Role of heavy metals (copper (Cu), arsenic (As), cadmium (Cd), iron (Fe) and lithium (Li)) induced neurotoxicity
重金属(铜 (Cu)、砷 (As)、镉 (Cd)、铁 (Fe) 和锂 (Li))诱导神经毒性的作用
https://doi.org/10.1016/j.chemosphere.2022.134625如果:8.1 Q1 B2Get rights and content 获取权利和内容
Graphical abstract 图文摘要
Keywords 关键词
1. Introduction 一、简介
Parkinson's disease (PD) is a neurodegenerative disorder distinguished by the dopaminergic decline in the substantia nigra pars compacta of basal ganglia (Jayaramayya et al., 2020; Venkatesan et al., 2021b). The approximate incidence of PD in urbanized countries is 1% in people aged above 60 years and 3% in ≥80 years (Dhivya et al., 2016; Ullah et al., 2021). PD increasingly affects motor control symptoms like tremor, rigidity, bradykinesia, and postural imbalance, as well as non-motor issues like olfactory impairment, constipation, and insomnia (Mahalaxmi et al., 2021; Mohana Devi et al., 2020; Venkatesan et al., 2021a). Although multiple factors and mechanistic approaches have been ascertained, proper conclusive etiology of PD is not yet stated. Studies have reported that the genetic background of PD accounts for only 5–10% while in most cases environmental factors may be the influencer for the disease condition (Bjorklund et al., 2018; Dhivya and Balachandar, 2017; Iyer et al., 2021). According to an epidemiological survey heavy metals such as mercury, lead, manganese, copper, iron, aluminium, bismuth, thallium and zinc have a pivotal role in the pathogenesis of PD (Bjorklund et al., 2018). Metals are generally characterized as essential and non-essential metals which involves in biological processes such as protein modification, electron transport, oxygen transport, redox reactions, cell adhesion, to name a few. Excessive levels of metals could induce detrimental effects such as oxidative stress, protein misfolding, mitochondrial dysfunction, autophagy dysregulation and apoptosis (Wright and Baccarelli, 2007). According to a recent study, the authors have stated that these metals can also trigger the expression of genes which might result into neurodegeneration (Ullah et al., 2021). These molecular shortcomings lead to neurodegeneration which directs to motor abnormalities, cognitive disabilities, memory and learning disabilities (Chen et al., 2016; Devi et al., 2021; Venkatesan et al., 2020). Metals can contribute for diseases either through metal toxins or by decline in essential metals (Piao et al., 2017; Renu et al., 2021). Various studies have shown noteworthy relation between PD and metals exposure (Coon et al., 2006; Gorell et al., 1997). The main routes of exposure are occupational, medications, pollution and in dental metals restorations (Dadar et al., 2014, 2016; Petersen et al., 2008). Here, in this present review we address the neurotoxic potential of arsenic (As), cadmium (Cd), copper (Cu), lithium (Li) and iron (Fe) metals in neurodegeneration and its probable mechanisms in PD pathogenesis.
帕金森病(PD) 是一种神经退行性疾病,其特征是基底神经节黑质致密部多巴胺能下降( Jayaramayya 等,2020 ; Venkatesan 等,2021b )。在城市化国家,60 岁以上人群的 PD 发病率约为 1%,≥80 岁人群的 PD 发病率为 3%( Dhivya 等,2016 ; Ullah 等,2021 )。 PD 越来越多地影响运动控制症状,如震颤、僵硬、运动迟缓和姿势不平衡,以及非运动问题,如嗅觉障碍、便秘和失眠( Mahalaxmi 等,2021 ; Mohana Devi 等,2020 ; Venkatesan 等)等,2021a )。尽管多种因素和机制方法已被确定,但帕金森病的确切病因尚未明确。研究表明,PD 的遗传背景仅占 5-10%,而在大多数情况下,环境因素可能是疾病状况的影响因素( Bjorklund 等,2018 ; Dhivya 和 Balachandar,2017 ; Iyer 等,2021) )。 根据流行病学调查,汞、铅、锰、铜、铁、铝、铋、铊和锌等重金属在帕金森病的发病机制中发挥着关键作用( Bjorklund et al., 2018 )。金属通常分为必需金属和非必需金属,涉及生物过程,例如蛋白质修饰、电子传输、氧传输、氧化还原反应、细胞粘附等。金属含量过高可能会引起有害影响,例如氧化应激、蛋白质错误折叠、线粒体功能障碍、自噬失调和细胞凋亡( Wright 和 Baccarelli,2007 )。根据最近的一项研究,作者指出,这些金属还可以触发可能导致神经变性的基因表达( Ullah 等人,2021 )。这些分子缺陷会导致神经变性,从而导致运动异常、认知障碍、记忆和学习障碍( Chen et al., 2016 ; Devi et al., 2021 ; Venkatesan et al., 2020 )。 金属可能通过金属毒素或必需金属的减少而导致疾病( Piao 等,2017 ; Renu 等,2021 )。各种研究表明局部放电和金属暴露之间存在值得注意的关系( Coon 等人,2006 年; Gorell 等人,1997 年)。主要暴露途径是职业、药物、污染和牙科金属修复( Dadar 等,2014,2016 ; Petersen 等,2008 )。在这篇综述中,我们探讨了砷 (As)、镉 (Cd)、铜 (Cu)、锂 (Li) 和铁 (Fe) 金属在神经变性中的潜在神经毒性及其在 PD 发病机制中的可能机制。
2. An overview of heavy metals role on neurodegeneration
2. 重金属对神经退行性变的作用概述
The ideal levels of metals and their homeostasis in each organ is necessary for sustaining vital functions. Nutritional deficits and metabolic disorders display plausible cause-and-effect association in many detrimental conditions. Though many metal ions are essential but its excess accumulation can be extremely toxic and probably fatal. Neurodegeneration is considered to be the most frequent manifestation of metal toxicity in many neurological disorders which functions in the onset and progression of disorders including PD, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), stroke and Wilson's disease (WD) (Jomova et al., 2010). The role of metals in brain disorders is supported by the evidences from biochemical studies, molecular genetics and imaging. The studies have encouraged in understanding the function of metals as well as in the development of therapeutic approaches in treating brain disorders (White et al., 2015). The prominent metal which is involved in neurodegenerative disorders that causes substantial change is the Fe. Studies on Fe transport and its role in neurotransmission, dyshomeostasis, oxidative stress and reactive oxygen species (ROS) formation have been explored widely showing the genetic insights on altered Fe in neurodegeneration (Hare et al., 2013; Mariani et al., 2013; Muhoberac and Vidal, 2013). Other metals such as Cu have a probable role in neuronal survival and synaptic function (Castro et al., 2014; Dringen et al., 2013). Zinc (Zn) is also described to exacerbate neuronal death either by Zn influx or its deficiency (Szewczyk, 2013). Similar to Cu, Zn and Fe, metals such as manganese (Mn), mercury (Hg) have also intoxicated with high doses in the brain resulting with neurodegeneration (Chen et al., 2016).
