-O IPFB -IPFB
Fig. 12. (a) Schematic view of the halogen bond interaction between the iodopentafluorobenzene (IPFB, halogen bond donor) and a generic halogen anion ( , halogen bond acceptor) with -hybridized valence electrons. (b) Illustration of the electrostatic interaction between the undercoordinated halide ( ) on the perovskite surface and the hole injected in the Spiro-OMeTAD. (c) Schematic view of the interaction between , perovskite, and IPFB (d) Illustration of the electrostatic screening of the halide ( ) via halogen bond complexation of IPFB on the perovskite surface.
图 12.(a) 碘五氟苯(IPFB,卤素键供体)与具有 杂化价电子的一般卤素阴离子( ,卤素键受体)之间的卤素键相互作用示意图。(b)过氧化物表面的欠配位卤化物( )与注入斯派罗-OMeTAD 的空穴之间的静电相互作用示意图。(c) 、包晶和 IPFB 之间的相互作用示意图 (d) 通过 IPFB 在包晶表面的卤键络合作用对卤化物( )进行静电屏蔽的示意图。
Reprinted with permission from Ref. [137]. Copyright 2014 American Chemical Society
参考文献 [137] 授权转载。[137].2014 美国化学学会版权所有
[115,117,118], optimization crystallization rate [119], and increased crystal grain , among others.
[115,117,118]、优化结晶速率[119]和增加晶粒 等。
To understand the physical mechanism of the electronic effects of the Br in perovskite solar cells, Jung et al. [122] investigated the grain boundaries of the perovskite film via Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy (C-AFM). They observed that there is a significant potential barrier bending at the grain boundaries and induced passivation. As shown in Fig. 9 (a-f), the positively charged GBs in the Br-substituted perovskite thin film induced a higher local built-in potential at the grain boundaries, which can prompt downward energy band bending. Thus, as shown in Fig. 9 (g) and (h), the charged grain boundaries induced movement of the electrons to the side, while the holes were attracted to the perovskite and hole transport layer side. Thus, the electron-hole carrier efficiently separated and suppressed the recombination of charges between the n-type layer and the p type HTM layer.
为了了解过氧化物太阳能电池中 Br 电子效应的物理机制,Jung 等人[122]通过开尔文探针力显微镜(KPFM)和导电原子力显微镜(C-AFM)研究了过氧化物薄膜的晶界。他们观察到晶界存在明显的势垒弯曲和诱导钝化。如图 9 (a-f)所示,Br 取代的包晶体薄膜中带正电的 GB 在晶界处诱导出更高的局部内置电势,从而促使能带向下弯曲。因此,如图 9 (g) 和 (h) 所示,带电晶界诱导电子向 侧移动,而空穴则被吸引到包晶和空穴传输层侧。因此,电子-空穴载流子有效地分离并抑制了 n 型 层和 p 型 HTM 层之间的电荷重组。
From the above, Br substitution would be expected to play a beneficial role in the passivation of the perovskite thin-film solar cells, through improving their electrical characteristics [122]. In addition to and thiourea has also been observed to spontaneously segregate into GBs, passivate the defect levels and deactivate the trap states, leading to increased carrier transport in perovskite thin films, via a passivation mechanism similar to what discussed above [123-126].
综上所述,Br 取代有望通过改善过氧化物薄膜太阳能电池的电气特性,在其钝化过程中发挥有益的作用 [122]。除了 和硫脲之外,人们还观察到硫脲能自发地分离成 GBs、钝化缺陷水平并使阱态失活,从而通过与上述机制类似的钝化机制增加了过氧化物薄膜中的载流子传输 [123-126]。

3.5. Other passivation additives
3.5.其他钝化添加剂

It is also worth noting that some inorganic and organic monovalent halide additives, such as formamidinium bromide ( FABr )
还值得注意的是,一些无机和有机单价卤化物添加剂,如溴化甲脒 ( FABr )

[50], trimethlsulfonium iodide [127], cesium iodide (CSI) [12], iodomethane [128], guanidinium chloride (GuCl) , alkali metal halides [131] and even quasi-2-dimensional perovskite, e.g. phenylethylammonium iodide (PEAI) [132], and -butylammonium iodide (BAI) [133] have been reported to modify the perovskite/hole (electron) transporting material interfaces, and to enhance the resulting photovoltaic performance or stability. However, because these halide materials can enter into the crystalline lattice of the perovskite, this kind of modification should be classified into composition engineering, rather than interface passivation. The enhanced properties are mainly caused by the reduction in the number of iodide vacancies [11].
[50]、碘化三甲锍 [127]、碘化铯 (CSI) [12]、碘甲烷 [128]、氯化胍 (GuCl) 、碱金属卤化物 [131] 甚至准二维包晶,例如132]和 -丁基碘化铵(BAI)[133],以改变过氧化物/空穴(电子)传输材料的界面,并提高由此产生的光伏性能或稳定性。然而,由于这些卤化物材料可以进入包晶的晶格,因此这种改性应归类为成分工程,而不是界面钝化。性能的增强主要是由于碘化物空位数量的减少[11]。
An interesting and mysterious phenomenon observed by Huang et al. [134] is the diffusion of sodium ions from the soda lime glass substrate (ITO glass), which contributed to the defect (grain boundary) passivation. This effect led to an enhancement in the efficiency of a p-i-n planar structure device from 18.8 to after 24 h of storage in nitrogen atmosphere.
Huang 等人[134]观察到的一个有趣而神秘的现象是钠离子 从钠钙玻璃衬底(ITO 玻璃)中扩散出来,从而促成了缺陷(晶界)钝化。这种效应导致 pi-n 平面结构器件在氮气环境中存放 24 小时后,效率从 18.8 提高到

4. Perovskite film surface passivation by organic molecule
4.有机分子对包晶石薄膜表面的钝化作用

4.1. Surface passivation by PCBM and its derivative
4.1.PCBM 及其衍生物的表面钝化作用

The surface of deposited perovskite thin films contains a high density of charge traps, which might be the origin of the notorious photocurrent hysteresis in perovskite solar cells. As with surfaces, fullerene derivatives can also be used in reverse structured structured perovskite solar cells. The fullerene layers deposit on the perovskite layers, eliminating photocurrent hysteresis and improving the device performance. The surface passivation effect of
沉积的透辉石薄膜表面含有高密度的电荷阱,这可能是透辉石太阳能电池中臭名昭著的光电流滞后现象的根源。与 表面一样,富勒烯衍生物也可用于反向结构的 结构包晶石太阳能电池。富勒烯层沉积在过氧化物层上,消除了光电流滞后,提高了器件性能。富勒烯的表面钝化效应
Fig. 13. (a) Chemical structures of aniline (A) benzylamine (BA), and phenethylamine (PA). (b) Schematic illustration of amine treatment of perovskite films through a spin-coating method, followed by an annealing process. (c) Images of unmodified , and films for different durations (fresh, 3 days, and 4 months) of exposure to air. (d) Stabilized photocurrent and power output as a function of time for the champion device at a bias of 0.91 V . (e) Moisture stability of unmodified (black line) and BA-FAPbI3 (red and blue lines) devices to air exposure ( ). "Half cells" means that only the films on the TiO2/FTO substrates were exposed to air and that the spiro-MeOTAD and Au layers were deposited onto the films before the measurement.
图 13.(a) 苯胺(A)、苄胺(BA)和苯乙胺(PA)的化学结构。(b) 通过旋涂法对过氧化物薄膜进行胺处理,然后进行退火处理的示意图。(c) 未改性 薄膜暴露于 空气中不同时间段(新鲜、3 天和 4 个月)的图像。(d) 在偏压为 0.91 V 时,冠军 器件的稳定光电流和功率输出随时间的变化。 (e) 未改性 器件(黑线)和 BA-FAPbI3 器件(红线和蓝线)暴露于空气中的湿度稳定性( )。"半电池 "是指只有 TiO2/FTO 基底上的 薄膜暴露在空气中,并且在测量 之前在薄膜上沉积了螺纹-MeOTAD 和金层。
Reprinted with permission from Ref. [149]. Copyright 2016 John Wiley and Sons.
参考文献 [149] 授权转载。[149].Copyright 2016 John Wiley and Sons.
fullerene derivatives was first reported by Huang [97] in 2014. As shown in Fig. 10 (a), an ultra-thin PCBM layer was coated on the perovskite surface, followed by heat treatment, during which the PCBM diffused into the grain boundaries as well as the surface defects of the perovskite thin film. The effective mitigation of defect states through this method is apparent from the significant increase in the photocurrent response speed (Fig. 10 (b)) and the decrease of the trap density of states (tDOS) (Fig. 10 (c)). The PL results in Fig. 10 (d) indicate that PCBM can passivate the trap states close to the top surface and/or along the grain boundaries. The PCBM passivation leads to improved electronic properties for the perovskite films, including reduced interface charge recombination, longer charge carrier lifetime, and greater mobility, which contributed to the enhancement of device performance [97]. Moreover, the intrinsic fullerene ( ) layer has also been reported to be an effective passivator for the surface traps of perovskite film [135].
Huang [97] 于 2014 年首次报道了这种富勒烯衍生物。如图 10 (a) 所示,在包晶表面涂覆一层超薄 PCBM,然后进行热处理,在热处理过程中 PCBM 扩散到包晶薄膜的晶界以及表面缺陷中。从光电流响应速度的显著提高(图 10 (b))和阱态密度(tDOS)的降低(图 10 (c))可以看出,这种方法有效地缓解了缺陷态。图 10 (d) 中的聚光结果表明,PCBM 可以钝化靠近顶面和/或沿晶界的陷阱态。PCBM 钝化可改善过氧化物薄膜的电子特性,包括减少界面电荷重组、延长电荷载流子寿命和提高迁移率,从而有助于提高器件性能[97]。此外,据报道,本征富勒烯( )层也是包晶石薄膜表面陷阱的有效钝化剂 [135]。
As discussed above, different fullerene derivatives can be utilized as passivators. A question is that if there is any difference on the passivation effects between diverse ones? Jen et al. compared the diversity of the passivation performance between three different fullerenes: , and (Fig. 11 (a)). The passivation effects were indirectly observed from the quenching of the PL intensities. The quenching effect of the fullerene derivatives clearly followed the order: (Fig. 11 (b)). As shown in Table 2, the PCEs of the fullerene-derived PVSCs (Fig. 11 (c and d)) also clearly showed a positive correlation with the electron mobility of the fullerene materials, illustrating that high-mobility fullerenes can effectively promote charge dissociation/transport, which in turn leads to a greater passivation effect [136].
如上所述,不同的富勒烯衍生物可用作钝化剂。问题是,不同富勒烯衍生物的钝化效果是否存在差异?Jen 等人比较了三种不同富勒烯钝化性能的多样性: (图 11 (a))。钝化效果可从聚光强度的淬灭中间接观察到。富勒烯衍生物的淬灭效应明显遵循以下顺序: (图 11 (b))。如表 2 所示,富勒烯衍生 PVSC 的 PCEs(图 11 (c 和 d))也明显与富勒烯材料的电子迁移率呈正相关,这说明高迁移率富勒烯能有效促进电荷解离/传输,从而产生更大的钝化效应 [136]。

4.2. Surface passivation by Lewis bases
4.2.路易斯碱的表面钝化

Snaith et al. developed a surface passivation method for organicinorganic halide perovskite solar cells by introducing the Lewis bases thiophene, pyridine, and iodopentafluorobenzene (IPFB) (Fig. 12 (a)) via supramolecular halogen bonding [137,138]. After treatment with the Lewis bases, the PCE of the tested devices
Snaith 等人通过超分子卤素键引入路易斯碱噻吩、吡啶和碘五氟苯(IPFB)(图 12 (a)),开发出一种有机无机卤化物过氧化物太阳能电池的表面钝化方法 [137,138]。经路易斯碱处理后,测试器件的 PCE

increased from to over . The author explained the mechanism responsible for this enhancements as follows: without treatment, under-coordinated halide anions act as hole traps, leading to faster recombination and resulting in a disadvantageous charge density profile within the hole transporter and perovskite film, inhibiting fast and efficient charge extraction under working conditions (Fig. 12 (b)). The Lewis bases can bind to and screens the electrostatic charge from the under-coordinated halide ions, resulting in a significant decrease in the rate of nonradiative recombination [138] in perovskite films, overcoming the above defects (Fig. 12 (c) and (d)).
增加到 以上。作者对造成这种提高的机理解释如下:在不进行处理的情况下,配位不足的卤化物阴离子会成为空穴陷阱,导致更快的重组,并在空穴传输器和包晶薄膜内形成不利的电荷密度分布,从而抑制在工作条件下快速有效地提取电荷(图 12 (b))。路易斯碱可以与配位不足的卤化离子结合并屏蔽它们的静电荷,从而显著降低包晶薄膜中的非辐射重组速率 [138],克服上述缺陷(图 12 (c) 和 (d))。
Although PCBM has shown to have an excellent passivation effect to the surfaces as well as the grain boundaries of perovskite materials, due to its low-lying lowest unoccupied molecular orbital level (LOMO), the open-circuit voltage of PCBM based inverted structured perovskite solar cells are still much lower (usually below than those of regular cells. Xue et al. introduced (Ind), a fullerene derivative with a shallow LOMO ( 3.66 eV Vs 3.8 eV for PCBM), to replace PCBM in the inverted perovskite solar cells [142]. (Ind) has better energy level matching with the conduction band of the perovskite layer than PCBM, and shows better electron extraction capability, the (Ind) film exhibited more efficient PL quenching than PCBM and surface trap passivation effect (transient PL decay lifetime increase from 20.1 to 32.6 ns). This resulted in the , FF and power conversion efficiency of the PVSCs increasing from 1.05 V , 0.74 and to and when the PCBM was replaced by (Ind).
尽管 PCBM 因其低位最低未占分子轨道电平(LOMO)而对包晶石材料的表面和晶界具有极佳的钝化效果,但基于 PCBM 的倒置结构包晶石太阳能电池的开路电压仍然比普通 电池低得多(通常低于 )。Xue 等人引入了 (Ind),一种具有较浅 LOMO 的富勒烯衍生物(PCBM 为 3.66 eV,而 Ind 为 3.8 eV),以取代倒置包晶体太阳能电池中的 PCBM [142]。与 PCBM 相比, (Ind)与包晶石层导带的能级匹配更好,电子萃取能力更强, (Ind)薄膜比 PCBM 表现出更高效的聚光淬灭和表面陷阱钝化效应(瞬态聚光衰减寿命从 20.1 ns 增加到 32.6 ns)。因此,当用 (Ind) 替代 PCBM 时,PVSC 的 、FF 和功率转换效率分别从 1.05 V、0.74 和 提高到