每个器官中金属的理想水平及其稳态对于维持重要功能是必要的。营养缺乏和代谢紊乱在许多有害条件下显示出看似合理的因果关系。尽管许多金属离子都是必需的,但其过量积累可能会产生剧毒,甚至可能致命。神经退行性被认为是许多神经系统疾病中金属毒性最常见的表现,其在帕金森病、阿尔茨海默病 (AD)、肌萎缩性脊髓侧索硬化症 (ALS)、中风和威尔逊病 (WD) 等疾病的发作和进展中起作用( Jomova等人,2010 )。生化研究、分子遗传学和成像证据支持金属在脑部疾病中的作用。这些研究鼓励人们了解金属的功能以及开发治疗脑部疾病的治疗方法( White et al., 2015 )。参与神经退行性疾病并引起实质性变化的主要金属是铁。关于铁转运及其在神经传递、稳态失衡、氧化应激和活性氧(ROS)形成中的作用的研究已得到广泛探索,显示了神经退行性变中铁改变的遗传见解( Hare等人,2013年; Mariani等人,2013年), 2013 ;穆霍贝拉克和维达尔,2013 )。其他金属(例如 Cu)可能在神经元存活和突触功能中发挥作用( Castro 等人,2014 ; Dringen 等人,2013 )。锌 (Zn) 也被描述为因锌流入或缺乏而加剧神经元死亡( Szewczyk, 2013 )。与铜、锌和铁类似,锰(Mn)、汞(Hg)等金属在高剂量时也会使大脑中毒,导致神经退行性变( Chen et al., 2016 )。
According to studies it is reported that protein profiling especially in metals like Pb, AS and methylmercury (MeHg) can induce oxidative stress, RNA splicing and ubiquitin which can lead to alterations in mitochondrial dysfunction resulting into neurodegenerative diseases (Karri et al., 2020). Pb has been linked to neurodegeneration, apoptosis, epigenetic alterations, and essential metal disturbances in the brain (Bakulski et al., 2020). According to a previous study, it was found that due to accumulation of Hg in the nerve endings, ganglia and central nerve cells triggers PD pathogenesis (Bjorklund et al., 2018). Metal exposure on dopaminergic neurons enhanced lipid peroxidation and mitochondrial dysfunction in the substantia nigral region and other brain parts, indicating oxidative stress in PD (Cheng et al., 2021). In the present review the following section discusses the role of heavy metals on dopamine (DA) receptors in PD.
据研究报道,蛋白质分析,尤其是 Pb、AS 和甲基汞(MeHg) 等金属的蛋白质分析,可以诱导氧化应激、 RNA 剪接和泛素,从而导致线粒体功能障碍的改变,从而导致神经退行性疾病( Karri 等人,2020 ) 。 Pb 与大脑中的神经退行性变、细胞凋亡、表观遗传改变和必需金属紊乱有关( Bakulski 等,2020 )。根据先前的研究发现,由于汞在神经末梢、神经节和中枢神经细胞中积累,引发PD发病机制( Bjorklund et al., 2018 )。多巴胺能神经元的金属暴露增强了黑质区和其他大脑部分的脂质过氧化和线粒体功能障碍,表明 PD 中存在氧化应激( Cheng et al., 2021 )。在本综述中,以下部分讨论了重金属对 PD 中多巴胺 (DA) 受体的作用。
3. Role of heavy metals on DA receptors
3.重金属对DA受体的作用
DA receptors are a type of G protein-coupled receptor located in the central nervous system (CNS) of vertebrates. The interaction of DA with different types of DA receptors determines its function inside the cell with DA (Donthamsetti et al., 2020). The dopamine receptor D2 (DRD2) play a role in motor coordination and activity were its deletion leads to PD (Kelly et al., 1998; Yadav et al., 2009). There are some such as DA, tyrosine hydroxylase (TH), vesicular monoamine transporter 2 (VMAT2), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and DRD2 which has a crucial role in PD (de la Fuente-Fernández, 2013; Goldstein et al., 2008; Henry and Scherman, 1989). The downregulation of these biomarkers leads to PD. The heavy metals such as As, Cd, Cu and Fe act as an inhibitor/suppressor of the above said biomarkers. Exposure of As, Pb and Cd in mice affects striatal region of the brain with declination in motor-coordination (Kim et al., 2021). Similarly, As and Cd exposure downregulates the expression of TH, VMAT2, DOPAC, HVA and DRD2 in frontal cortex, striatum and hippocampus regions of the rat brain which lead to the impairment in motor functions (Gupta et al., 2018; Srivastava et al., 2018; Yadav et al., 2009, 2010). As directs apoptosis by downregulating the pAkt and glycogen synthase kinase-3 beta (GSK-3β) in DA signalling pathway of rat model (Srivastava et al., 2018; Yadav et al., 2009, 2010). In a rat brain, cadmium chloride (CdCl2) decreases the concentration of DA in the cerebral cortex, hippocampus, cerebellum which increased the free radicals and leads to neuronal degradation (Abdel Moneim et al., 2014). In another study, CdCl2 treated mice showed decreased DA level in the brain which resulted in loss of motor-coordination (Maodaa et al., 2016). In the substantia nigra of rat, the TH levels declines due to Cu toxicity which resulted in motor deterioration (Abbaoui et al., 2016). Fe dextran are used in the experimental setup to increase the Fe contrition. The Fe dextrose has the ability to downregulate the DOPAC, HVA, TH and DA levels in the substantia nigra and medial fore brain bundle region of the brain in the rat. The overload of the Fe may induce the oxidative stress that leads to the dopaminergic neuron damage (Jiang et al., 2007, 2006; Ma et al., 2012). Growing evidences shows that the heavy metals might be a biomarker in PD pathogenesis and they play a vital role by activating or supressing various pathways but there is no exact mechanistic approach in investigating the influence of heavy metals. These pieces of evidences show that heavy metals could decrease the DAT and VMAT2 expressions in the striatum which might in turn reduce the TH expression and DA levels in the brain resulting into motor co-ordination. Thus, heavy metals association with DA receptors has contributed to neurobehavioral changes which includes declined motor coordination. Hence, additional studies are essential to identify the association between heavy metals and DA receptors in PD. Detailed description of heavy metals association with DA and its receptors is represented in Table 1.
DA 受体是一种位于脊椎动物中枢神经系统(CNS) 的 G 蛋白偶联受体。 DA与不同类型的DA受体的相互作用决定了其在细胞内与DA的功能( Donthamsetti et al., 2020 )。多巴胺受体 D 2 (DRD2) 在运动协调和活动中发挥作用,其缺失会导致 PD( Kelly 等,1998 ; Yadav 等,2009 )。其中包括 DA、酪氨酸羟化酶(TH)、囊泡单胺转运蛋白 2 (VMAT2)、3,4-二羟基苯乙酸 (DOPAC)、高香草酸(HVA) 和在 PD 中起关键作用的 DRD2 ( de la Fuente-费尔南德斯,2013 ;戈德斯坦等人,2008 ;亨利和谢尔曼,1989 )。这些生物标志物的下调会导致 PD。重金属例如As、Cd、Cu和Fe充当上述生物标志物的抑制剂/抑制物。小鼠接触砷、铅和镉会影响大脑纹状体区域,导致运动协调性下降( Kim et al., 2021 )。 同样,砷和镉暴露会下调大鼠大脑额叶皮层、纹状体和海马区 TH、VMAT2、DOPAC、HVA 和 DRD2 的表达,导致运动功能受损( Gupta 等,2018 ; Srivastava 等) .,2018 ;亚达夫等人, 2009,2010 )。 As 通过下调大鼠模型 DA信号通路中的 pAkt 和糖原合酶激酶 3 beta (GSK-3β) 来指导细胞凋亡 ( Srivastava et al., 2018 ; Yadav et al., 2009 , 2010 )。在大鼠大脑中,氯化镉(CdCl 2 ) 会降低大脑皮层、海马、小脑中DA 的浓度,从而增加自由基并导致神经元退化 ( Abdel Moneim et al., 2014 )。在另一项研究中,CdCl 2治疗的小鼠大脑中 DA 水平降低,导致运动协调性丧失( Maodaa 等人,2016 )。在大鼠黑质中,由于铜毒性,TH 水平下降,导致运动能力恶化( Abbaoui et al., 2016 )。 实验装置中使用右旋糖酐铁来增加铁的浓度。 Fe葡萄糖能够下调大鼠大脑黑质和内侧前脑束区域的DOPAC、HVA、TH和DA水平。 Fe超载可能会引起氧化应激,导致多巴胺能神经元损伤( Jiang et al., 2007 , 2006 ; Ma et al., 2012 )。越来越多的证据表明,重金属可能是帕金森病发病机制中的生物标志物,它们通过激活或抑制各种途径发挥着至关重要的作用,但目前还没有确切的机制方法来研究重金属的影响。这些证据表明,重金属可以降低纹状体中的 DAT 和 VMAT2 表达,进而降低大脑中的 TH 表达和 DA 水平,从而导致运动协调。因此,重金属与 DA 受体的关联导致了神经行为的改变,其中包括运动协调性的下降。因此,有必要进行额外的研究来确定重金属与 PD 中 DA 受体之间的关联。重金属与DA及其受体相关的详细描述如表1所示。
Heavy metals & concentration 重金属及浓度 | Model | Brain region affected 受影响的大脑区域 | Upregulation/Downregulation 上调/下调 | DA & its receptors DA及其受体 | Reference |
---|---|---|---|---|---|
As-5 mg/L, Pb-50 mg/L, Cd-0.5 mg/L As-5 mg/L、Pb-50 mg/L、Cd-0.5 mg/L | Mice 小鼠 | Striatum 纹状体 | TH (↓). TH(↓)。 VMAT2 (↓). VMAT2 (↓)。 | DA (↓); DRD1 (↓); DRD2 (↓) DA(↓); DRD1(↓); DRD2 (↓) | Goldstein et al., (2008) |
Cd-5mg/kg 镉-5mg/kg | Rat 鼠 | Corpus striatum 纹状体 | TH (↓). TH(↓)。 VMAT2 (↓). VMAT2 (↓)。 | DRD1 (=) DRD2 (↓) | Kim et al., (2021) |
Cu-10 mg/kg (0.125%) Cu-10 毫克/千克 (0.125%) | Rat 鼠 | Substantia Nigra compacta 黑质致密体 | TH (↓) | Maodaa et al., (2016) | |
As-20 mg/kg As-20毫克/公斤 | Rat 鼠 | corpus striatum 纹状体 | TH (↓); VMAT2 (↓) TH(↓); VMAT2 (↓) | DRD2 (↓) | Gupta et al., (2018) |
CdCl2-6.5 mg/kg CdCl 2 -6.5毫克/千克 | Rat 鼠 | Cerebral cortex 大脑皮层 Hippocampus 海马 Cerebellum 小脑 | DA (↓) 达 (↓) | Yadav et al., (2010) | |
CdCl2-30 mg/kg CdCl 2 -30毫克/千克 | Mice 小鼠 | Brain 脑 | DA (↓) 达 (↓) | Abdel Moneim et al., (2014) | |
Iron dextran-500 mg/kg 右旋糖酐铁-500 mg/kg | Rat 鼠 | Medial fore brain bundle 内侧前脑束 | DOPAC (↓) 多帕克 (↓) HVA (↓) | DA (↓) 达 (↓) | Abbaoui et al., (2016) |
Iron dextran-500 mg/kg,10mg/time 右旋糖酐铁-500 mg/kg,10mg/次 | Rat 鼠 | Substantia Nigra 黑质 | DOPAC (↓) 多帕克 (↓) HVA (↓) | DA (↓) 达 (↓) | Jiang et al., (2006) |
Iron dextran-10mg 右旋糖酐铁-10mg | Rat 鼠 | Substantia Nigra 黑质 | TH (↓) | DA (↓) 达 (↓) | Jiang et al., (2007) |
As-20 mg/kg As-20毫克/公斤 | Rat 鼠 | Striatum 纹状体 | TH (↓) | Kelly et al., (1998) | |
As-20 mg/kg As-20毫克/公斤 | Rat 鼠 | Corpus striatum 纹状体 Frontal Cortex 额叶皮层 Hippocampus 海马 | TH (↓) DOPAC (↓) 多帕克 (↓) HVA (↓) | DA (↓) 达 (↓) | Srivastava et al., (2018) |
As: arsenic; Pb: lead; Cd: cadmium; Cu: copper; CdCl2: cadmium chloride; TH-Tyrosine Hydroxylase, DA- Dopamine, DRD1- Dopamine receptor D1, DRD2 - Dopamine receptor D2, VMAT2- Vesicular monoamine transporter 2, DOPAC – 3,4-Dihydroxyphenylacetic acid, HVA - Homovanillic acid.
如:砷; Pb:铅; Cd:镉; Cu:铜; CdCl2:氯化镉; TH-酪氨酸羟化酶、DA-多巴胺、DRD1-多巴胺受体 D1 、 DRD2-多巴胺受体 D2、VMAT2-囊泡单胺转运蛋白 2、 DOPAC – 3,4-二羟基苯乙酸、 HVA – 高香草酸。
4. Influence of heavy metals in PD
4.重金属对PD的影响
Heavy metals play a major role either as metal toxins or by deficiency of essential metals in PD etiology which has created an interesting field of research in neurotoxicology (Andrade et al., 2017). A number of the epidemiological studies have stated, long term exposure to metals had significant association with PD (Coon et al., 2006; Gorell et al., 1997; Zayed et al., 1990). Table 2 depicts the neurotoxicity effects of heavy metals in PD.