4.3. Surface passivation by organic materials with hydrophobic groups
4.3.带有疏水基团的有机材料的表面钝化作用
Some other organic materials that contain hydrophobic groups, such as polystyrene (PS) [143], poly(ethylene terephthalate) (PET), poly(methyl methacrylate) (PMMA) [144-146], Teflon [15,143], poly(4-vinylpyridine) (PVP) [19,147], polyvinylidenetrifluoroethylene copolymer (PVDF-TrFE) [143], and even ionic liquids [148], polymers, polystyrene (PS), Teflon, and polyvinylidene-trifluoroethylene copolymer (PVDF-TrFE) can cover the surface and diffuse into the grain boundaries of polycrystalline perovskite thin film. These have been used as protective polymer film on perovskite thin film/arrays, and not only passivate surface defects but also block atmospheric moisture, allowing perovskite solar cells to sustain over of their initial performance after 30 days of storage in high moisture (50%) conditions [15]. Amine functionalized molecules containing cyclobenzene combine a hydrophobic benzene ring and a conjugated structure, which favors charging transport, with an amino group that can graft the molecule to the framework through coordination with the Pb ions or hydrogen bonding, making these molecules favorable candidates for passivating the perovskite film surface from moisture [149]. Fig. 13 depicts research by Wang et al. [149], in which three different amine functionalized molecules were coated on the surface of a perovskite thin film surface using a post-deposition process (Fig. 13 (a and b)). When exposed to high humidity (50%), the unmodified films turned yellow after 3 days. In contrast, the films modified with the amine-functionalized molecules
其他一些含有疏水基团的有机材料,如聚苯乙烯(PS)[143]、聚对苯二甲酸乙二醇酯(PET)、聚甲基丙烯酸甲酯(PMMA)[144-146]、聚四氟乙烯(Teflon)[15,143]、聚对乙烯基吡啶(PVP)[19,147]、聚苯乙烯 (PS)、特氟龙和聚偏二氟乙烯-三氟乙烯共聚物 (PVDF-TrFE) [143],甚至离子液体 [148]、聚合物、聚苯乙烯 (PS)、特氟龙和聚偏二氟乙烯-三氟乙烯共聚物 (PVDF-TrFE) 都能覆盖多晶透辉石薄膜的表面并扩散到晶界中。这些聚合物被用作包晶体薄膜/阵列的保护膜,不仅能钝化表面缺陷,还能阻挡大气中的湿气,使包晶体太阳能电池在高湿度(50%)条件下存放 30 天后仍能保持 以上的初始性能[15]。含有环苯的胺功能化分子结合了疏水苯环和 共轭结构(这有利于电荷传输)以及氨基,氨基可以通过与铅离子配位或氢键作用将分子接枝到 框架上,从而使这些分子成为钝化包晶石薄膜表面免受湿气影响的有利候选分子 [149]。图 13 描述了 Wang 等人的研究[149],他们采用后沉积工艺将三种不同的胺官能化分子涂覆在过氧化物薄膜表面(图 13(a 和 b))。当暴露在高湿度(50%)环境中时,未修饰的 薄膜在 3 天后变黄。相比之下,用胺功能化分子修饰的 薄膜
Fig. 14. PL enhancements of large (a) and small (b) perovskite crystals in ambient air and in argon. Phase I: Enhancement due to consumption of the oxygen dissolved in the material (identical in air and in argon). Phase II: Further PL enhancement that requires oxygen diffusion from the surface to the bulk (does not occur in argon). (c) Normalized PL kinetics measured in the as-prepared micrometer-sized crystals and scratched area ( grains) of the sample in argon. (d) Accumulated image of a large perovskite crystal under continuous excitation of . (e) Super-resolution image showing the localized clusters less than 100 nm in size responsible for light emission (emitting sites). (f) PL intensity (counts per pixel) transient measured locally at the squares marked in panel (d).
图 14.大(a)和小(b)包晶石晶体在环境空气和氩气中的 PL 增强。第一阶段:由于溶解在材料中的氧气被消耗而增强(在空气和氩气中相同)。第二阶段:PL 进一步增强,需要氧气从表面扩散到晶体内部(在氩气中不会发生)。(c) 在氩气中对制备好的微米级晶体和样品的划痕区域( 晶粒)测量的归一化聚光动力学。(d) 在 的连续激发下,大型过氧化物晶体的累积图像。(e) 超分辨率图像,显示负责发光的小于 100 纳米的局部团簇(发光点)。(f) 在(d)中标记的方格处测量到的瞬态聚光强度(每像素计数)。
Reprinted with permission from Ref. [150]. Copyright 2015 American Chemical Society.
参考文献 [150] 授权转载。[150].2015 美国化学学会版权所有。
Fig. 15. Diagram summarizing the passivation media for perovskite solar cells.
图 15.包晶体太阳能电池钝化介质示意图。
showed much higher stability against humidity with the thin film maintaining a pure phase even after four months (Fig. 13 (c)). However, although modification with aniline, benzylamine, and phenethylamine was tested, only the benzylaminemodified film exhibited enhanced solar cell efficiency perovskite films stability for more than four months in moist air (Fig. 13 (d and e)). That was because, according to DFT calculations, the steric arrangement of the benzene rings was quite sensitive to the group by which they were grafted to the perovskite lattice.
薄膜对湿度的稳定性要高得多,即使在四个月后仍能保持纯净的 相(图 13 (c))。然而,虽然测试了苯胺、苄胺和苯乙胺改性,但只有苄胺改性薄膜在潮湿空气中超过四个月的时间里显示出更高的太阳能电池效率包晶薄膜稳定性(图 13 (d 和 e))。这是因为,根据 DFT 计算,苯环的立体排列对接枝到过氧化物晶格上的基团相当敏感。

4.4. Surface passivation by oxygen
4.4.氧气的表面钝化

An interesting passivation medium is the oxygen in air. Tian et al. discovered the synergistic passivation effect of oxygen and illumination on the perovskite single crystal defect states, using PL microscopy and super-resolution optical imaging [150]. As can be observed from Fig. 14 (a) and (b), both large and small crystals exhibited the PL intensities with increasing as irradiation time in air atmosphere, while the intensities of the samples kept in an Ar atmosphere were almost constant. In addition, the PL lifetime of small particles kept in the Ar (in Fig. 14 (c)) was much longer than that of a large micrometer-sized crystal in Ar. This evidence implied that the oxygen in air acts as a reactant to passivate the traps of small crystals quickly and efficiently. When the PL signals of isolated micrometer-sized crystals were investigated at high spatial resolution, the characteristic PL intensity enhancement time was found to vary greatly depending on the measurement position within one crystal. In general, the blinking sites on the surface in Fig. 14 (d) and (e) showed much higher PL brightness per unit area in comparison with the surrounding areas with stable PL (Fig. 14 (f)).
空气中的氧气是一种有趣的钝化介质。Tian 等人利用聚光显微镜和超分辨光学成像技术发现了氧气和光照对包晶单晶缺陷态的协同钝化效应[150]。从图 14(a)和(b)中可以看出,在空气环境中,大晶体和小晶体的聚光强度都随着辐照时间的增加而增加,而在氩气环境中样品的聚光强度几乎保持不变。此外,在氩气中保存的小颗粒(图 14 (c))的聚光寿命比在氩气中保存的微米级大晶体的聚光寿命长得多。这表明空气中的氧气可以作为反应物快速有效地钝化小晶体的捕获器。在对孤立的微米级晶体的聚光信号进行高空间分辨率研究时,发现聚光强度的特征增强时间随晶体内测量位置的不同而变化很大。一般来说,图 14 (d) 和 (e) 中表面的闪烁点与周围具有稳定 PL 的区域(图 14 (f))相比,单位面积上的 PL 亮度要高得多。
The same author also investigated the mechanism by which light-induced curing in the presence of oxygen causes the perovskite photoluminescence enhancement. One proposed hypotheses was that the trap sites responsible for non-radiative charge recombination can be de-activated by a photochemical reaction involving oxygen, and that the reaction zone is spatially limited by the penetration depth of the excitation and diffusion length of the charge carriers [36].
同一作者还研究了氧气存在时光诱导固化导致包晶石光致发光增强的机制。提出的一个假设是,负责非辐射电荷重组的陷阱位点可以通过涉及氧气的光化学反应去活化,而反应区在空间上受到激发穿透深度和电荷载流子扩散长度的限制[36]。
Other reports have also demonstrated that the oxygen can reduce deep defect states in perovskite materials, not only under illumination but also by thermal treatment in air [105,151]. In addition to producing oxygen passivation, oxygen can also act as a p-type dopant in [123].
其他报告也表明,氧气不仅可以在光照下减少过氧化物晶材料中的深缺陷态,还可以通过在空气中进行热处理来减少过氧化物晶材料中的深缺陷态 [105,151]。除了产生氧钝化外,氧还可以作为 中的 p 型掺杂剂 [123]。
Similar to the "double-edged sword" effect of passivation at perovskite grain boundaries [84], oxygen diffusion can also induce rapid degradation of perovskite thin film. Using a combination of initio simulation and experimental characterizations, including isothermal gravimetric analysis (IGA), photoluminescence, and secondary ion mass spectroscopy (SIMS), Aristidou et al.
包晶晶界钝化的 "双刃剑 "效应类似 [84],氧扩散也会引起包晶薄膜的快速降解。Aristidou 等人结合使用了 初始模拟和实验表征,包括等温重力分析 (IGA)、光致发光和二次离子质谱 (SIMS)。

determined the mechanistic of the oxygen and light-induced degradation of perovskite solar cells. Fast oxygen diffusion into films is accompanied by the formation of superoxide species, which accelerate the decomposition of perovskite materials. Fortunately, thin-film passivation with iodide salts can mitigate the photo-induced formation of superoxide species from , and thus enhance film and device stability [127]. This strategy has been successfully applied to fabricate the most efficient perovskite solar cells ( ) [2].
确定了氧和光诱导的过氧化物太阳能电池降解的机理。在氧气快速扩散到 薄膜的同时,会形成超氧化物 种,从而加速过氧化物材料的分解。幸运的是,使用碘盐进行薄膜钝化可以减轻光诱导 形成的超氧化物,从而提高薄膜和器件的稳定性 [127]。这种策略已成功应用于制造最高效的过氧化物太阳能电池( )[2]。

4.5. Functionalized silica nanoparticles
4.5.功能化二氧化硅纳米颗粒

The addition of 3-aminopropyl (3-oxobutanoic acid) functionalized silica nanoparticles to the precursor solution of perovskites, results in surface passivation effect whereby the nanoparticles hinder recombination inside a pinhole void, where the layer and the Spiro-OMeTAD would otherwise come into contact [152].
将 3-氨丙基(3-氧代丁酸)官能化二氧化硅纳米粒子 添加到过氧化物晶前驱体溶液中,可产生表面钝化效应,使 纳米粒子阻碍针孔空隙内的重组,否则 层和 Spiro-OMeTAD 就会接触到针孔空隙 [152]。

5. Passivation of the top electrode
5.顶部电极的钝化

The most commonly utilized metal electrodes are Ag and Au electrodes; however, both of these electrodes can diffuse through the HTM layer and even the perovskite layer, causing the performance degradation in the perovskite solar cells [153]. Sanehira et al. compared the stability of perovskite solar cells with different electrode configurations: , and [154]. Devices with electrodes were more stable than devices with more conventional, Au and Ag electrodes. The spontaneously formed ultra-thin aluminum oxide layer is believed to be responsible for the increased stability of , and the introduction of Al oxide then slows the iodization of the back contact.
最常用的金属电极是银电极和金电极;然而,这两种电极都会扩散穿过 HTM 层甚至是包晶石层,导致包晶石太阳能电池性能下降 [153]。Sanehira 等人比较了采用不同电极配置的包晶石太阳能电池的稳定性: [154]。采用 电极的设备比采用更传统的金电极和银电极的设备更稳定。自发形成的超薄氧化铝层被认为是 稳定性提高的原因,而氧化铝的引入则减缓了背触点的碘化。
There have been only a few reports of the passivation of the top metal electrode . In one, an ultra-thin Ni surface layer was applied to the Au electrode of a -based photoanode solar-to-fuel system. The Ni layer functioned as both a physical passivation barrier and a hole-transfer catalyst. Enhanced photocurrent density and substantially better water stability were achieved using the Ni layer [155,156]. Finally, encapsulation processes, such as sealing the perovskite solar cells with polyimide or UVcured polymers [157], are able to effectively isolate the active layer in perovskite solar cells from the moisture.
关于顶层金属电极 钝化的报道寥寥无几。其中一篇报道称,在基于 的光阳极太阳能转化燃料系统的金电极上涂覆了一层超薄的镍表层。镍层既是物理钝化屏障,又是空穴传输催化剂。使用镍层可提高光电流密度,并大大改善水稳定性 [155,156]。最后,封装工艺,如用聚酰亚胺或紫外线固化聚合物密封包晶体太阳能电池[157],能够有效地将包晶体太阳能电池中的活性层与 水分隔离。

6. Summary and prospective
6.总结与展望

In summary, we reviewed the passivation mediums used for perovskite solar cells (Fig. 15). Currently, surface/interface passivation has been developed as a universal method to improve the photovoltaic performance and stability of perovskite solar cells. Two inherent disadvantages of perovskite solar cells, hysteresis and instability, can be partly compensated through passivation. Reported passivators include a wide variety of materials ranging from inorganic to organic molecules or even polymers, and form insulators to semiconductors, from nonstoichiometric reactant to second phase compounds, indicating new passivating materials and technical approaches remain to be explored. To guide such an exploration, a fundamental understanding of the types and densities defects that form in perovskite crystals and their influence on electronic transport properties as well as the photovoltaic performance in perovskite crystals should be lucubrated. Surface and interface passivation might be a promising method to surpass the present record PCE of . Passivation strategies are also likely to provide new opportunities to develop PSCs with a stable high performance based on less-toxic mixed perovskite or even totally Pb-free, completely Sn-based PSCs, by providing a means to passivate that highly oxygen-sensitive bivalent tin cation . Overall, we believe that the passivation method will continue to play an important role in the development of the emerging technology of perovskite solar cells.
总之,我们回顾了用于包晶体太阳能电池的钝化介质(图 15)。目前,表面/界面钝化已被开发为一种通用方法,用于提高包晶体太阳能电池的光电性能和稳定性。包晶体太阳能电池的两个固有缺点--迟滞和不稳定性--可以通过钝化得到部分补偿。已报道的钝化剂包括多种材料,从无机到有机分子甚至聚合物,从绝缘体到半导体,从非均相反应物到第二相化合物,这表明新的钝化材料和技术方法仍有待探索。为了指导这种探索,应该从根本上了解在透辉石晶体中形成的缺陷类型和密度,以及它们对透辉石晶体的电子传输特性和光伏性能的影响。表面和界面钝化可能是超越目前 PCE 记录的一种有前途的方法。钝化策略还可能提供新的机会,通过提供一种钝化对氧高度敏感的二价锡阳离子 的方法,开发出基于毒性较低的 混合包晶或甚至完全无铅、完全基于锡的高性能 PSC。总之,我们相信钝化方法将继续在包晶体太阳能电池这一新兴技术的发展中发挥重要作用。