重金属在帕金森病病因学中作为金属毒素或由于必需金属缺乏而发挥着重要作用,这创造了神经毒理学研究的一个有趣领域( Andrade 等人,2017 )。许多流行病学研究表明,长期接触金属与PD有显着相关性( Coon等,2006 ; Gorell等,1997 ; Zayed等,1990 )。表 2描述了重金属对帕金森病的神经毒性作用。
SI.No SI号 | Heavy metals 重金属 | Model | Route of exposure 暴露途径 | Length of exposure 曝光时长 | Mode of action 作用方式 | Outcome of the heavy metal exposure 重金属暴露的后果 | Reference |
---|---|---|---|---|---|---|---|
1 | As 作为 | HT-22 cells HT-22细胞 | Culture medium 培养基 | 8 days 8天 | MAPK pathway MAPK通路 UPS pathway UPS途径 | Oxidative stress (↑). 氧化应激 (↑)。 Neurodegeneration (↑) 神经退行性疾病 (↑) | Karri et al., (2020) |
2 | NaAsO2 砷酸钠2 | HT-22 cell line HT-22细胞系 | Culture medium 培养基 | 8 days 8天 | UPS Pathway UPS 途径 ETC dysfunction ETC功能障碍 | Oxidative stress (↑). 氧化应激 (↑)。 Neurodegeneration (↑) 神经退行性疾病 (↑) | Cholanians et al., (2016) |
3 | NaAsO2 砷酸钠2 | Saccharomyces cerevisiae 酿酒酵母 | – | 5 h 5小时 | – | α-Syn aggregation (↑) α-Syn 聚集 (↑) Neurodegeneration (↑) 神经退行性疾病 (↑) | Karri et al., (2018) |
4 | Iron 铁 | Human 人类 | Brain 脑 | – | Lysosomal pathway 溶酶体途径 | Oxidative stress (↑) 氧化应激 (↑) Cell death (↑) 细胞死亡 (↑) | Temlett et al., (1994) |
5 | Iron 铁 | Drosophila melanogaster models 果蝇模型 | – | 14 days 14天 | Nigrostriatal pathway 黑质纹状体通路 | ROS (↑). ROS(↑)。 Survival (↓) 生存(↓) Motor coordination (↓) 运动协调性 (↓) | Cheng et al., (2015) |
6 | Iron 铁 | Caenorhabditis elegans 秀丽隐杆线虫 | – | 1–5 days 1–5 天 | – | Iron chelation (↑). 铁螯合 (↑)。 | Cruces-Sande et al., (2019) |
7 | Iron 铁 | Human 人类 | – | 10 mg/day 10毫克/天 | – | Intracellular accumulation (↑). 细胞内积累(↑)。 | Tórsdóttir et al., 1999 |
8 | FeSO4 硫酸亚铁4 | Drosophila 果蝇 | – | 15 days 15天 | – | Locomotory impairment. 运动障碍。 | Zhu et al., (2007) |
9 | Cu, Fe 铜、铁 | SH-SY5Y | – | 3 days 3天 | – | α-synuclein aggregation (↑). α-突触核蛋白聚集 (↑)。 Cell death (↑). 细胞死亡(↑)。 | Gou et al., (2021) |
10 | Cu, Fe 铜、铁 | Human 人类 | – | – | – | Oxidative stress (↑). Neuroinflammation (↑). 氧化应激 (↑)。神经炎症(↑)。 | Li et al., (2020) |
11 | Cu, Fe 铜、铁 | Human 人类 | – | – | – | Aceruloplasminemia 铜蓝蛋白血症 | Ajsuvakova et al., (2020) |
12 | Lithium 锂 | Mice 小鼠 | – | – | – | lipid peroxidation (↑), Oxidative stress (↑), striatal DA depletion (↑) 脂质过氧化 (↑)、氧化应激 (↑)、纹状体 DA 消耗 (↑) | Saedi et al., (2021) |
13 | Copper 铜 | Rat 鼠 | Intrastriatal administration 纹状体内给药 | 30 days 30天 | nigrostriatal pathway 黑质纹状体通路 | Oxidative Stress (↑) 氧化应激 (↑) | Cheng et al., (2015) |
14 | Arsenic 砷 | Neuroblastoma SH-SY5Y Cells 神经母细胞瘤 SH-SY5Y 细胞 | – | 24 h 24小时 | Oxidative stress (↑) 氧化应激 (↑) Cell death (↑). 细胞死亡(↑)。 | Lorentzon et al., (2021) | |
15 | Arsenic 砷 | Human 人类 | Soil 土壤 | 12 months 12个月 | – | soil as levels and the PD prevalence 土壤水平和 PD 患病率 | Shavali and Sens., (2008) |
16 | NaAsO2 砷酸钠2 | SH-SY5Y cells SH-SY5Y细胞 | – | 72 h 72小时 | α-synuclein pathway α-突触核蛋白途径 | α-synuclein (↑) α-突触核蛋白 (↑) Autophagy (↑) 自噬 (↑) | Mochizuki, 2019 |
17 | As2O3 作为2 O 3 | Neuro-2a 神经2a | – | 24 h 24小时 | Akt and AMPK Pathway Akt 和 AMPK 通路 | Autophagy dependent Apoptosis (↑) 自噬依赖性细胞凋亡 (↑) | Lee et al., (2021) |
18 | CdCl2 氯化镉 | PC12 and SH-SY5Y cells PC12 和 SH-SY5Y 细胞 | – | 24 h 24小时 | mTOR pathways mTOR通路 | Apoptosis (↑) 细胞凋亡 (↑) | Raj et al., (2021) |
19 | sodium arsenite 亚砷酸钠 | Rat 鼠 | Diet 饮食 | – | biogenic amines, nitric oxide 生物胺、一氧化氮 | Neurotransmitter level (↓) 神经递质水平 (↓) Neurodegeneration (↑). 神经退行性变(↑)。 | Srivastava et al., (2018) |
20 | sodium arsenate 砷酸钠 | Rat 鼠 | Diet 饮食 | 90 days 90天 | – | Eye opening delayed, 睁眼延迟, Body and brain weight (↓), neurotransmitter levels (↓) 身体和大脑重量 (↓)、神经递质水平 (↓) | Piao et al., (2005) |
21 | sodium arsenate 砷酸钠 | Rat 鼠 | Drinking water 饮用水 | – | Lipid peroxidase neuronal nitric oxide synthase 脂质过氧化物酶神经元一氧化氮合酶 | Altering the axon and nerve fiber morphology. 改变轴突和神经纤维形态。 | Singh et al., (2011) |
22 | CdCl2 氯化镉 | Rat 鼠 | – | – | – | Neuronal Degeneration (↑) 神经元变性 (↑) | Chen et al., (2008) |
23 | CdCl2 氯化镉 | Mice 小鼠 | – | 2 Weeks 2周 | Nrf-2/Ho-1 signalling regulation Nrf-2/Ho-1 信号传导调控 | oxidative stress (↑) neuroinflammation (↑) 氧化应激 (↑) 神经炎症 (↑) neurodegeneration (↑) 神经退行性疾病 (↑) | Pulido et al., (2019) |
HT-22 cells- Mouse Hippocampal Neuronal Cell Line; MAPK- mitogen-activated protein kinase; NaAsO2- Sodium arsenite; α-Syn- Alpha-synuclein; ROS- Reactive oxygen species; FeSO4- ferrous sulfate; SH-SY5Y- human neuroblastoma; Akt- Protein kinase B; AMPK- AMP-activated protein kinase; PC12- Rat pheochromocytoma; Neuro-2a-mouse neural crest-derived cell line; mTOR-mammalian target of rapamycin; As2O3- Arsenic trioxide; Nrf-2/Ho-1- nuclear factor-2 erythroid-2 and hemeoxygenase-1; CdCl2- Cadmium chloride; DF- Deferiprone; TETA -triethylenetetramine; UPS- Ubiquitin proteasome System; ETC- Electron transport chain.