Conflict of interest 利益冲突

The authors declare no conflict of interests.
作者声明没有利益冲突。

Acknowledgements 致谢

The authors thank the financial support from the National Research Foundation (NRF) of Korea grant funded by the Korea government (No. 2017R1A2B3010927), Basic Science Research Program through the National Research Foundation of Korea (NRF2014R1A4A1008474) and Creative Materials Discovery Program (2016M3D1A1027664).
作者感谢韩国政府资助的韩国国家研究基金会(NRF)基金(编号:2017R1A2B3010927)、韩国国家研究基金会基础科学研究项目(NRF2014R1A4A1008474)和创新材料发现项目(2016M3D1A1027664)提供的资金支持。

References 参考资料

[1] H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2 (2012) 591.
[1] H.S. Kim、C.R. Lee、J.H. Im、K.B. Lee、T. Moehl、A. Marchioro、S.J. Moon、R. Humphry-Baker、J.H. Yum、J.E. Moser、M. Gratzel、N.G. Park,效率超过 9% 的碘化铅过氧化物敏化全固态亚微米薄膜介观太阳能电池,科学报告 2 (2012) 591。
[2] W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-leadhalide-based perovskite layers for efficient solar cells, Science 356 (2017)
[3] H. Chen, F. Ye, W.T. Tang, J.J. He, M.S. Yin, Y.B. Wang, F.X. Xie, E.B. Bi, X.D. Yang, M. Gratzel, L.Y. Han, A solvent- and vacuum-free route to largearea perovskite films for efficient solar modules, Nature 550 (2017) 92-95.
[4] S.T. Williams, A. Rajagopal, C.C. Chueh, A.K.Y. Jen, Current challenges and prospective research for upscaling hybrid perovskite photovoltaics, J. Phys. Chem. Lett. 7 (2016) 811-819.
[4] S.T. Williams、A. Rajagopal、C.C. Chueh、A.K.Y. Jen,"提升混合型光晶石光伏技术的当前挑战和前瞻性研究",J. Phys.Lett.7 (2016) 811-819.
[5] L.K. Ono, N.G. Park, K. Zhu, W. Huang, Y.B. Qi, Perovskite solar cells-towards commercialization, ACS Energy Lett. 2 (2017) 1749-1751.
[5] L.K. Ono、N.G. Park、K. Zhu、W. Huang、Y.B. Qi,Perovskite 太阳能电池--迈向商业化,ACS Energy Lett.
[6] S. van Reenen, M. Kemerink, H.J. Snaith, Modeling anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett. 6 (2015) 3808-3814.
[6] S. van Reenen, M. Kemerink, H.J. Snaith, Modeling anomalous hysteresis in perovskite solar cells, J. Phys. Chem.Lett.6 (2015) 3808-3814.
[7] Z.W. Xiao, W.W. Meng, J.B. Wang, D.B. Mitzi, Y.F. Yan, Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality, Mater. Horiz. 4 (2017) 206-216.
[7] Z.W. Xiao, W.W. Meng, J.B. Wang, D.B. Mitzi, Y.F. Yan, Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality, Mater. Horiz.Horiz.4 (2017) 206-216.
[8] Y. Hou, C.O.R. Quiroz, S. Scheiner, W. Chen, T. Stubhan, A. Hirsch, M. Halik, C.J. Brabec, Low-Temperature and hysteresis-free electron-transporting layers for efficient, regular, and planar structure perovskite solar cells, Adv. Energy Mater. 5 (2015) 1501056.
[8] Y. Hou, C.O.R. Quiroz, S. Scheiner, W. Chen, T. Stubhan, A. Hirsch, M. Halik, C.J. Brabec, Low-Temperature and hysteresis-free electron-transporting layers for efficient, regular, and planar structure perovskite solar cells, Adv. Energy Mater.5 (2015) 1501056.
[9] A.H. Ip, L.N. Quan, M.M. Adachi, J.J. McDowell, J.X. Xu, D.H. Kim, E.H. Sargent, A two-step route to planar perovskite cells exhibiting reduced hysteresis, Appl. Phys. Lett. 106 (2015) 143902
[9] A.H. Ip, L.N. Quan, M.M. Adachi, J.J. McDowell, J.X. Xu, D.H. Kim, E.H. Sargent, A two-step route to planar perovskite cells exhibiting reduced hysteresis, Appl. Phys. Lett.106 (2015) 143902
[10] K. Miyano, M. Yanagida, N. Tripathi, Y. Shirai, Hysteresis, stability, and ion migration in lead halide perovskite photovoltaics, J. Phys. Chem. Lett. 7 (2016) 2240-2245
[10] K. Miyano, M. Yanagida, N. Tripathi, Y. Shirai, Hysteresis, stability, and ion migration in lead halide perovskite photovoltaics, J. Phys. Chem.Lett.7 (2016) 2240-2245
11] L.L. Wang, D. Moghe, S. Hafezian, P. Chen, M. Young, M. Elinski, L. Martinu, S. Kena-Cohen, R.R. Lunt, Alkali metal halide salts as interface additives to fabricate hysteresis-free hybrid perovskite-based photovoltaic devices, ACS Appl. Mater. Inter. 8 (2016) 23086-23094.
11]L.L. Wang, D. Moghe, S. Hafezian, P. Chen, M. Young, M. Elinski, L. Martinu, S. Kena-Cohen, R.R. Lunt, Alkali metal halide salts as interface additives to fabricate hysteresis-free hybrid perovskite-based photovoltaic devices, ACS Appl.Inter.8 (2016) 23086-23094.
[12] F. Han, J.S. Luo, B.W. Zhao, Z.Q. Wan, R.L. Wang, C.Y. Jia, Cesium iodide interface modification for high efficiency, high stability and low hysteresis perovskite solar cells, Electrochim. Acta 236 (2017) 122-130.
[12] F. Han, J.S. Luo, B.W. Zhao, Z.Q. Wan, R.L. Wang, C.Y. Jia, Cesium iodide interface modification for high efficiency, high stability and low hysteresis perovskite solar cells, Electrochim.Acta 236 (2017) 122-130.
[13] J. Peng, Y. Wu, Y. Wang, D. Jacobs, H. Shen, X. Fu, Y. Wan, T. Duong, N. Wu, C. Barugkin, H. Nguyen, D. Zhong, J. Li, T. Lu, Y. Liu, M.N. Lockrey, K. Weber, K. Catchpole, T. White, Interface passivation using ultrathin polymerfullerene films for high-efficiency perovskite solar cells with negligible hysteresis, Energy Environ. Sci. 10 (2017) 1792-1800
[13] J. Peng, Y. Wu, Y. Wang, D. Jacobs, H. Shen, X. Fu, Y. Wan, T. Duong, N. Wu, C. Barugkin, H. Nguyen, D. Zhong, J. Li, T. Lu, Y. Liu, M.N. Lockrey, K. Weber, K. Catchpole, Interface passivation using ultathin polymerfullerene films for high-fficiency perovskite solar cells with negligible hysteresis, Energy Environ.Catchpole, T. White, Interface passivation using ultrathin polymerfullerene films for high-efficiency perovskite solar cells with negligible hysteresis, Energy Environ.10 (2017) 1792-1800
[14] M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science 354 (2016) 206-209
[14] M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P.Seo、A. Ummadisingu、S.M. Zakeeruddin、J.-P.Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science 354 (2016) 206-209
[15] I. Hwang, I. Jeong, J. Lee, M.J. Ko, K. Yong, Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation, ACS Appl, Mater. Inter. 7 (2015) 17330-17336.
[15] I. Hwang, I. Jeong, J. Lee, M.J. Ko, K. Yong, Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation, ACS Appl, Mater.Inter.7 (2015) 17330-17336.
[16] Q.L. Jiang, D. Rebollar, J. Gong, E.L. Piacentino, C. Zheng, T. Xu, Pseudohalideinduced moisture tolerance in perovskite I thin films, Angew. Chem. Int. Ed. 54 (2015) 7617-7620.
[16] Q.L. Jiang, D. Rebollar, J. Gong, E.L. Piacentino, C. Zheng, T. Xu, Pseudohalideinduced moisture tolerance in perovskite I thin films, Angew.Chem.Int.Ed.54 (2015) 7617-7620.
[17] I.S. Kim, A.B.F. Martinson, Stabilizing hybrid perovskites against moisture and temperature via non-hydrolytic atomic layer deposited overlayers, J. Mater. Chem. A 20092-20096.
[17] I.S. Kim、A.B.F. Martinson,《通过非水解原子层沉积覆盖层稳定混合包晶抗湿抗温》,J. Mater.Chem.A 20092-20096
[18] J.W. Lee, D.H. Kim, H.S. Kim, S.W. Seo, S.M. Cho, N.G. Park, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell, Adv. Energy Mater. 5 (2015) 1501310.
[18] J.W. Lee、D.H. Kim、H.S. Kim、S.W. Seo、S.M. Cho、N.G. Park,Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell,Adv. Energy Mater.5 (2015) 1501310.
[19] B. Chaudhary, A. Kulkarni, A.K. Jena, M. Ikegami, Y. Udagawa, H. Kunugita, K. Ema, T. Miyasaka, Poly(4-Vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells, ChemSusChem 10 (2017) 2473-2479
[19] B. Chaudhary、A. Kulkarni、A.K. Jena、M. Ikegami、Y. Udagawa、H. Kunugita、K. Ema、T. Miyasaka,基于界面钝化的聚(4-乙烯基吡啶)增强卤化铅过氧化物太阳能电池的电压和湿度稳定性,ChemSusChem 10 (2017) 2473-2479
[20] C. Li, W. Xue, C.F. Han, S.L. Zhao, Z.N. Yu, T. Zhang, L.X. Wang, Effect of ZnO electron-transport layer on light-soaking issue in inverted polymer solar cells, Physics 64 (2015) 088401
[20] C. Li,W. Xue,C.F. Han,S.L. Zhao,Z.N. Yu,T. Zhang,L.X. Wang,ZnO 电子传输层对倒置聚合物太阳能电池光浸透问题的影响,物理学 64 (2015) 088401
[21] T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized with meso-superstructured organometal tri-halide perovskite solar cells, Nat. Commun. 4 (2013) 2885.
[21] T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized with meso-superstructured organometal tri-halide perovskite solar cells, Nat.4 (2013) 2885.4 (2013) 2885.
[22] S.H. Park, S. Ahn, J. Gwak, K. Shin, S.K. Ahn, K. Yoon, Y. Cho, D.-W. Kim, J.H. Yun, Effectiveness of full spectrum light soaking on solar cell degradation analysis, Curr. Appl. Phys. 13 (2013) 1684-1688.
[22] S.H. Park, S. Ahn, J. Gwak, K. Shin, S.K. Ahn, K. Yoon, Y. Cho, D.-W. Kim, J.H. Yun, Effectiveness of full spectrum light soaking on solar cell degradation analysis, Cur.Kim, J.H. Yun, Effectiveness of full spectrum light soaking on solar cell degradation analysis, Curr.13 (2013) 1684-1688.
[23] C. Liu, J. Fan, X. Zhang, Y. Shen, L. Yang, Y. Mai, Hysteretic behavior upon light soaking in perovskite solar cells prepared via modified vapor-assisted solution process, ACS Appl. Mater. Inter. 7 (2015) 9066-9071.
[23] C. Liu, J. Fan, X. Zhang, Y. Shen, L. Yang, Y. Mai, Hysteretic behavior upon light soaking in perovskite solar cells prepared via modified vapor-assisted solution process, ACS Appl.Inter.7 (2015) 9066-9071.
[24] W. Li, W. Zhang, S. Van Reenen, R.J. Sutton, J. Fan, A.A. Haghighirad, M.B. Johnston, L. Wang, H.J. Snaith, Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification, Energy Environ. Sci. 9 (2016) 490-498.
[24] W. Li, W. Zhang, S. Van Reenen, R.J. Sutton, J. Fan, A.A. Haghighirad, M.B. Johnston, L. Wang, H.J. Snaith, Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification, Energy Environ.9 (2016) 490-498.
[25] E. Polydorou, I. Sakellis, A. Soultati, A. Kaltzoglou, T.A. Papadopoulos, J. Briscoe, D. Tsikritzis, M. Fakis, L.C. Palilis, S. Kennou, P. Argitis, P. Falaras, D. Davazoglou, M. Vasilopoulou, Avoiding ambient air and light induced degradation in high-efficiency polymer solar cells by the use of hydrogendoped zinc oxide as electron extraction material, Nano Energy 34 (2017) 500-514.
[25] E. Polydorou, I. Sakellis, A. Soultati, A. Kaltzoglou, T.A. Papadopoulos, J. Briscoe, D. Tsikritzis, M. Fakis, L.C. Palilis, S. Kennou, P. Argitis, P. Falaras, D. Davazoglou, M. Vasilopoulou, Avoiding ambient air and light induced degradation in high-efficiency polymer solar cells by the use of hydrogended zinc oxide as electron extraction material, Nano Energy 34.Vasilopoulou, Avoiding ambient air and light induced degradation in high-efficiency polymer solar cells by the use of hydrogendoped zinc oxide as electron extraction material, Nano Energy 34 (2017) 500-514.
[26] A.D. McNaught, A. Wilkinson, Compendium of Chemical Terminology, Blackwell Science, Oxford, 1997
[26] A.D. McNaught,A. Wilkinson,《化学术语汇编》,布莱克威尔科学,牛津,1997 年
[27] Passivation (chemistry), https://en.wikipedia.org/wiki/Passivation_(chemistry), (Accessed 13 November 2017).
[27] 钝化(化学),https://en.wikipedia.org/wiki/Passivation_(chemistry),(2017年11月13日访问)。
[28] Y.W. Li, Y. Zhao, Q. Chen, Y. Yang, Y.S. Liu, Z.R. Hong, Z.H. Liu, Y.T. Hsieh, L. Meng, Y.F. Li, Y. Yang, Multifunctional fullerene derivative for interface engineering in perovskite solar cells, J. Am. Chem. Soc. 137 (2015) 15540-15547.
[28] Y.W. Li, Y. Zhao, Q. Chen, Y. Yang, Y.S. Liu, Z.R. Hong, Z.H. Liu, Y.T. Hsieh, L. Meng, Y.F. Li, Y. Yang, Multifunctional fullerene derivative for interface engineering in perovskite solar cells, J. Am. Chem.Chem.137 (2015) 15540-15547.
[29] J.X. Song, E.Q. Zheng, J. Bian, X.F. Wang, W.J. Tian, Y. Sanehira, T. Miyasaka, Low-temperature -based electron selective contact for efficient and stable perovskite solar cells, J. Mater. Chem. A 3 (2015) 10837-10844.
[29] J.X. Song, E.Q. Zheng, J. Bian, X.F. Wang, W.J. Tian, Y. Sanehira, T. Miyasaka, Low-temperature -based electron selective contact for efficient and stable perovskite solar cells, J. Mater. Chem.Chem.A 3 (2015) 10837-10844.
[30] N. Arora, M.I. Dar, M. Abdi-Jalebi, F. Giordano, N. Pellet, G. Jacopin, R.H. Friend, S.M. Zakeeruddin, M. Grazel, Intrinsic and extrinsic stability of formamidinium lead bromide perovskite solar cells yielding high photovoltage, Nano Lett. 16 (2016) 7155-7162
[30] N. Arora、M.I. Dar、M. Abdi-Jalebi、F. Giordano、N. Pellet、G. Jacopin、R.H. Friend、S.M. Zakeeruddin、M. Grazel,可产生高光电压的甲脒溴化铅包晶太阳能电池的内在和外在稳定性,Nano Lett.16 (2016) 7155-7162
[31] W.J. Ke, C.X. Xiao, C.L. Wang, B. Saparov, H.S. Duan, D.W. Zhao, Z.W. Xiao, P. Schulz, S.P. Harvey, W.Q. Liao, W.W. Meng, Y. Yu, A.J. Cimaroli, C.S. Jiang, K. Zhu, M. Al-Jassim, G.J. Fang, D.B. Mitzi, Y.F. Yan, Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells, Adv. Mater. 28 (2016) 5214-5221.
[31] W.J. Ke, C.X. Xiao, C.L. Wang, B. Saparov, H.S. Duan, D.W. Zhao, Z.W. Xiao, P. Schulz, S.P. Harvey, W.Q. Liao, W.W. Meng, Y. Yu, A.J. Cimaroli, C.S. Jiang, K. Zhu, M. Al-Jassim, G.J. Fang, D.B. Mitzi, Y.F. Yan.Al-Jassim, G.J. Fang, D.B. Mitzi, Y.F. Yan, Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells, Adv. Mater.28 (2016) 5214-5221.
[32] A.N. Cho, N.G. Park, Impact of interfacial layers in perovskite solar cells, ChemSusChem 10 (2017) 3687-3704
[32] A.N. Cho,N.G. Park,过氧化物太阳能电池中界面层的影响,ChemSusChem 10 (2017) 3687-3704
[33] B.B. Luo, Y.C. Pu, S.A. Lindley, Y. Yang, L.Q. Lu, Y. Li, X.M. Li, J.Z. Zhang, Organolead halide perovskite nanocrystals: branched capping ligands control crystal size and stability, Angew. Chem. Int. Ed. 55 (2016) 8864-8868.
[33] B.B. Luo, Y.C. Pu, S.A. Lindley, Y. Yang, L.Q. Lu, Y. Li, X.M. Li, J.Z. Zhang, Organolead halide perovskite nanocrystals: branched capping ligands control crystal size and stability, Angew.Chem.Int.Ed.55 (2016) 8864-8868.
[34] R.J. Stewart, C. Grieco, A.V. Larsen, J.J. Maier, J.B. Asbury, Approaching bulk carrier dynamics in organo-halide perovskite nanocrystalline films by surface passivation, J. Phys. Chem. Lett. 7 (2016) 1148-1153.
[34] R.J. Stewart, C. Grieco, A.V. Larsen, J.J. Maier, J.B. Asbury, Approaching bulk carrier dynamics in organo-halide perovskite nanocrystalline films by surface passivation, J. Phys. Chem.Lett.7 (2016) 1148-1153.
[35] Q. Jing, M. Zhang, X. Huang, X.M. Ren, P. Wang, Z.D. Lu, Surface passivation of mixed-halide perovskite nanocrystals by selective etching for improved stability, Nanoscale 9 (2017) 7391-7396.
[35] Q. Jing,M. Zhang,X. Huang,X.M. Ren,P. Wang,Z.D. Lu,Surface passivation of mixed-halide perovskite nanocrystals by selective etching for improved stability,Nanoscale 9 (2017) 7391-7396
[36] Y.X. Tian, M. Peter, E. Unger, M. Abdellah, K. Zheng, T. Pullerits, A. Yartsev, V. Sundstrom, I.G. Scheblykin, Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold, Phys. Chem. Chem. Phys. 17 (2015) 24978-24987.
[36] Y.X. Tian、M. Peter、E. Unger、M. Abdellah、K. Zheng、T. Pullerits、A. Yartsev、V. Sundstrom、I.G. Scheblykin,《透镜光致发光增强的机理研究:用氧气光固化可使产量提高千倍》,Phys.Chem.17 (2015) 24978-24987.
[37] J. Xu, A. Buin, A.H. Ip, W. Li, O. Voznyy, R. Comin, M.J. Yuan, S. Jeon, Z.J. Ning, J.J. McDowell, P. Kanjanaboos, J.P. Sun, X.Z. Lan, L.N. Quan, D.H. Kim, I.G. Hill, P. Maksymovych, E.H. Sargent, Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes, Nat. Commun. 6 (2015) 7081.
[37] J. Xu, A. Buin, A.H. Ip, W. Li, O. Voznyy, R. Comin, M.J. Yuan, S. Jeon, Z.J. Ning, J.J. McDowell, P. Kanjanaboos, J.P. Sun, X.Z. Lan, L. N. Quan, D.H. Kim, I.G. Hill, P. Maksymovych, E.H. Sargent, Perovskite-fullerene hybrid materials suppress hysteresis in planarge.N. Quan, D.H. Kim, I.G. Hill, P. Maksymovych, E.H. Sargent, Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes, Nat.Commun.6 (2015) 7081.
[38] X.M. Li, Y. Wu, S.L. Zhang, B. Cai, Y. Gu, J.Z. Song, H.B. Zeng, CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes, Adv. Funct. Mater. 26 (2016) 2435-2445.
[38] X.M. Li, Y. Wu, S.L. Zhang, B. Cai, Y. Gu, J.Z. Song, H.B. Zeng, CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes, Adv.Funct.Mater.26 (2016) 2435-2445.
[39] S.J. Lee, J.H. Park, B.R. Lee, E.D. Jung, J.C. Yu, D. Di Nuzzo, R.H. Friend, M.H. Song, Amine-based passivating materials for enhanced optical properties and performance of organic inorganic perovskites in light-emitting diodes, J. Phys. Chem. Lett. 8 (2017) 1784-1792.
[39] S.J. Lee, J.H. Park, B.R. Lee, E.D. Jung, J.C. Yu, D. Di Nuzzo, R.H. Friend, M.H. Song, Amine-based passivating materials for enhanced optical properties and performance of organic inorganic perovskites in light-emitting diodes, J. Phys. Chem.Lett.8 (2017) 1784-1792.
[40] M. Abdi-Jalebi, M.I. Dar, A. Sadhanala, S.P. Senanayak, M. Gratzel, R.H. Friend, Monovalent cation doping of for efficient perovskite solar cells, Jove J. Vis. Exp. 121 (2017) 55307.
[40] M. Abdi-Jalebi, M.I. Dar, A. Sadhanala, S.P. Senanayak, M. Gratzel, R.H. Friend, 的单价阳离子掺杂用于高效过氧化物太阳能电池,Jove J. Vis.121 (2017) 55307.
[41] S.S. Mali, C.S. Shim, H.K. Park, J. Heo, P.S. Patil, C.K. Hong, Ultrathin atomic layer deposited for surface passivation of hydrothermally grown 1D nanorod arrays for efficient solid-state perovskite solar cells, Chem. Mater. 27 (2015) 1541-1551.
[41] S.S. Mali、C.S. Shim、H.K. Park、J. Heo、P.S. Patil、C.K. Hong,超薄原子层沉积 用于水热生长一维 纳米棒阵列的表面钝化,用于高效固态过氧化物太阳能电池,Chem.Mater.27 (2015) 1541-1551.
[42] J.J. Shi, W. Dong, Y.Z. Xu, C.H. Li, S.T. Lv, L.F. Zhu, J. Dong, Y.H. Luo, D.M. Li, Q.B. Meng, Q. Chen, Enhanced performance in perovskite organic lead iodide heterojunction solar cells with metal-insulator-semiconductor back contact, Chin. Phys. Lett. 30 (2013) 128402.
[42] J.J. Shi,W. Dong,Y.Z. Xu,C.H. Li,S.T. Lv,L.F. Zhu,J. Dong,Y.H. Luo,D.M. Li,Q.B. Meng,Q. Chen,Enhanced performance in perovskite organic lead iodide heterojunction solar cells with metal-insulator-semiconductor back contact,Chin.Phys.30 (2013) 128402.
[43] Y. Ogomi, K. Kukihara, S. Qing, T. Toyoda, K. Yoshino, S. Pandey, H. Momose, S. Hayase, Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells, ChemPhysChem 15 (2014)
[44] Q. Shen, Y. Ogomi, J. Chang, S. Tsukamoto, K. Kukihara, T. Oshima, N. Osada K. Yoshino, K. Katayama, T. Toyoda, S. Hayase, Charge transfer and recom bination at the metal oxide/ spiro-OMeTAD interfaces uncovering the detailed mechanism behind high efficiency solar cells, Phys. Chem. Chem. Phys. 16 (2014) 19984-19992.
[44] Q. Shen, Y. Ogomi, J. Chang, S. Tsukamoto, K. Kukihara, T. Oshima, N. Osada K. Yoshino, K. Katayama, T. Toyoda, S. Hayase, Charge transfer and recom bination at the metal oxide/ spiro-OMeTAD interfaces uncovering the detailed mechanism behind high efficiency solar cells, Phys. Chem.Chem.16 (2014) 19984-19992.
[45] C.X. Zhang, Q. Luo, J.H. Shi, L.Y. Yue, Z.B. Wang, X.H. Chen, S.M. Huang Efficient perovskite solar cells by combination use of Au nanoparticles and insulating metal oxide, Nanoscale 9 (2017) 2852-2864
[45] C.X. Zhang,Q. Luo,J.H. Shi,L.Y. Yue,Z.B. Wang,X.H. Chen,S.M. Huang 结合使用金纳米粒子和绝缘金属氧化物的高效过氧化物太阳能电池,Nanoscale 9 (2017) 2852-2864
[46] S.B. Li, P. Zhang, Y.F. Wang, H. Sarvari, D.T. Liu, J. Wu, Y.J. Yang, Z.M. Wang Z.D. Chen, Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition, Nano Res. 10 (2017)
[46] S.B. Li、P. Zhang、Y.F. Wang、H. Sarvari、D.T. Liu、J. Wu、Y.J. Yang、Z.M. Wang Z.D. Chen,利用原子层沉积实现基于氧化锌纳米棒的高效率过氧化物太阳能电池的界面工程,Nano Res. 10 (2017)
[47] Y.H. Lee, J.S. Luo, M.K. Son, P. Gao, K.T. Cho, J. Seo, S.M. Zakeeruddin M. Gratzel, M.K. Nazeeruddin, Enhanced charge collection with passivation layers in perovskite solar cells, Adv. Mater. 28 (2016) 3966-3972.
[47] Y.H. Lee、J.S. Luo、M.K. Son、P. Gao、K.T. Cho、J. Seo、S.M. Zakeeruddin M. Gratzel、M.K. Nazeeruddin, Enhanced charge collection with passivation layers in perovskite solar cells, Adv. Mater.28 (2016) 3966-3972.
[48] J. Dong, X. Xu, J.J. Shi, D.M. Li, Y.H. Luo, Q.B. Meng, Q. Chen, Suppressing charge recombination in ZnO-nanorod-based perovskite solar cells with atomic-layer-deposition , Chin. Phys. Lett. 32 (2015) 078401.
[48] J. Dong, X. Xu, J.J. Shi, D.M. Li, Y.H. Luo, Q.B. Meng, Q. Chen, Suppressing charge recombination in ZnO-nanorod-based perovskite solar cells with atomic-layer-deposition , Chin.Phys.32 (2015) 078401.
[49] F. Giordano, A. Abate, J.P.C. Baena, M. Saliba, T. Matsui, S.H. Im, S.M. Zakeeruddin, M.K. Nazeeruddin, A. Hagfeldt, M. Graetzel, Enhanced electronic properties in mesoporous via lithium doping for highefficiency perovskite solar cells, Nat. Commun. 7 (2016) 10379.
[49] F. Giordano, A. Abate, J.P.C. Baena, M. Saliba, T. Matsui, S.H. Im, S.M. Zakeeruddin, M.K. Nazeeruddin, A. Hagfeldt, M. Graetzel, Enhanced electronic properties in mesoporous via lithium doping for highhefficiency perovskite solar cells, Nat.7 (2016) 10379.7 (2016) 10379.
[50] K.T. Cho, S. Paek, G. Grancini, C. Roldán-Carmona, P. Gao, Y. Lee M.K. Nazeeruddin, Highly efficient perovskite solar cells with a composi tionally engineered perovskite/hole transporting material interface, Energy Environ. Sci. 10 (2017) 621-627.
[50] K.T. Cho, S. Paek, G. Grancini, C. Roldán-Carmona, P. Gao, Y. Lee M.K. Nazeeruddin, Highly efficient perovskite solar cells with a composi tionally engineered perovskite/hole transporting material interface, Energy Environ.10 (2017) 621-627.
[51] K. Wojciechowski, S.D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.Z. Li, R.H. Friend, A.K.Y. Jen, H.J. Snaith, Heterojunction modification for highly efficient organic - inorganic perovskite solar cells, ACS Nano 8 (2014) 12701-12709.
[51] K. Wojciechowski, S.D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.Z. Li, R.H. Friend, A.K.Y. Jen, H.J. Snaith, Heterojunction modification for highly efficient organic - inorganic perovskite solar cells, ACS Nano 8 (2014) 12701-12709
[52] C. Bi, Q. Wang, Y.C. Shao, Y.B. Yuan, Z.G. Xiao, J.S. Huang, Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells, Nat. Commun. 6 (2015) 7747.
[52] C. Bi, Q. Wang, Y.C. Shao, Y.B. Yuan, Z.G. Xiao, J.S. Huang, Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells, Nat.6 (2015) 7747.6 (2015) 7747.
[53] H. Nagaoka, F. Ma, D.W. deQuilettes, S.M. Vorpahl, M.S. Glaz, A.E. Colbert, M.E. Ziffer, D.S. Ginger, Zr incorporation into electrodes reduces hyseresis and improves performance in hybrid perovskite solar cells while increasing carrier lifetimes, J. Phys. Chem. Lett. 6 (2015) 669-675.
[53] H. Nagaoka、F. Ma、D.W. deQuilettes、S.M. Vorpahl、M.S. Glaz、A.E. Colbert、M.E. Ziffer、D.S. Ginger,在 电极中掺入锆可减少滞后并提高混合包晶太阳能电池的性能,同时增加载流子寿命,J. Phys.Lett.6 (2015) 669-675.
[54] H.B. Kim, I. Im, Y. Yoon, S.D. Sung, E. Kim, J. Kim, W.I. Lee, Enhancement of photovoltaic properties of heterojunction solar cells by modifying mesoporous surfaces with carboxyl groups, J. Mater. Chem. A 3 (2015) 9264-9270.
[54] H.B. Kim, I. Im, Y. Yoon, S.D. Sung, E. Kim, J. Kim, W.I. Lee, Enhancement of photovoltaic properties of heterojunction solar cells by modifying mesoporous surfaces with carboxyl groups, J. Mater.Chem.A 3 (2015) 9264-9270.
[55] I. Hwang, M. Baek, K. Yong, Core/shell structured electrode to enhance the light stability of perovskite solar cells, ACS Appl. Mater. Inter. 7 (2015) .
[55] I. Hwang, M. Baek, K. Yong, Core/shell structured electrode to enhance the light stability of perovskite solar cells, ACS Appl.Inter.7 (2015) .
[56] W.R. Zhou, J.M. Zhen, Q. Liu, Z.M. Fang, D. Li, P.C. Zhou, T. Chen, S.F. Yang Successive surface engineering of compact layers via dual modification of fullerene derivatives affording hysteresis-suppressed high-performance perovskite solar cells, J. Mater. Chem. A 5 (2017) 1724-1733
[56] W.R. Zhou,J.M. Zhen,Q. Liu,Z.M. Fang,D. Li,P.C. Zhou,T. Chen,S.F. Yang 通过富勒烯衍生物的双重改性对 致密层进行连续表面工程,从而获得滞后抑制型高性能过氧化物太阳能电池,J. Mater.Chem.A 5 (2017) 1724-1733
[57] F.L. Cai, L.Y. Yang, Y. Yan, J.H. Zhang, F. Qin, D. Liu, Y.B. Cheng, Y.H. Zhou, T. Wang, Eliminated hysteresis and stabilized power output over in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed layer, J. Mater. Chem A 5 (2017) 9402-9411.
[57] F.L. Cai, L.Y. Yang, Y. Yan, J.H. Zhang, F. Qin, D. Liu, Y.B. Cheng, Y.H. Zhou, T. Wang, Eliminated hysteresis and stabilized power output over in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-tperature-processed layer, J. Mater.Chem A 5 (2017) 9402-9411.
[58] M.M. Tavakoli, R. Tavakoli, S. Hasanzadeh, M.H. Mirfasih, Interface engineering of perovskite solar cell using a reduced-graphene Scaffold, J. Phys Chem. C 120 (2016) 19531-19536
[58] M.M. Tavakoli、R. Tavakoli、S. Hasanzadeh、M.H. Mirfasih,使用还原石墨烯支架的过氧化物太阳能电池界面工程,J. Phys Chem.C 120 (2016) 19531-19536
[59] X.R. Wen, J.M. Wu, D. Gao, C.J. Lin, Interfacial engineering with aminofunctionalized graphene for efficient perovskite solar cells, J. Mater. Chem. A 4 (2016) .
[59] X.R. Wen, J.M. Wu, D. Gao, C.J. Lin, Interfacial engineering with aminofunctionalized graphene for efficient perovskite solar cells, J. Mater.Chem.A 4 (2016) .
[60] C. Sun, Z.H. Wu, H.L. Yip, H. Zhang, X.F. Jiang, Q.F. Xue, Z.C. Hu, Z.H. Hu Y. Shen, M.K. Wang, F. Huang, Y. Cao, Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar heterojunction perovskite solar cells, Adv. Energy Mater. 6 (2016).
[60] C. Sun, Z.H. Wu, H.L. Yip, H. Zhang, X.F. Jiang, Q.F. Xue, Z.C. Hu, Z.H. Hu Y. Shen, M.K. Wang, F. Huang, Y. Cao, Amino-functionalized conjugated polymer as efficient electron transport layer for high-formance planar heterojunction perovskite solar.Shen, M.K. Wang, F. Huang, Y. Cao, Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar heterojunction perovskite solar cells, Adv. Energy Mater.6 (2016).
[61] S.Y. Shao, M. Abdu-Aguye, L. Qiu, L.H. Lai, J. Liu, S. Adjokatse, F. Jahani, M.E. Kamminga, G.H. ten Brink, T.T.M. Palstra, B.J. Kooi, J.C. Hummelen M.A. Loi, Elimination of the light soaking effect and performance enhance ment in perovskite solar cells using a fullerene derivative, Energy Environ Sci. 9 (2016)
[61] S.Y. Shao, M. Abdu-Aguye, L. Qiu, L.H. Lai, J. Liu, S. Adjokatse, F. Jahani, M.E. Kamminga, G.H. ten Brink, T.T.M. Palstra, B.J. Kooi, J.C. Hummelen M.A. Loi, Elimination of light soaking effect and performance enhance ment in perovskite solar cells using the fullerene derivative, Energy Environ Sci.Loi, Elimination of the light soaking effect and performance enhance ment in perovskite solar cells using a fullerene derivative, Energy Environ Sci.
[62] C.X. Ran, Y.H. Chen, W.Y. Gao, M.Q. Wang, L.M. Dai, One-dimensional (1D) [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) nanorods as an efficient additive for improving the efficiency and stability of perovskite solar cells J. Mater. Chem. A 4 (2016) 8566-8572.
[62] C.X. Ran, Y.H. Chen, W.Y. Gao, M.Q. Wang, L.M. Dai, One-dimensional (1D) [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) nanorods as an efficient additive for improving the efficiency and stability of perovskite solar cells J. Mater.Chem.A 4 (2016) 8566-8572.
[63] X. Liu, F. Lin, C.C. Chueh, Q. Chen, T. Zhao, P.W. Liang, Z.L. Zhu, Y. Sun A.K.Y. Jen, Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells, Nano Energy 30 (2016) .
[64] M. Hadadian, J.P. Correa-Baena, E.K. Goharshadi, A. Ummadisingu, J.Y. Seo J.S. Luo, S. Gholipour, S.M. Zakeeruddin, M. Saliba, A. Abate, M. Gratzel A. Hagfeldt, Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation, Adv. Mater. 28 (2016 .
[64] M. Hadadian, J.P. Correa-Baena, E.K. Goharshadi, A. Ummadisingu, J.Y. Seo J.S. Luo, S. Gholipour, S.M. Zakeeruddin, M. Saliba, A. Abate, M. Gratzel A. Hagfeldt, Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation, Adv. Mater.28 (2016 .
[65] Y. Li, K.Y. Lu, X.F. Ling, J.Y. Yuan, G.Z. Shi, G.Q. Ding, J.X. Sun, S.H. Shi, X. Gong W.L. Ma, High performance planar-heterojunction perovskite solar cells
using amino-based fulleropyrrolidine as the electron transporting material, J. Mater. Chem. A 4 (2016) 10130-10134.