HT-22细胞-小鼠海马神经元细胞系; MAPK-丝裂原激活蛋白激酶; NaAsO2-亚砷酸钠; α-Syn- α-突触核蛋白; ROS- 活性氧; FeSO4-硫酸亚铁; SH-SY5Y-人神经母细胞瘤; Akt- 蛋白激酶 B; AMPK- AMP 激活蛋白激酶; PC12-大鼠嗜铬细胞瘤; Neuro-2a-小鼠神经嵴来源的细胞系; mTOR-雷帕霉素的哺乳动物靶点; As2O3-三氧化二砷; Nrf-2/Ho-1-核因子-2、红细胞-2和血红素加氧酶-1; CdCl2-氯化镉; DF-去铁酮; TETA-三亚乙基四胺; UPS-泛素蛋白酶体系统; ETC-电子传输链。
4.1. As role in PD
4.1.作为PD中的角色
The structural mechanism alterations hypothesized for As stimulate neurotoxicity by increasing the oxidative pressure with an elevated level of active oxygen species, lipid peroxides, decline in superoxide dismutase, and decreased glutathione levels which leads to As induced neurotoxicity (Piao et al., 2005). As vulnerability is believed to alter the existence of multiple synapses such as monoamines, acetylcholine, corrosive gamma amino butyric acid, and glutamate (Singh et al., 2011). A huge decrease in monoamines like epinephrine, nor epinephrine, DA and serotonin has been noticed in the striatum, brain and hippocampus regions of the brain on a persistent vulnerability to As causing a decrease in the level DA leading to symptoms similar to those of PD (Yadav et al., 2010). As exposures have been shown to alter brain neurotransmitter levels (Tolins et al., 2014). As exposure declines DA levels and its metabolite in the brain due to an increase in ROS levels resulting into neurodegeneration (Nagaraja and Desiraju, 1993). As-initiated oxidative pressure in the brain causes oxidative DNA impairment and consequent death of the brain cell and prompts dopaminergic neuron degeneration (Singh et al., 2011). As is metabolized by omega1 glutathione transferase (GSTO1) and As (III) methyltransferase (AS3MT) which involve As methylation through the metabolism of a carbon by sadenosyl methionine (SAM) as the methyl donor by reducing GSH as the donor electron in the reductase reaction bringing about Parkinson-like manifestations (Ríos et al., 2009). As has an unexpected function with α-synuclein (αSyn) accumulation and few epidemiological studies have linked high As exposure to neuronal cell degeneration, neuronal cell death, and neurobehavioral deficits in PD (Jacobson et al., 2012; Lau et al., 2013; Mochizuki, 2019). Chronic As exposure can inhibit the mechanism of TH by inhibiting αSyn oligomers and aggregation in various parts of the brain, leading to ubiquitination increase and expression of markers such as gamma -glutamytcysteine synthetase (GCS), protein glutathione (GSH) binding, microtubule-associated protein 1A/1B-light chain 3-I and 3-II (LC3-I and LC3-II), NAD(P) Quinone Dehydrogenase-I (NQO1) and sequestosome 1 (P62) (Cholanians et al., 2016). In omics-based cell model, the impact of As, (Pb) and MeHg induced oxidative stress, mitochondrial dysfunction, ubiquitin protein system (UPS) dysfunction (Karri et al., 2018, 2020). In Saccharomyces cerevisiae model, the toxicity of As and Cd induced the aggregation and distribution of αSyn (Lorentzon et al., 2021). In SH-SY5Y model, As toxicity resulted with oxidative stress, αSyn aggregation and autophagy (Cholanians et al., 2016; Shavali and Sens, 2008). Irrigated farms with high As water increased the level of As in soil which reported to have significant association with PD prevalence in Taiwan population (Lee et al., 2021). As also induced autophagy-dependent apoptosis through Akt inactivation and AMP-activated protein kinase (AMPK) activation signalling pathways which resulted in neuronal death (Fu et al., 2021).
假设砷的结构机制改变通过增加氧化压力、活性氧、脂质过氧化物水平升高、超氧化物歧化酶下降和谷胱甘肽水平降低来刺激神经毒性,从而导致砷诱导的神经毒性( Piao等,2005 )。人们认为,脆弱性会改变多种突触的存在,例如单胺、乙酰胆碱、腐蚀性γ氨基丁酸和谷氨酸( Singh et al., 2011 )。人们注意到,在纹状体、大脑和海马区域,肾上腺素、去甲肾上腺素、DA 和血清素等单胺类物质的大幅减少,因为 As 持续脆弱,导致 DA 水平下降,从而导致类似于 PD 的症状。亚达夫等人,2010 )。由于暴露已被证明会改变大脑神经递质水平( Tolins 等人,2014 )。 由于ROS水平增加,接触导致大脑中 DA 水平及其代谢物下降,导致神经变性( Nagaraja 和 Desiraju,1993 )。大脑中初始氧化压力会导致 DNA 氧化损伤,进而导致脑细胞死亡,并促进多巴胺能神经元变性( Singh et al., 2011 )。 As 由 omega1 谷胱甘肽转移酶 (GSTO1) 和 As (III) 甲基转移酶 (AS3MT) 代谢,其中通过在还原酶反应中还原作为供体电子的谷胱甘肽 (GSH) 作为甲基供体,以腺苷甲硫氨酸(SAM) 进行碳代谢,从而实现 As甲基化带来帕金森样表现( Ríos et al., 2009 )。 As 对 α-突触核蛋白 (αSyn) 积累具有意想不到的功能,并且很少有流行病学研究表明高砷暴露与 PD 中的神经元细胞变性、神经元细胞死亡和神经行为缺陷有关( Jacobson 等,2012 ; Lau 等,2013)望月,2019 )。 慢性砷暴露可通过抑制αSyn寡聚物和在大脑各部位的聚集来抑制TH机制,导致泛素化增加和标记物的表达,例如γ-谷氨酰胺半胱氨酸合成酶(GCS)、蛋白谷胱甘肽(GSH)结合、微管相关蛋白 1A/1B-轻链 3-I 和 3-II(LC3-I 和 LC3-II)、NAD(P)醌脱氢酶-I (NQO1) 和多螯体 1 (P62)( Cholanians 等,2016 )。在基于组学的细胞模型中,As、(Pb) 和 MeHg 的影响会诱导氧化应激、线粒体功能障碍、泛素蛋白系统 (UPS) 功能障碍 ( Karri et al., 2018 , 2020 )。在酿酒酵母模型中,As和Cd的毒性诱导了αSyn的聚集和分布( Lorentzon et al., 2021 )。在SH-SY5Y模型中, As毒性导致氧化应激、αSyn聚集和自噬( Cholanians等,2016 ; Shavali和Sens,2008 )。使用高砷水的灌溉农场增加了土壤中砷的含量,据报道这与台湾人口的帕金森病患病率显着相关( Lee et al., 2021 )。 As 还通过 Akt 失活和 AMP 激活蛋白激酶 (AMPK) 激活信号通路诱导自噬依赖性细胞凋亡,从而导致神经元死亡( Fu et al., 2021 )。
4.1.1. Induction of αSyn accumulation in PD by As
4.1.1. As 诱导 PD 中 αSyn 积累
Aggregation of αSyn protein is a pathological hallmark in PD where As exposure induces αSyn secretion which might connect with the alterations in ubiquitin-proteasome, oxidative injury, or dysfunction of mitochondria to promote neurodegeneration and apoptosis (Cholanians et al., 2016). High levels of As exposure induces αSyn oligomerization and accumulation which are accelerated by DA. Low-levels of As exposure will expand αSyn oligomerization along with cell proteotoxicity and autophagy corresponding with a hindrance of autophagic motion, which further leads to cell death (Cholanians et al., 2016). The mechanisms in which As contribution to neurodegeneration are multifaceted, and it is advancing. The oxidative role of As is complex and its function in the destruction of mitochondria by transforming oxygen (O2) to superoxide anion (O2 -) results in oxidative stress and thereby causing ROS (Xu et al., 2017). The increase in ROS causes αSyn protein misfolding and aggregation. Aggregation causes decreased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and nuclear factor erythroid 2–related factor 2 (NRF2) thus resulting in mitochondrial dysfunction and activation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signalling pathway. Finally, NF-κB upregulates IFN-1, IL-1β and IL-18 which ends up in neuroinflammation and apoptosis (Rasheed et al., 2021). The increase in inflammatory cytokines leads to DA degeneration in PD. This probable mechanism is depicted in Fig. 1.