使用氨基基富勒烯吡咯烷作为电子传输材料,J. Mater.Chem.A 4 (2016) 10130-10134.
[66] L. Qiu, L.K. Ono, Y. Jiang, M.R. Leyden, S.R. Raga, S. Wang, Y. Qi, Engineering interface structure to improve efficiency and stability of organometal halide perovskite solar cells, J. Phys. Chem. B (2017), https://doi.org/10.1021/ acs.jpcb.7b03921.
[66] L. Qiu, L.K. Ono, Y. Jiang, M.R. Leyden, S.R. Raga, S. Wang, Y. Qi, Engineering interface structure to improve efficiency and stability of organometal halide perovskite solar cells, J. Phys. Chem.B (2017), https://doi.org/10.1021/ acs.jpcb.7b03921.
[67] H.R. Tan, A. Jain, O. Voznyy, X.Z. Lan, F.P.G. de Arquer, J.Z. Fan, R. QuinteroBermudez, M.J. Yuan, B. Zhang, Y.C. Zhao, F.J. Fan, P.C. Li, L.N. Quan, Y.B. Zhao, Z.H. Lu, Z.Y. Yang, S. Hoogland, E.H. Sargent, Efficient and stable solutionprocessed planar perovskite solar cells via contact passivation, Science 355 (2017) .
[67] H.R. Tan、A. Jain、O. Voznyy、X.Z. Lan、F.P.G. de Arquer、J.Z. Fan、R. Quintero-Bermudez、M.J. Yuan、B. Zhang、Y.C. Zhao、F.J. Fan、P.C. Li、L.N. Quan、Y.B. Zhao、Z.H. Lu, Z.Y. Yang, S. Hoogland, E.H. Sargent, Efficient and stable solutionprocessed planar perovskite solar cells via contact passivation, Science 355 (2017) .
[68] J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev. 105 (2005) 1103-1169.
[68] J.C. Love、L.A. Estroff、J.K. Kriebel、R.G. Nuzzo、G.M. Whitesides,《作为一种纳米技术形式的金属上硫醇酸盐自组装单层》,Chem.105 (2005) 1103-1169.
[69] S. Casalini, C.A. Bortolotti, F. Leonardi, F. Biscarini, Self-assembled monolayers in organic electronics, Chem. Soc. Rev. 46 (2017) 40-71.
[69] S. Casalini、C.A. Bortolotti、F. Leonardi、F. Biscarini,有机电子学中的自组装单层,Chem.Soc. Rev. 46 (2017) 40-71.
[70] B. Almeida, A. Shukla, Degradation of alkanethiol self-assembled monolayers in mesenchymal stem cell culture, J. Biomed. Mater. Res. A 105 (2017) .
[70] B. Almeida, A. Shukla, 间充质干细胞培养中烷硫醇自组装单层的降解,J. Biomed.Mater.Res. A 105 (2017) .
[71] B. Arslan, K. Egerton, X. Zhang, N.I. Abu-Lail, Effects of the surface morphology and conformations of lignocellulosic biomass biopolymers on their nanoscale interactions with hydrophobic self-assembled monolayers, Langmuir 33 (2017) 6857-6868.
[71] B. Arslan, K. Egerton, X. Zhang, N.I. Abu-Lail, 木质纤维素生物质生物聚合物的表面形态和构象对其与疏水自组装单层纳米级相互作用的影响,Langmuir 33 (2017) 6857-6868
[72] I. Berlanga, A. Etcheverry-Berrios, A. Mella, D. Jullian, V.A. Gomez, N. AliagaAlcalde, V. Fuenzalida, M. Flores, M. Soler, Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces, Appl. Surf. Sci. 392 (2017) .
[72] I. Berlanga, A. Etcheverry-Berrios, A. Mella, D. Jullian, V.A. Gomez, N. AliagaAlcalde, V. Fuenzalida, M. Flores, M. Soler, Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces, Appl. Surf.392 (2017) .
[73] G. Yang, C.L. Wang, H.W. Lei, X.L. Zheng, P.L. Qin, L.B. Xiong, X.Z. Zhao, Y.F. Yan, G.J. Fang, Interface engineering in planar perovskite solar cells energy level alignment, perovskite morphology control and high performance achievement, J. Mater. Chem. A 5 (2017) 1658-1666.
[73] G. Yang, C.L. Wang, H.W. Lei, X.L. Zheng, P.L. Qin, L.B. Xiong, X.Z. Zhao, Y.F. Yan, G.J. Fang, Interface engineering in planar perovskite solar cells energy level alignment, perovskite morphology control and high performance achievement, J. Mater. Chem.Chem.A 5 (2017) 1658-1666.
[74] L.J. Zuo, Q. Chen, N. De Marco, Y.T. Hsieh, H.J. Chen, P.Y. Sun, S.Y. Chang, H.X. Zhao, S.Q. Dong, Y. Yang, Tailoring the interfacial chemical interaction for high-efficiency perovskite solar cells, Nano Lett. 17 (2017) 269-275.
[74] L.J. Zuo, Q. Chen, N. De Marco, Y.T. Hsieh, H.J. Chen, P.Y. Sun, S.Y. Chang, H.X. Zhao, S.Q. Dong, Y. Yang, Tailoring the interfacial chemical interaction for high-efficiency perovskite solar cells, Nano Lett.17 (2017) 269-275.
[75] L.J. Zuo, Z.W. Gu, T. Ye, W.F. Fu, G. Wu, H.Y. Li, H.Z. Chen, Enhanced photovoltaic performance of perovskite solar cells through interfacial engineering using self-assembling monolayer, J. Am. Chem. Soc. 137 (2015)
[75] L.J. Zuo, Z.W. Gu, T. Ye, W.F. Fu, G. Wu, H.Y. Li, H.Z. Chen, Enhanced photovoltaic performance of perovskite solar cells through interfacial engineering using self-assembling monolayer, J. Am. Chem.Chem.137 (2015) .
[76] C.L. Wang, D.W. Zhao, C.R. Grice, W.Q. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P.J. Roland, J. Chen, Z.H. Yu, P. Liu, N. Cheng, R.J. Ellingson, X.Z. Zhao, Y.F. Yan Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells, J. Mater. Chem. A 4 (2016) 12080-12087.
[76] C.L. Wang, D.W. Zhao, C.R. Grice, W.Q. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P.J. Roland, J. Chen, Z.H. Yu, P. Liu, N. Cheng, R.J. Ellingson, X.Z. Zhao, Y. F. Yan Low-tperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells, J. Mater.Yan Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells, J. Mater.Chem.A 4 (2016) 12080-12087.
[77] P. Wang, J.J. Zhao, J.X. Liu, L.Y. Wei, Z.H. Liu, L.H. Guan, G.Z. Cao, Stabilization of organometal halide perovskite films by coating with inactive surface hydroxyl groups on ZnO nanorods, J. Power Sources 339 (2017) 51-60.
[78] X.X. Wu, M.T. Trinh, D. Niesner, H.M. Zhu, Z. Norman, J.S. Owen, O. Yaffe, B.J. Kudisch, X.Y. Zhu, Trap states in lead iodide perovskites, J. Am. Chem. Soc 137 (2015) 2089-2096.
[78] X.X. Wu,M.T. Trinh,D. Niesner,H.M. Zhu,Z. Norman,J.S. Owen,O. Yaffe,B.J. Kudisch,X.Y. Zhu,Trap states in lead iodide perovskites,J. Am. Chem.Chem.Soc 137 (2015) 2089-2096.
[79] T. Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, T. Dittrich, Formation of a passivating interface during moderate heating of layers, Appl. Phys. Lett. 103 (2013) 183906.
[79] T. Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, T. Dittrich, Formation of a passivating interface during moderate heating of layers, Appl.103 (2013) 183906.
[80] L.L. Wang, C. McCleese, A. Kovalsky, Y.X. Zhao, C. Burda, Femtosecond time resolved transient absorption spectroscopy of perovskite films evidence for passivation effect of , J. Am. Chem. Soc. 136 (2014)
[80] L.L. Wang、C. McCleese、A. Kovalsky、Y.X. Zhao、C. Burda, 包晶薄膜的飞秒时间分辨瞬态吸收光谱, 钝化效应的证据,J. Am.Chem.136 (2014) .
[81] Q. Chen, H.P. Zhou, T.B. Song, S. Luo, Z.R. Hong, H.S. Duan, L.T. Dou, Y.S. Liu, Y. Yang, Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells, Nano Lett. 14 (2014) 4158-4163.
[81] Q. Chen, H.P. Zhou, T.B. Song, S. Luo, Z.R. Hong, H.S. Duan, L.T. Dou, Y.S. Liu, Y. Yang, Controlled self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells, Nano Lett.14 (2014) 4158-4163.
[82] C.L. Wang, D.W. Zhao, Y. Yu, N. Shrestha, C.R. Grice, W.Q. Liao, A.J. Cimaroli, J. Chen, R.J. Ellingson, X.Z. Zhao, Y.F. Yan, Compositional and morphologica engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis, Nano Energy 35 (2017) 223-232.
[83] M. Moriya, D. Hirotani, T. Ohta, Y. Ogomi, Q. Shen, T.S. Ripolles, K. Yoshino T. Toyoda, T. Minemoto, S. Hayase, Architecture of the interface between the perovskite and hole-transport layers in perovskite solar cells, ChemSusChem 9 (2016) .
[84] T.J. Jacobsson, J.P. Correa-Baena, E.H. Anaraki, B. Philippe, S.D. Stranks, M.E.F. Bouduban, W. Tress, K. Schenk, J. Teuscher, J.E. Moser, H. Rensmo A. Hagfeldt, Unreacted as a double-edged sword for enhancing the performance of perovskite solar cells, J. Am. Chem. Soc. 138 (2016)
[84] T.J. Jacobsson、J.P. Correa-Baena、E.H. Anaraki、B. Philippe、S.D. Stranks、M.E.F. Bouduban、W. Tress、K. Schenk、J. Teuscher、J.E. Moser、H. Rensmo A. Hagfeldt,未反应的 作为提高过氧化物太阳能电池性能的双刃剑,J. Am.Chem.Soc. 138 (2016)
[85] F.Z. Liu, Q. Dong, M.K. Wong, A.B. Djurisic, A.N. Ng, Z.W. Ren, Q. Shen, C. Surya, W.K. Chan, J. Wang, A.M.C. Ng, C.Z. Liao, H.K. Li, K.M. Shih, C.R. Wei, H.M. Su, J.F. Dai, Is excess beneficial for perovskite solar cell perfor mance? Adv. Energy Mater. 6 (2016) 1502206
[85] F.Z. Liu, Q. Dong, M.K. Wong, A.B. Djurisic, A.N. Ng, Z.W. Ren, Q. Shen, C. Surya, W.K. Chan, J. Wang, A.M.C. Ng, C.Z. Liao, H.K. Li, K.M. Shih, C.R. Wei, H.M. Su, J.F. Dai, Is excess beneficial for perovsksk.Liao, H.K. Li, K.M. Shih, C.R. Wei, H.M. Su, J.F. Dai, Is excess beneficial for perovskite solar cell perfor mance?Adv.6 (2016) 1502206
[86] Q. Jiang, L.Q. Zhang, H.L. Wang, X.L. Yang, J.H. Meng, H. Liu, Z.G. Yin, J.L. Wu X.W. Zhang, J.B. You, Enhanced electron extraction using for high efficiency planar-structure -based perovskite solar cells, Nat Energy .
[87] P. Cui, D. Wei, J. Ji, D. Song, Y. Li, X. Liu, J. Huang, T. Wang, J. You, M. Li, Highly efficient electron-selective layer free perovskite solar cells by constructing effective p-n heterojunction, Solar RRL 1 (2017) 1600027.
[88] M.L. Petrus, Y.H. Hu, D. Moia, P. Calado, A.M.A. Leguy, P.R.F. Barnes P. Docampo, The influence of water vapor on the stability and processing of hybrid perovskite solar cells made from non-stoichiometric precursor mixtures, ChemSusChem 9 (2016) 2699-2707.
[88] M.L. Petrus、Y.H. Hu、D. Moia、P. Calado、A.M.A. Leguy、P.R.F. Barnes P. Docampo,水蒸气对由非化学计量前驱体混合物制成的混合过氧化物太阳能电池的稳定性和加工的影响,ChemSusChem 9 (2016) 2699-2707
[89] W.N. Peng, B. Anand, L.H. Liu, S. Sampat, B.E. Bearden, A.V. Malko, Y.J. Chabal, Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films, Nanoscale 8 (2016) 1627-1634
[89] W.N. Peng、B. Anand、L.H. Liu、S. Sampat、B.E. Bearden、A.V. Malko、Y.J. Chabal,生长温度对混合卤化铅过氧化物薄膜的块体和表面缺陷的影响,Nanoscale 8 (2016) 1627-1634
[90] Y. Lei, L.Y. Gu, W.W. He, Z.X. Jia, X.G. Yang, H.M. Jia, Z. Zheng, Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture, J. Mater. Chem. A 4 (2016) 5474-5481.
[90] Y. Lei,L.Y. Gu,W.W. He,Z.X. Jia,X.G. Yang,H.M. Jia,Z. Zheng,潮湿环境中过氧化物/氧化锌介质结构太阳能电池的内在电荷载流子动力学和器件稳定性,J. Mater.Chem.A 4 (2016) 5474-5481.
91] F.Y. Jiang, Y.G. Rong, H.W. Liu, T.F. Liu, L. Mao, W. Meng, F. Qin, Y.Y. Jiang, B.W. Luo, S.X. Xiong, J.H. Tong, Y. Liu, Z.F. Li, H.W. Han, Y.H. Zhou, Synergistic effect of passivation and chlorine inclusion yielding high open-circuit voltage exceeding 1.15 V in both mesoscopic and inverted planar -based perovskite solar cells, Adv. Funct. Mater. 26 (2016) 8119-8127
F.Y. Jiang, Y.G. Rong, H.W. Liu, T.F. Liu, L. Mao, W. Meng, F. Qin, Y.Y. Jiang, B.W. Luo, S.X. Xiong, J.H. Tong, Y. Liu, Z.F. Li, H.W. Han, Y.H. Zhou, Synergistic effect passivation and chlorine inclusion yield high open circuit voltage exceeding 1.15 V in both mesoscopic and inverted planar.Zhou, Synergistic effect of passivation and chlorine inclusion yielding high open-circuit voltage exceeding 1.15 V in both mesoscopic and inverted planar -based perovskite solar cells, Adv.Funct.Mater.26 (2016) 8119-8127
[92] S.M. Wang, W.W. Dong, X.D. Fang, Q.L. Zhang, S. Zhou, Z.H. Deng, R.H. Tao, J.Z. Shao, R. Xia, C. Song, L.H. Hu, J. Zhu, Credible evidence for the passivation effect of remnant in films in improving the performance of perovskite solar cells, Nanoscale 8 (2016) 6600-6608
[93] T.Y. Zhang, N.J. Guo, G. Li, X.F. Qian, Y.X. Zhao, A controllable fabrication of grain boundary nanoplates passivated lead halide perovskites for high performance solar cells, Nano Energy 26 (2016) 50-56.
[94] Y.N. Chen, B.B. Li, W. Huang, D.Q. Gao, Z.Q. Liang, Efficient and reproducible perovskite based planar solar cells, Chem. Commun. 51 (2015) 11997-11999.
[94] Y.N. Chen, B.B. Li, W. Huang, D.Q. Gao, Z.Q. Liang, Efficient and reproducible perovskite based planar solar cells, Chem.Chem.51 (2015) 11997-11999.
[95] H.Y. Wang, M.Y. Hao, J. Han, M. Yu, Y.J. Qin, P. Zhang, Z.X. Guo, X.C. Ai, J.P. Zhang, Adverse effects of excess residual on photovoltaic performance, charge separation, and trap-state properties in mesoporous structured perovskite solar cells, Chem. Eur J. 23 (2017) 3986-3992.
[95] H.Y. Wang, M.Y. Hao, J. Han, M. Yu, Y.J. Qin, P. Zhang, Z.X. Guo, X.C. Ai, J.P. Zhang, Adverse effects of excess residual on photovoltaic performance, charge separation, and trap-state properties in mesoporous structured perovskite solar cells, Chem.Eur J. 23 (2017) 3986-3992.
[96] Y.C. Kim, N.J. Jeon, J.H. Noh, W.S. Yang, J. Seo, J.S. Yun, A. Ho-Baillie, S.J. Huang, M.A. Green, J. Seidel, T.K. Ahn, S. Il Seok, Beneficial effects of incorporated in organo-lead halide perovskite solar cells, Adv. Energy Mater 6 (2016) 1502104.
[96] Y.C. Kim、N.J. Jeon、J.H. Noh、W.S. Yang、J. Seo、J.S. Yun、A. Ho-Baillie、S.J. Huang、M.A. Green、J. Seidel、T.K. Ahn、S. Il Seok, 在有机卤化铅过氧化物太阳能电池中的有益作用,Adv. Energy Mater 6 (2016) 1502104
[97] Y.H. Shao, Z.G. Xiao, C. Bi, Y.B. Yuan, J.S. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in planar heterojunction solar cells, Nat. Commun. 5 (2014) 5784.
[97] Y.H. Shao, Z.G. Xiao, C. Bi, Y.B. Yuan, J.S. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in planar heterojunction solar cells, Nat.5 (2014) 5784.5 (2014) 5784.
[98] C. Roldan-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel, M.K. Nazeeruddin, High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors, Energy Environ. Sci. 8 (2015) 3550-3556.
[98] C. Roldan-Carmona、P. Gratia、I. Zimmermann、G. Grancini、P. Gao、M. Graetzel、M.K. Nazeeruddin,高效甲基铵三碘化铅包晶石太阳能电池:非化学计量前驱体的相关性,Energy Environ.8 (2015) 3550-3556.
[99] Y.Z. Ma, P. Vashishtha, K. Chen, E.L. Peach, D. Ohayon, J.M. Hodgkiss, J.E. Halpert, Controlled growth of using a dynamically dispensed spin-coating method: improving efficiency with a reproducible blocking layer, ChemSusChem 10 (2017) 2677-2684
[100] M.C. Shih, S.S. Li, C.H. Hsieh, Y.C. Wang, H.D. Yang, Y.P. Chiu, C.S. Chang, C.W. Chen, Spatially resolved imaging on photocarrier generations and band alignments at perovskite heterointerfaces of perovskite solar cells by light-modulated scanning tunneling microscopy, Nano Lett. 17 (2017) .
[100] M.C. Shih, S.S. Li, C.H. Hsieh, Y.C. Wang, H.D. Yang, Y.P. Chiu, C.S. Chang, C.W. Chen, Spatially resolved imaging on photocarrier generations and band alignments at perovskite heterointerfaces of perovskite solar cells by light-modulated scanning tunneling microscopy, Nano Lett.17 (2017) .
[101] Y.Y. Du, H.K. Cai, H.B. Wen, Y.X. Wu, Z.L. Li, J. Xu, L.K. Huang, J. Ni, J. Li, J.J. Zhang, Undesirable role of remnant layer on low temperature processed planar perovskite solar cells, RSC Adv. 6 (2016) 101250-101258.
[102] D.Y. Son, J.W. Lee, Y.J. Choi, I.H. Jang, S. Lee, P.J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, N.G. Park, Self-formed grain boundary healing layer for highly efficient perovskite solar cells, Nat. Energy 1 (2016) 16081.
[102] D.Y. Son、J.W. Lee、Y.J. Choi、I.H. Jang、S. Lee、P.J. Yoo、H. Shin、N. Ahn、M. Choi、D. Kim、N.G. Park,用于高效 过氧化物太阳能电池的自形成晶界愈合层,Nat.Energy 1 (2016) 16081.
[103] Z. Hawash, S.R. Raga, D.Y. Son, L.K. Ono, N.G. Park, Y.B. Qi, Interfacial modification of perovskite solar cells using an ultrathin MAI layer leads to enhanced energy level alignment, efficiencies, and reproducibility, J. Phys. Chem. Lett. 8 (2017) 3947-3953.
[103] Z. Hawash、S.R. Raga、D.Y. Son、L.K. Ono、N.G. Park、Y.B. Qi,使用超薄 MAI 层对过氧化物太阳能电池进行界面修饰可提高能级排列、效率和可重复性,J. Phys.Lett.8 (2017) 3947-3953.
[104] P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, Y. Lu, Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions, ACS Appl. Mater. Inter. 7 (2015) .
[104] P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, Y. Lu, Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low pressure chemical vapor deposition under fully open-air conditions, ACS Appl.Inter.7 (2015) .
[105] A. Ng, Z.W. Ren, Q. Shen, S.H. Cheung, H.C. Gokkaya, S.K. So, A.B. Djurisic, Y.Y. Wan, X.J. Wu, C. Surya, Crystal engineering for low defect density and high efficiency hybrid chemical vapor deposition grown perovskite solar cells, ACS Appl. Mater. Inter. 8 (2016) 32805-32814.
[105] A. Ng, Z.W. Ren, Q. Shen, S.H. Cheung, H.C. Gokkaya, S.K. So, A.B. Djurisic, Y.Y. Wan, X.J. Wu, C. Surya, Crystal engineering for low defect density and high efficiency hybrid chemical vapor deposition grown perovskite solar cells, ACS Appl.Inter.8 (2016) 32805-32814.
[106] R. Sedighi, F. Tajabadi, S. Shahbazi, S. Gholipour, N. Taghavinia, Mixed-halide perovskites: vapor-assisted solution deposition and application as solar cell absorbers, ChemPhysChem 17 (2016) .
[107] Z.M. Zhou, Z.W. Wang, Y.Y. Zhou, S.P. Pang, D. Wang, H.X. Xu, Z.H. Liu, N.P. Padture, G.L. Cui, Methylamine-gas-induced defect-healing behavior of thin films for perovskite solar cells, Angew. Chem. Int. Ed. 54 (2015) .
[107] Z.M. Zhou、Z.W. Wang、Y.Y. Zhou、S.P. Pang、D. Wang、H.X. Xu、Z.H. Liu、N.P. Padture、G.L. Cui,Methylamine-gas-induced defect-healing behavior of thin films for perovskite solar cells,Angew.Chem.Int.Ed.54 (2015) .
[108] B.S. Tosun, H.W. Hillhouse, Enhanced carrier lifetimes of pure iodide hybrid perovskite via vapor-equilibrated Re-Growth (VERG), J. Phys. Chem. Lett. 6 (2015) .
[108] B.S. Tosun, H.W. Hillhouse, Enhanced carrier lifetimes of pure iodide hybrid perovskite via vapor-equilibrated Re-Growth (VERG), J. Phys. Chem.Lett.6 (2015) .
[109] M.Z. Long, T.K. Zhang, H.Y. Zhu, G.X. Li, F. Wang, W.Y. Guo, Y. Chai, W. Chen, Q. Li, K.S. Wong, J.B. Xu, K.Y. Yan, Textured thin film with enhanced stability for high performance perovskite solar cells, Nano Energy 33 (2017) 485-496
[109] M.Z. Long、T.K. Zhang、H.Y. Zhu、G.X. Li、F. Wang、W.Y. Guo、Y. Chai、W. Chen、Q. Li、K.S. Wong、J.B. Xu、K.Y. Yan,用于高性能过氧化物太阳能电池的稳定性增强的纹理 薄膜,Nano Energy 33 (2017) 485-496
[110] X. Fang, J.N. Ding, N.Y. Yuan, P. Sun, M.H. Lv, G.Q. Ding, C. Zhu, Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction, Phys. Chem. Chem. Phys. 19 (2017) .
[110] X. Fang, J.N. Ding, N.Y. Yuan, P. Sun, M.H. Lv, G.Q. Ding, C. Zhu, Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction, Phys. Chem.Chem.Phys. 19 (2017) .
[111] Z. Wu, S.R. Raga, E.J. Juarez-Perez, X. Yao, Y. Jiang, L.K. Ono, Z. Ning, H. Tian, Y.B. Qi, Improved efficiency and stability of perovskite solar cells induced by functionalized hydrophobic ammonium-based additives, Adv. Mater (2017) 1703670.
[112] M.J. Yang, T.Y. Zhang, P. Schulz, Z. Li, G. Li, D.H. Kim, N.J. Guo, J.J. Berry, K. Zhu, Y.X. Zhao, Facile fabrication of large-grain films for highefficiency solar cells via -selective Ostwald ripening, Nat. Commun. 7 (2016) 12305.
[112] M.J. Yang, T.Y. Zhang, P. Schulz, Z. Li, G. Li, D.H. Kim, N.J. Guo, J.J. Berry, K. Zhu, Y.X. Zhao, Facile fabrication of large-grain films for high-hefficiency solar cells via -selective Ostwald ripening, Nat.7 (2016) 12305.7 (2016) 12305.
[113] G.D. Chai, S.Q. Luo, H. Zhou, W.A. Daoud, perovskite solar cells via spray assisted two-step deposition: impact of bromide on stability and cell performance, Mater. Des. 125 (2017) 222-229.
[113] G.D. Chai、S.Q. Luo、H. Zhou、W.A. Daoud, 通过喷雾辅助两步沉积的过氧化物太阳能电池:溴化物对稳定性和电池性能的影响,Mater.Des.125 (2017) 222-229.
[114] B.H. Hwang, C.W. Gu, D.H. Lee, J.S. Lee, Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory, Sci. Rep. 7 (2017) 43794.
[114] B.H. Hwang,C.W. Gu,D.H. Lee,J.S. Lee,卤化物混合对有机-无机杂化过氧化物存储器开关行为的影响,Sci. Rep. 7 (2017) 43794.
[115] N.N. Li, C.W. Shi, L. Li, Z.G. Zhang, C.F. Ma, Tunable Br-doping thin films for efficient planar perovskite solar cells, Superlattices Microstruct. 104 (2017) 445-450.
[115] N.N. Li, C.W. Shi, L. Li, Z.G. Zhang, C.F. Ma, Tunable Br-doping thin films for efficient planar perovskite solar cells, Superlattices Microstruct.104 (2017) 445-450.
[116] M.X. Lu, C.W. Shi, C.F. Ma, N.N. Li, L. Li, G.N. Xiao, High concentration center dot DMSO complex precursor solution of 1.7 M in DMF for highthickness and full-coverage thin films, J. Mater. Sci. Mater. Electron. 28 (2017) 5603-5608.
[116] M.X. Lu、C.W. Shi、C.F. Ma、N.N. Li、L. Li、G.N. Xiao,高浓度 中心点 DMSO 复合物前驱体溶液(1.7 M in DMF)用于高厚度和全覆盖 薄膜,J. Mater.科学材料。Electron.28 (2017) 5603-5608.
[117] F.Y. Zhang, B. Yang, X. Mao, R.X. Yang, L. Jiang, Y.J. Li, J. Xiong, Y. Yang, R.X. He, W.Q. Deng, K.L. Han, Perovskite single crystals with charge-carrier lifetimes exceeding 260 us, ACS Appl. Mater. Inter. 9 (2017) .
[117] F.Y. Zhang、B. Yang、X. Mao、R.X. Yang、L. Jiang、Y.J. Li、J. Xiong、Y. Yang、R.X. He、W.Q. Deng、K.L. Han,电荷载流子寿命超过 260 us 的 Perovskite 单晶,ACS Appl.Inter.9 (2017) .
[118] C.M. Sutter-Fella, Y.B. Li, M. Amani, J.W. Ager, F.M. Toma, E. Yablonovitch, I.D. Sharp, A. Javey, High photoluminescence quantum yield in band gap tunable bromide containing mixed halide perovskites, Nano Lett. 16 (2016) 800-806.
[118] C.M. Sutter-Fella、Y.B. Li、M. Amani、J.W. Ager、F.M. Toma、E. Yablonovitch、I.D. Sharp、A. Javey,带隙可调溴化物混合卤化物过磷酸盐的高光致发光量子产率,Nano Lett.16 (2016) 800-806.
[119] M.I. Dar, M. Abdi-Jalebi, N. Arora, T. Moehl, M. Gratzel, M.K. Nazeeruddin, Understanding the impact of bromide on the photovoltaic performance of solar cells, Adv. Mater. 27 (2015) 7221-7228.
[119] M.I. Dar, M. Abdi-Jalebi, N. Arora, T. Moehl, M. Gratzel, M.K. Nazeeruddin, Understanding the impact of bromide on the photovoltaic performance of solar cells, Adv. Mater.27 (2015) 7221-7228.
[120] J. He, T. Chen, Additive regulated crystallization and film formation of for highly efficient planar-heterojunction solar cells, J. Mater. Chem. A 3 (2015) 18514-18520.
[120] J. He, T. Chen,用于高效平面异质结太阳能电池的 的添加剂调节结晶和薄膜形成,J. Mater.Chem.A 3 (2015) 18514-18520.
[121] M.C. Kim, B.J. Kim, D.Y. Son, N.G. Park, H.S. Jung, M. Choi, Observation of enhanced hole extraction in Br concentration gradient perovskite materials, Nano Lett. 16 (2016) 5756-5763.
[121] M.C. Kim、B.J. Kim、D.Y. Son、N.G. Park、H.S. Jung、M. Choi, Observation of enhanced hole extraction in Br concentration gradient perovskite materials, Nano Lett.16 (2016) 5756-5763.
[122] G.Y. Kim, S.H. Oh, B.P. Nguyen, W. Jo, B.J. Kim, D.G. Lee, H.S. Jung, Efficient carrier separation and intriguing switching of bound charges in inorganicorganic lead halide solar cells, J. Phys. Chem. Lett. 6 (2015) 2355-2362.
[122] G.Y. Kim, S.H. Oh, B.P. Nguyen, W. Jo, B.J. Kim, D.G. Lee, H.S. Jung, Efficient carrier separation and intriguing switching of bound charges inorganicorganic lead halide solar cells, J. Phys. Chem.Lett.6 (2015) 2355-2362.
[123] W.J. Yin, H.Y. Chen, T.T. Shi, S.H. Wei, Y.F. Yan, Origin of high electronic quality in structurally disordered and the passivation effect of Cl and O at grain boundaries, Adv. Electron. Mater. 1 (2015) 1500044.
[123] W.J. Yin,H.Y. Chen,T.T. Shi,S.H. Wei,Y.F. Yan,Origin of high electronic quality in structurally disordered and passivation effect of Cl and O at grain boundaries,Adv. Electron.Mater.1 (2015) 1500044.
[124] S.Y. Ye, H.X. Rao, Z.R. Zhao, L.J. Zhang, H.L. Bao, W.H. Sun, Y.L. Li, F.D. Gu, J.Q. Wang, Z.W. Liu, Z.Q. Bian, C.H. Huang, A breakthrough efficiency of obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I, J. Am. Chem. Soc. 139 (2017) 7504-7512.
[124] S.Y. Ye, H.X. Rao, Z.R. Zhao, L.J. Zhang, H.L. Bao, W.H. Sun, Y.L. Li, F.D. Gu, J.Q. Wang, Z.W. Liu, Z.Q. Bian, C.H. Huang, A breakthrough efficiency obtained in inverver perovskite solar cells by using the efficient trap state passivator Cu(thiourea)I, J. Am.Huang, A breakthrough efficiency of obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I, J. Am. Chem.Chem.139 (2017) 7504-7512.
[125] F. Xu, T.Y. Zhang, G. Li, Y.X. Zhao, Synergetic effect of chloride doping and on perovskite-based solar cells, ChemSusChem 10 (2017) 2365-2369.
[125] F. Xu, T.Y. Zhang, G. Li, Y.X. Zhao, 氯化物掺杂和 过氧化物基太阳能电池的协同效应,ChemSusChem 10 (2017) 2365-2369
[126] Y.Q. Luo, S. Gamliel, S. Nijem, S. Aharon, M. Holt, B. Stripe, V. Rose, M.I. Bertoni, L. Etgar, D.P. Fenning, Spatially heterogeneous chlorine incorporation in organic-inorganic perovskite solar cells, Chem. Mater. 28 (2016) .
[126] Y.Q. Luo, S. Gamliel, S. Nijem, S. Aharon, M. Holt, B. Stripe, V. Rose, M.I. Bertoni, L. Etgar, D.P. Fenning, Spatially heterogeneous chlorine incorporation in organic-inorganic perovskite solar cells, Chem.Mater.28 (2016) .
[127] N. Aristidou, C. Eames, I. Sanchez-Molina, X.N. Bu, J. Kosco, M.S. Islam, S.A. Haque, Fast oxygen diffusion and iodide defects mediate oxygeninduced degradation of perovskite solar cells, Nat. Commun. 8 (2017) 15218.
[127] N. Aristidou, C. Eames, I. Sanchez-Molina, X.N. Bu, J. Kosco, M.S. Islam, S.A. Haque, Fast oxygen diffusion and iodide defects mediate oxygeninduced degradation of perovskite solar cells, Nat.8 (2017) 15218.8 (2017) 15218.
[128] W.D. Xu, J.A. McLeod, Y.G. Yang, Y.M. Wang, Z.W. Wu, S. Bai, Z.C. Yuan, T. Song, Y.S. Wang, J.J. Si, R.B. Wang, X.Y. Gao, X.P. Zhang, L.J. Liu, B.Q. Sun, Iodomethane-mediated organometal halide perovskite with record photoluminescence lifetime, ACS Appl. Mater. Inter. 8 (2016) 23181-23189.
[128] W.D. Xu, J.A. McLeod, Y.G. Yang, Y.M. Wang, Z.W. Wu, S. Bai, Z.C. Yuan, T. Song, Y.S. Wang, J.J. Si, R.B. Wang, X.Y. Gao, X.P. Zhang, L.J. Liu, B.Q. Sun, Iodomethane-mediated organometal halide perovskite with record photoluminescence lifetime, ACS Appl.Zhang, L.J. Liu, B.Q. Sun, Iodomethane-mediated organometal halide perovskite with record photoluminescence lifetime, ACS Appl.Inter.8 (2016) 23181-23189.
[129] X.M. Hou, Y. Hu, H.W. Liu, A.Y. Mei, X. Li, M. Duan, G.A. Zhang, Y.G. Rong, H.W. Han, Effect of guanidinium on mesoscopic perovskite solar cells, J. Mater. Chem. A 5 (2017) 73-78.
[129] X.M. Hou,Y. Hu,H.W. Liu,A.Y. Mei,X. Li,M. Duan,G.A. Zhang,Y.G. Rong,H.W. Han,Effect of guanidinium on mesoscopic perovskite solar cells,J. Mater. Chem.Chem.A 5 (2017) 73-78.
[130] N. De Marco, H.P. Zhou, Q. Chen, P.Y. Sun, Z.H. Liu, L. Meng, E.P. Yao, Y.S. Liu, A. Schiffer, Y. Yang, Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells, Nano Lett. 16 (2016) .
[130] N. De Marco, H.P. Zhou, Q. Chen, P.Y. Sun, Z.H. Liu, L. Meng, E.P. Yao, Y.S. Liu, A. Schiffer, Y. Yang, Guanidinium: a route to enhanced carrier lifetime and open Circuit voltage in hybrid perovskite solar cells, Nano Lett.16 (2016) .
[131] J.J. Chang, Z.H. Lin, H. Zhu, F.H. Isikgor, Q.H. Xu, C.F. Zhang, Y. Hao, J.Y. Ouyang, Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions, J. Mater. Chem. A 4 (2016) 16546-16552.
[131] J.J. Chang, Z.H. Lin, H. Zhu, F.H. Isikgor, Q.H. Xu, C.F. Zhang, Y. Hao, J.Y. Ouyang, Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ion, J. Mater. Chem.Chem.A 4 (2016) 16546-16552.
[132] R.L. Milot, R.J. Sutton, G.E. Eperon, A.A. Haghighirad, J.M. Hardigree, L. Miranda, H.J. Snaith, M.B. Johnston, L.M. Herz, Charge-carrier dynamics in 2D hybrid metal-halide perovskites, Nano Lett. 16 (2016) 7001-7007.
[132] R.L. Milot、R.J. Sutton、G.E. Eperon、A.A. Haghighirad、J.M. Hardigree、L. Miranda、H.J. Snaith、M.B. Johnston、L.M. Herz,二维混合金属卤化物过氧化物中的电荷载流子动力学,Nano Lett.16 (2016) 7001-7007.
[133] Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz, H.J. Snaith, Efficient ambientair-stable solar cells with 2D-3D heterostructured butylammoniumcaesium-formamidinium lead halide perovskites, Nat. Energy 6 (2017) 17135.
[133] Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz, H.J. Snaith, Efficient ambientair-stable solar cells with 2D-3D heterostructured butylammoniumcaesium-formamidinium lead halide perovskites, Nat.Energy 6 (2017) 17135.
[134] C. Bi, X.P. Zheng, B. Chen, H.T. Wei, J.S. Huang, Spontaneous passivation of hybrid perovskite by sodium ions from glass substrates: mysterious enhancement of device efficiency revealed, ACS Energy Lett. 2 (2017) .
[134] C. Bi, X.P. Zheng, B. Chen, H.T. Wei, J.S. Huang, Spontaneous passivation of hybrid perovskite by sodium ion from glass substrates: mysterious enhancement of device efficiency revealed, ACS Energy Lett.