αSyn 蛋白的聚集是 PD 的病理标志,砷暴露会诱导 αSyn 分泌,这可能与泛素蛋白酶体的改变、氧化损伤或线粒体功能障碍有关,从而促进神经变性和细胞凋亡 ( Cholanians 等,2016 )。高水平的 As 暴露会诱导 αSyn寡聚和积累,而 DA 会加速这一过程。低水平的砷暴露会扩大 αSyn 寡聚化以及细胞蛋白毒性和自噬,从而阻碍自噬运动,从而进一步导致细胞死亡 ( Cholanians 等,2016 )。砷对神经退行性变的影响机制是多方面的,而且还在不断发展。 As 的氧化作用很复杂,其通过将氧 (O 2 ) 转化为超氧阴离子 (O 2 - ) 来破坏线粒体,导致氧化应激,从而产生ROS ( Xu et al., 2017 )。 ROS 的增加导致 αSyn蛋白错误折叠和聚集。聚集导致过氧化物酶体增殖物激活受体 γ 共激活剂 1-α (PGC-1α) 和核因子红细胞 2 相关因子 2 (NRF 2 )的表达减少,从而导致线粒体功能障碍和激活 B 的核因子 kappa 轻链增强子的激活细胞(NF-κB) 信号通路。 最后,NF-κB 上调 IFN-1、IL-1β 和 IL-18,最终导致神经炎症和细胞凋亡 ( Rasheed et al., 2021 )。炎症细胞因子的增加导致 PD 中 DA 变性。这种可能的机制如图 1所示。
4.2. Fe role in PD
4.2. Fe 在 PD 中的作用
Fe accumulation is said to be one of the PD pathophysiology were its decreasing levels lead to DA and 5-hydroxytryptamine (5-HT) reduction in PD with restless legs syndrome (Piao et al., 2017; Xuan et al., 2017). A previous study conducted by Sofic et al. (1988) found an elevated level of Fe in the post-mortem substantia nigra and other areas of the brain of parkinsonian patients when compared to control subjects (Sofic et al., 1988). In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in monkeys resulted in dopaminergic cell death and nigral degeneration due to Fe deposition in the substantia nigra (He et al., 2003; J. Li et al., 2020). In an African Green monkey total free Fe was examined with unilateral MPTP-induced hemi-parkinsonism with degenerating DA cells as well as the encompassing matrix and glial cells (Temlett et al., 1994). In human brain, Fe deposition was measured in PD subjects with elevated levels of Fe associated with gene expression providing the progression of neurodegeneration (Thomas et al., 2021). In catecholaminergic a-differentiated (CAD) cells and PTEN-induced kinase 1 (PINK−1) Drosophila melanogaster PD models, Fe influenced nigrostriatal pathway with exacerbating motor deficits with increased ROS (Ohiomokhare et al., 2020). In C. elegans model, Fe deposition induced neurodegeneration with ATP13A2 mutation (Anand et al., 2020). In human brain, increased Fe deposition in substantia nigra has proved to be a potential biomarker in PD (He et al., 2020). Studies have also focused on treating metals homeostasis by using derivatives of Fe chelators as a neuroprotective therapy for PD (Devos et al., 2014; Grolez et al., 2015; Martin-Bastida et al., 2017; Ortega-Arellano et al., 2021; Zhu et al., 2007).
Fe 积累被认为是 PD病理生理学之一,其水平下降会导致 PD不宁腿综合征中 DA 和 5-羟色胺 (5-HT) 减少( Piao 等,2017 ; Xuan 等,2017 )。 Sofic 等人之前进行的一项研究。 (1988)发现与对照组相比,帕金森病患者死后黑质和大脑其他区域的铁含量升高 ( Sofic 等,1988 )。在 1-甲基-4-苯基-1,2,3,6-四氢吡啶 (MPTP) 诱导的猴子帕金森病中,由于铁沉积在黑质中,导致多巴胺能细胞死亡和黑质变性( He et al., 2003 ; J. Li 等人,2020 )。在非洲绿猴中,用单侧 MPTP 诱导的偏侧帕金森病以及退化的 DA 细胞以及周围的基质和神经胶质细胞检查了总游离铁( Temlett 等人,1994 )。在人脑中,在 PD 受试者中测量了铁沉积,铁水平升高与基因表达相关,导致神经退行性变的进展( Thomas 等人,2021 )。 在儿茶酚胺能α分化 (CAD) 细胞和 PTEN 诱导激酶 1 (PINK−1)果蝇PD 模型中,Fe 影响黑质纹状体通路,并随着 ROS 的增加而加剧运动缺陷 ( Ohiomokhare 等人,2020 )。在秀丽隐杆线虫模型中,Fe 沉积诱导伴有ATP13A2突变的神经变性( Anand 等人,2020 )。在人脑中,黑质中铁沉积的增加已被证明是PD的潜在生物标志物( He et al., 2020 )。研究还集中于通过使用 Fe螯合剂衍生物作为PD 的神经保护疗法来治疗金属稳态( Devos 等人,2014 年; Grolez 等人,2015 年; Martin-Bastida 等人,2017 年; Ortega-Arellano 等人,2017 年)。 ,2021 ;朱等人,2007 )。
4.2.1. Effect of Fe chelation on ROS generation
4.2.1. Fe 螯合对 ROS 生成的影响
Oxidative stress is caused by Fe accumulation in neurons through Fenton's reaction, which generates ROS. ROS is produced in cells from a variety of sources, including Fe and its derivatives, which are required by the ROS-producing enzymes (J. Li et al., 2020). Increase in ROS causes severe damage to phospholipids, nucleic acids, and proteins, which are thought to lead to neuronal death (Carocci et al., 2018; Subramaniam et al., 2020). There are two major ROS-mediated mechanisms associated with the presence of Fe chelators: (i) formation of free radicals and (ii) lipid peroxidation, both of which may occur during chelating therapy. Thus, combining chelators and antioxidants may be beneficial in the treatment of certain Fe-related neurodegenerative diseases (Jomova and Valko, 2011). It has been proposed that neuromelanin is normally 50% saturated with Fe, which preserves its chelation capacity and protects neurons from Fe-catalysed ROS generation (Ma et al., 2012). Other studies tested Fe chelators with D2/D3 dopamine receptor agonists to treat motor symptoms using a multifunctional approach in Fe chelation and oxidative stress in MPTP treated PD model (Muñoz et al., 2016). Fe chelation process interacts with hydrogen peroxide (H2O2) with an increase in the formation of hydroxyl free radicals (OH, OH). Furthermore, Fe chelators may influence the stability and transcriptional activation of Fe-dependent hypoxia-inducible factor (HIF)-1 through a class of prolyl-4-hydroxylases (PHDs), which target HIF-1α for hydroxylation and degradation (Weinreb et al., 2013). In PD, overload of Fe decreases the activity of HIF-1α which declines the level of TH and DA thereby causing degradation of dopaminergic neurons (Fig. 2).