[135] Y.J. Fang, J.S. Huang, Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction, Adv. Mater. 27 (2015) 2804-2810.
[135] Y.J. Fang, J.S. Huang, Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction, Adv. Mater.27 (2015) 2804-2810.
[136] P.W. Liang, C.C. Chueh, S.T. Williams, A.K.Y. Jen, Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thinfilm solar cells, Adv. Energy Mater. 5 (2015) 1402321.
[136] P.W. Liang, C.C. Chueh, S.T. Williams, A.K.Y. Jen, Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thinfilm solar cells, Adv. Energy Mater.5 (2015) 1402321.
[137] A. Abate, M. Saliba, D.J. Hollman, S.D. Stranks, K. Wojciechowski, R. Avolio G. Grancini, A. Petrozza, H.J. Snaith, Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells, Nano Lett. 14 (2014) .
[137] A. Abate, M. Saliba, D.J. Hollman, S.D. Stranks, K. Wojciechowski, R. Avolio G. Grancini, A. Petrozza, H.J. Snaith, Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells, Nano Lett.14 (2014) .
[138] N.K. Noel, A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov, A. Goriely H.J. Snaith, Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic inorganic lead halide perovskites, ACS Nano 8 (2014) 9815-9821
[138] N.K. Noel、A. Abate、S.D. Stranks、E.S. Parrott、V.M. Burlakov、A. Goriely、H.J. Snaith,通过有机无机卤化铅包晶石的路易斯碱钝化增强光致发光和太阳能电池性能,ACS Nano 8 (2014) 9815-9821
[139] Y.L. Wang, S.J. Dong, Y. Miao, D. Li, W.J. Qin, H.Q. Cao, L.Y. Yang, L. Li, S.G. Yin, BCP as additive for solution-processed PCBM electron transport layer in efficient planar heterojunction perovskite solar cells, IEEE J. Photovolt. 7 (2017) .
[139] Y.L. Wang, S.J. Dong, Y. Miao, D. Li, W.J. Qin, H.Q. Cao, L.Y. Yang, L. Li, S.G. Yin, BCP as additive for solution-processed PCBM electron transport layer in efficient planar heterojunction perovskite solar cells, IEEE J. Photovolt.7 (2017) .
[140] G. Kakavelakis, T. Maksudov, D. Konios, I. Paradisanos, G. Kioseoglou E. Stratakis, E. Kymakis, Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer, Adv. Energy Mater. 7 (2017) 1602120.
[140] G. Kakavelakis, T. Maksudov, D. Konios, I. Paradisanos, G. Kioseoglou E. Stratakis, E. Kymakis, Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer, Adv. Energy Mater.7 (2017) 1602120.
[141] Z.L. Zhu, Q.F. Xue, H.X. He, K. Jiang, Z.C. Hu, Y. Bai, T. Zhang, S. Xiao K. Gundogdu, B.R. Gautam, H. Ade, F. Huang, K.S. Wong, H.L. Yip, S.H. Yang H. Yan, A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance Adv. Sci. 3 (2016) 1500353.
[141] Z.L. Zhu, Q.F. Xue, H.X. He, K. Jiang, Z.C. Hu, Y. Bai, T. Zhang, S. Xiao K. Gundogdu, B.R. Gautam, H. Ade, F. Huang, K.S. Wong, H.L. Yip, S.H. Yang H. Yan, A PCBM electron transport layer containing small amounts dual polymer addives that enables enhanced perovskite solar cell performance Adv.Yan, A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance Adv. Sci.
[142] Q.F. Xue, Y. Bai, M.Y. Liu, R.X. Xia, Z.C. Hu, Z.M. Chen, X.F. Jiang, F. Huang S.H. Yang, Y. Matsuo, H.L. Yip, Y. Cao, Dual interfacial modifications enable high performance semitransparent perovskite solar cells with large open circuit voltage and fill factor, Adv. Energy Mater. 7 (2017) 1602333.
[142] Q.F. Xue, Y. Bai, M.Y. Liu, R.X. Xia, Z.C. Hu, Z.M. Chen, X.F. Jiang, F. Huang S.H. Yang, Y. Matsuo, H.L. Yip, Y. Cao, Dual interfacial modification enable high performance semitransparent perovskite solar cells with large open circuit voltage and fill factor, Adv. Energy Mater.7 (2017) 1602333.
[143] Q. Wang, Q. Dong, T. Li, A. Gruverman, J. Huang, Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells, Adv. Mater 28 (2016) 6734-6739
[144] H. Deng, X.K. Yang, D.D. Dong, B. Li, D. Yang, S.J. Yuan, K.K. Qiao, Y.B. Cheng J. Tang, H.S. Song, Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability, Nano Lett. 15 (2015) .
[144] H. Deng, X.K. Yang, D.D. Dong, B. Li, D. Yang, S.J. Yuan, K.K. Qiao, Y.B. Cheng J. Tang, H.S. Song, Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability, Nano Lett.15 (2015) .
[145] J. Li, J.J. Si, L. Gan, Y. Liu, Z.Z. Ye, H.P. He, Simple approach to improving the amplified spontaneous emission properties of perovskite films, ACS Appl. Mater. Inter. 8 (2016) 32978-32983.
[145] J. Li, J.J. Si, L. Gan, Y. Liu, Z.Z. Ye, H.P. He, Simple approach to improving the amplified spontaneous emission properties of perovskite films, ACS Appl.Inter.8 (2016) 32978-32983.
[146] S. Kumar, A. Dhar, Accelerated thermal-aging-induced degradation of organometal triiodide perovskite on ZnO nanostructures and its effect on hybrid photovoltaic devices, ACS Appl. Mater. Inter. 8 (2016) 18309-18320.
[146] S. Kumar, A. Dhar, ZnO 纳米结构上有机金属三碘化物包晶石的加速热老化诱导降解及其对混合光伏设备的影响,ACS Appl.Inter.8 (2016) 18309-18320.
[147] L.J. Zuo, H.X. Guo, D.W. deQuilettes, S. Jariwala, N. De Marco, S.Q. Dong, R. DeBlock, D.S. Ginger, B. Dunn, M.K. Wang, Y. Yang, Polymer-modified halide perovskite films for efficient and stable planar heterojunction sola cells, Sci. Adv. 3 (2017), e1700106.
[148] X. Huang, H. Guo, K. Wang, X.B. Liu, Ionic liquid induced surface trap-state passivation for efficient perovskite hybrid solar cells, Org. Electron. 41 (2017) .
[148] X. Huang, H. Guo, K. Wang, X.B. Liu, Ionic liquid induced surface trap-state passivation for efficient perovskite hybrid solar cells, Org.Electron.41 (2017) .
[149] F. Wang, W. Geng, Y. Zhou, H.H. Fang, C.J. Tong, M.A. Loi, L.M. Liu, N. Zhao Phenylalkylamine passivation of organolead halide perovskites enabling highefficiency and air-stable photovoltaic cells, Adv. Mater. 28 (2016) 9986-9992,
[149] F. Wang, W. Geng, Y. Zhou, H.H. Fang, C.J. Tong, M.A. Loi, L.M. Liu, N. Zhao Phenylalkylamine passivation of organolead halide perovskites enabling highhefficiency and air-stable photovoltaic cells, Adv. Mater.28 (2016) 9986-9992,
[150] Y.X. Tian, A. Merdasa, E. Unger, M. Abdellah, K.B. Zheng, S. McKibbin, A. Mikkelsen, T. Pullerits, A. Yartsev, V. Sundstrom, I.G. Scheblykin, Enhanced organo-metal halide perovskite photoluminescence from nanosized defectfree crystallites and emitting sites, J. Phys. Chem. Lett. 6 (2015) 4171-4177.
[150] Y.X. Tian、A. Merdasa、E. Unger、M. Abdellah、K.B. Zheng、S. McKibbin、A. Mikkelsen、T. Pullerits、A. Yartsev、V. Sundstrom、I.G. Scheblykin,Enhanced organo-metal halide perovskite photoluminescence from nanosized defectfree crystallites and emitting sites,J. Phys. Chem.Lett.6 (2015) 4171-4177.
[151] Z.W. Ren, A. Ng, Q. Shen, H.C. Gokkaya, J.C. Wang, L.J. Yang, W.K. Yiu, G.X. Bai A.B. Djurisic, W.W.F. Leung, J.H. Hao, W.K. Chan, C. Surya, Thermal assisted oxygen annealing for high efficiency planar perovskite sola cells, Sci. Rep. 4 (2014) 6752
[151] Z.W. Ren, A. Ng, Q. Shen, H.C. Gokkaya, J.C. Wang, L.J. Yang, W.K. Yiu, G.X. Bai A.B. Djurisic, W.W.F. Leung, J.H. Hao, W.K. Chan, C. Surya, Thermal assisted oxygen annealing for high efficiency planar perovskite sola cells, Sci Rep 4 (2014) 6752.Chan, C. Surya, 高效平面 过氧化物溶胶电池的热辅助氧退火,科学报告,4 (2014) 6752
[152] M.J. Carnie, C. Charbonneau, M.L. Davies, B. O'Regan, D.A. Worsley T.M. Watson, Performance enhancement of solution processed perovskite solar cells incorporating functionalized silica nanoparticles, J. Mater. Chem. A 2 (2014) .
[152] M.J. Carnie、C. Charbonneau、M.L. Davies、B. O'Regan、D.A. Worsley、T.M. Watson,加入功能化二氧化硅纳米颗粒的溶液加工过氧化物太阳能电池的性能提升,J. Mater. Chem.Chem.A 2 (2014) .
[153] K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate M. Saliba, W. Tress, A. Hagfeldt, M. Grätzel, Not all that glitters is gold: metal migration-induced degradation in perovskite solar cells, ACS Nano 10 (2016)
[154] E.M. Sanehira, B.J.T. de Villers, P. Schulz, M.O. Reese, S. Ferrere, K. Zhu L.Y. Lin, J.J. Berry, J.M. Luther, Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using for hole collection, ACS Energy Lett. 1 (2016) 38-45.
[154] E.M. Sanehira, B.J.T. de Villers, P. Schulz, M.O. Reese, S. Ferrere, K. Zhu L.Y. Lin, J.J. Berry, J.M. Luther, Influence of electrode interfaces on stability of perovskite solar cells: reduced degradation using for hole collection, ACS Energy Lett.1 (2016) 38-45.
[155] P.M. Da, M.Y. Cha, L. Sun, Y.Z. Wu, Z.S. Wang, G.F. Zheng, High-performance perovskite photoanode enabled by Ni passivation and catalysis, Nano Lett. 15 (2015) .
[155] P.M. Da,M.Y. Cha,L. Sun,Y.Z. Wu,Z.S. Wang,G.F. Zheng,High-performance perovskite photoanode enabled by Ni passivation and catalysis,Nano Lett.15 (2015) .
[156] C.W. Wang, S. Yang, X. Chen, T.Y. Wen, H.G. Yang, Surface-functionalized perovskite films for stable photoelectrochemical water splitting, J. Mater Chem. A 5 (2017) 910-913.
[156] C.W. Wang, S. Yang, X. Chen, T.Y. Wen, H.G. Yang, Surface-functionalized perovskite films for stable photoelectrochemical water splitting, J. Mater Chem.A 5 (2017) 910-913.
[157] R.T. Ginting, M.K. Jeon, K.J. Lee, W.Y. Jin, T.W. Kim, J.W. Kang, Degradation mechanism of planar-perovskite solar cells: correlating evolution of iodine distribution and photocurrent hysteresis, J. Mater. Chem. A 5 (2017) 4527-4534
[157] R.T. Ginting,M.K. Jeon,K.J. Lee,W.Y. Jin,T.W. Kim,J.W. Kang,Degradation mechanism of planar-perovskite solar cells:correlating evolution of iodine distribution and photocurrent hysteresis,J. Mater. Chem.Chem.A 5 (2017) 4527-4534