氧化应激是通过芬顿反应,Fe在神经元中积累,产生ROS而引起的。细胞中产生的 ROS 有多种来源,包括铁及其衍生物,这是产生 ROS 的酶所必需的(J. Li 等人,2020 )。 ROS 的增加会对磷脂、核酸和蛋白质造成严重损害,这被认为会导致神经元死亡( Carocci et al., 2018 ; Subramaniam et al., 2020 )。有两种主要的 ROS 介导机制与 Fe螯合剂的存在相关:(i)自由基的形成和 (ii)脂质过氧化,这两种机制都可能在螯合治疗期间发生。因此,结合螯合剂和抗氧化剂可能有益于治疗某些与铁相关的神经退行性疾病( Jomova 和 Valko,2011 )。有人提出,神经黑色素通常被 Fe 饱和 50%,这保留了其螯合能力并保护神经元免受 Fe 催化的 ROS 生成( Ma 等,2012 )。 其他研究测试了 Fe 螯合剂与 D2/D3多巴胺受体激动剂在 MPTP 治疗的 PD 模型中使用Fe 螯合和氧化应激的多功能方法治疗运动症状( Muñoz 等,2016 )。 Fe 螯合过程与过氧化氢 (H 2 O 2 ) 相互作用,增加羟基自由基(OH, OH) 的形成。此外,Fe 螯合剂可能通过一类脯氨酰 4-羟化酶 (PHD )影响 Fe 依赖性缺氧诱导因子 (HIF)-1 的稳定性和转录激活,该酶靶向 HIF-1α 进行羟基化和降解( Weinreb 等人) .,2013 )。在PD中,Fe超载会降低HIF-1α的活性,从而降低TH和DA的水平,从而导致多巴胺能神经元退化(图2 )。
4.2.2. Probable role of epigenetic modifications due to Fe transport in PD
4.2.2. Fe 转运导致的表观遗传修饰在 PD 中的可能作用
Fe is required for many processes in the brain (D'Mello and Kindy, 2020), were its accumulation depends on age which is yet to be identified. Recently, possible role of Fe in αSyn aggregation, oxidative stress and ubiquitin-proteasome system (UPS) in PD has been explained (Ullah et al., 2021). It was proposed that increased Fe levels in specific brain areas could be caused by alterations in brain vascularization during neurodegeneration (Weinreb et al., 2013). Transportation of Fe occurs through divalent metal transporter 1 (DMT1) which contributes Fe exchange and distribution during ageing and neurodegenerative disorders. In a study, excess Fe contributed on oxidizing DA to DA o-quinone which results in reduction of intracellular dopamine levels (Shen and Dryhurst, 1998). Although Fe homeostasis with dopamine had been investigated, mounting evidences has proposed Fe overload can constrain histone acetylation. Fe accumulation in the brain will decrease the level of H3K9 acetylation in the hippocampus which leads to memory impairment and neurodegenerative diseases (Silva et al., 2012). In a study, decrease in histone deacetylase upregulated histone acetylation in DA neurons which resulted in neurodegeneration (Park et al., 2016). There are no conclusive evidences on Fe causing histone modifications in PD hence Fe regulation in epigenetic mechanism might aid to find a cure in PD (Fig. 3).
大脑中的许多过程都需要铁( D'Mello 和 Kindy,2020 ),铁的积累取决于年龄,但尚未确定。最近,Fe 在 PD 中的 αSyn 聚集、氧化应激和泛素蛋白酶体系统 (UPS) 中的可能作用已得到解释 ( Ullah et al., 2021 )。有人提出,特定大脑区域中铁水平的增加可能是由神经退行性变期间脑血管化的改变引起的( Weinreb 等,2013 )。 Fe 的运输通过二价金属转运蛋白 1 (DMT1) 进行,二价金属转运蛋白 1 在衰老和神经退行性疾病期间有助于 Fe 的交换和分布。在一项研究中,过量的 Fe 有助于将 DA 氧化为 DA 邻醌,从而导致细胞内多巴胺水平降低( Shen 和 Dryhurst,1998 )。尽管已经研究了多巴胺与铁的稳态,但越来越多的证据表明铁过载可以限制组蛋白乙酰化。大脑中铁的积累会降低海马中 H3K9乙酰化水平,从而导致记忆障碍和神经退行性疾病( Silva et al., 2012 )。在一项研究中,组蛋白脱乙酰酶的减少会上调 DA 神经元中的组蛋白乙酰化,从而导致神经变性( Park 等人,2017)。,2016 )。没有确凿的证据表明 Fe 会导致 PD 中的组蛋白修饰,因此表观遗传机制中的 Fe 调节可能有助于找到 PD 的治疗方法(图 3 )。
4.3. Cu role in PD
4.3. Cu 在 PD 中的作用
Earlier, biochemical examinations of PD brain samples indicated decreased levels of Cu in the substantia nigra (Dexter et al., 1989; Genoud et al., 2020) and accelerate the aggregation of αSyn which is a PD biomarker (Rasia et al., 2005) and also the level of Cu transporter 1 (Ctr1) drastically reduced, which suggested Ctr1 association with PD (Davies et al., 2014). Recently, Gou and his colleagues accelerated Cu levels with intracellular αSyn inclusions in yeast and mammalian cell models, were they generated Ctr1 knocked-out transgenic mouse model with induced adeno-associated viral human- αSyn into the substantia nigra, which inhibited DA loss, and improved motor function (Gou et al., 2021). In SH-SY5Y cell line and N2a cells, Cu and Fe exposure for 3 days induced αSyn aggregation (Y. Li et al., 2020). In few studies, Cu and Fe induction in human serum revealed with redox activity, neuroinflammation, Cu dyshomeostasis, ceruloplasmin activity, αSyn aggregation and SNCA polymorphism (Ajsuvakova et al., 2020; Cheng et al., 2015; Sanyal et al., 2020; Tórsdóttir et al., 1999). Intrastriatal administration of Cu with 6-OHDA in rat model for 30 days resulted with oxidative stress and dopaminergic degeneration (Cruces-Sande et al., 2019). A probable mechanism of Cu influence on neurodegeneration is depicted in Fig. 4.