  1. Corresponding author. 通讯作者:
    E-mail address: hsjung1@skku.edu (H.S. Jung).
    电子邮件地址:hsjung1@skku.edu (H.S. Jung)。
  2. Fig. 7. (a) Photographs of the coated films prepared from a non-stoichiometric precursor solution with an excess of . (b) Plots of , FF and PCE as a function of in . (c-d) c-AFM images for the perovskite films with (c) and 0.06 (d) obtained at a bias voltage of 2 V in the dark, where the perovskite films were sandwiched between metal electrodes. Insets show the corresponding topographies. (e) curves of perovskite solar cell employing MAPbI 3 for (f) EQE spectrum and the integration of the value of based on the EQD data. (g) Reverse and forward scanned curves for 50 cells. (h) Histogram of the PCEs for the reverse and forward scanned data for 50 cells. Solid lines represent statistical data.
    图 7: (a) 用过量 的非化学计量前驱体溶液制备的涂层 薄膜的照片。(b) 、FF 和 PCE 与 的函数关系图。(c-d) 包晶薄膜的 c-AFM 图像,其中 (c)和 0.06 (d)是在黑暗中以 2 V 的偏置电压获得的,包晶薄膜夹在金属电极之间。插图显示了相应的拓扑图。(e) 采用 MAPbI 3 的包晶太阳能电池的 曲线 (f) EQE 光谱和基于 EQD 数据的 值积分。(g) 50 个电池的反向和正向扫描 曲线。(h) 50 个细胞的反向和正向扫描数据的 PCE 直方图。实线代表统计数据。
    Reprinted with permission from Ref. [102]. Copyright 2016 Nature publication group.
    参考文献 [102] 授权转载。[102].2016 年《自然》出版集团版权所有。