早些时候,PD脑样本的生化检查表明黑质中的Cu水平降低( Dexter等,1989 ; Genoud等,2020 )并加速PD生物标志物αSyn的聚集( Rasia等,2005 ) ),并且铜转运蛋白 1 (Ctr1) 的水平也急剧降低,这表明 Ctr1 与 PD 相关 ( Davies et al., 2014 )。最近,Gou 和他的同事在酵母和哺乳动物细胞模型中通过细胞内 αSyn 内含物加速了 Cu 水平,他们是否生成了 Ctr1 敲除转基因小鼠模型,并将腺相关病毒人类 αSyn 诱导进入黑质,从而抑制 DA 损失,以及改善运动功能( Gou et al., 2021 )。在 SH-SY5Y 细胞系和 N 2 a 细胞中,Cu 和 Fe 暴露 3 天诱导 αSyn 聚集 ( Y. Li et al., 2020 )。在少数研究中,人血清中的 Cu 和 Fe 诱导揭示了氧化还原活性、神经炎症、Cu 稳态失衡、铜蓝蛋白活性、αSyn 聚集和SNCA多态性( Ajsuvakova 等,2020 ; Cheng 等,2015 ; Sanyal 等,2020)托斯多蒂尔等人,1999 )。 在大鼠模型中纹状体内注射 6-OHDA 铜 30 天会导致氧化应激和多巴胺能变性( Cruces-Sande 等人,2019 )。 Cu 对神经变性影响的可能机制如图 4所示。
4.3.1. Cd role in PD
4.3.1.镉在 PD 中的作用
Cd is a harmful metal which is known for cancer-causing agent where its exposure could influence central nervous system (Pulido et al., 2019). Cd increases the penetration through blood-brain barrier (BBB) and stimulates oxidative stress, neuroinflammation and behavioural deficits (Khan et al., 2019). In neuronal cells, Cd exposure leads to oxidative pressure, causing protein damage and neurodegeneration which leads to PD like symptoms. Cd induced oxidative pressure is known to upgrade with free radicals accumulation in the brain and inhibit the cellular mechanism of oxidation (Unsal et al., 2015) by activating redox-sensitive transcription factors like nuclear factor-kappa B and activator protein-1 (AP-1), cJun N terminal kinase (JNK)/extracellular signal-regulated enzyme (Erk1/2) and class target of rapamycin (mTOR). These pathways are concerned in progressive dopaminergic degeneration which leads to PD (Raj et al., 2021). In PC12 and SH-SY5Y cells, Cd levels dysregulated mitogen-activated protein kinases (MAPK) and mTOR pathways which resulted in Cd-induced neurodegeneration (Chen et al., 2008). Cd exposure also results in alteration of mitochondrial dynamics by upregulating several mitochondrial genes belonging to complex II, III, IV, and V families that leads to PD (Saedi et al., 2021).
镉是一种有害金属,已知会致癌,接触镉可能会影响中枢神经系统( Pulido 等人,2019 )。镉会增加血脑屏障 (BBB) 的渗透性,并刺激氧化应激、神经炎症和行为缺陷 ( Khan et al., 2019 )。在神经元细胞中,镉暴露会导致氧化压力,导致蛋白质损伤和神经变性,从而导致 PD 样症状。众所周知,镉诱导的氧化压力会随着自由基在大脑中的积累而升级,并通过激活氧化还原敏感的转录因子(如核因子-kappa B 和激活蛋白-1 (AP))来抑制细胞氧化机制( Unsal 等,2015 ) -1)、cJun N 末端激酶 (JNK)/细胞外信号调节酶 (Erk1/2) 和雷帕霉素类靶点 (mTOR)。这些通路与进行性多巴胺能变性有关,从而导致帕金森病 ( Raj et al., 2021 )。在 PC12 和 SH-SY5Y 细胞中,Cd 水平失调有丝分裂原激活蛋白激酶 (MAPK) 和mTOR通路,导致 Cd 诱导的神经变性 ( Chen et al., 2008 )。 镉暴露还会通过上调属于复合体 II、III、IV 和 V 家族的多个线粒体基因来改变线粒体动力学,从而导致帕金森病 ( Saedi et al., 2021 )。
4.3.2. Cd impaired neurogenesis and apoptotic morphological changes in PD
4.3.2. Cd 损害 PD 中的神经发生和凋亡形态学变化
Cd-impaired neurogenesis might be caused by the decline in neuronal differentiation and axonogenesis which leads to neuronal cell death (Son et al., 2011). In human brain, the complicated molecular pathways underlying neurogenesis delivers with the probable Cd influencing targets and it is difficult to investigate the disrupted pathways (Wang and Du, 2013). Oxidative stress occurs in Cd-induced neurodegeneration and cognitive impairment. Oxidative stress is the reason behind mitochondrial membrane degradation in which results in reduced adenosine triphosphate (ATP) synthesis and release (Holmes et al., 2016). Oxidative stress also involves in neuroinflammation by activating NFκB and cyclooxygenase 2 (COX2). The NFκB/COX2 pathway is a classic neuroinflammatory signalling pathway (Dias et al., 2013). NFκB can regulate the expression of the COX2 where its increased expression has been identified in the postmortem brain of PD individuals (Teismann et al., 2003). Therefore, COX2 may further exacerbate the generation of oxidative stress in PD, thereby linking oxidative stress and neuroinflammation as the major contributors to cell death in PD (Holmes et al., 2016).
镉损伤的神经发生可能是由于神经元分化和轴突发生下降导致神经元细胞死亡( Son et al., 2011 )。在人脑中,神经发生背后复杂的分子途径传递着可能的镉影响目标,并且很难研究被破坏的途径( Wang和Du,2013 )。氧化应激发生在镉引起的神经变性和认知障碍中。氧化应激是线粒体膜降解的原因,导致三磷酸腺苷 (ATP) 合成和释放减少 ( Holmes et al., 2016 )。氧化应激还通过激活 NFκB 和环氧合酶 2 (COX2) 参与神经炎症。 NFκB/COX2通路是经典的神经炎症信号通路( Dias et al., 2013 )。 NFκB 可以调节 COX2 的表达,在 PD 个体死后大脑中已发现其表达增加( Teismann 等,2003 )。因此,COX2可能进一步加剧PD中氧化应激的产生,从而将氧化应激和神经炎症联系起来,成为PD细胞死亡的主要因素( Holmes et al., 2016 )。
Cd accumulation increased apoptotic genes and detoxifying genes expression which lead to hindrance in physiological processes (Green and Planchart, 2018). Morphologically, the cortical neurons when exposed to Cd lost their neuronal integrity, induced apoptosis with dendritic retraction. Therefore, Cd induces neuronal death by apoptosis, especially in cortical and hippocampal regions, resulting in neurodegenerative diseases (Yan et al., 2012). Prolonged activation of MAPK and mTOR signalling pathways are implicated in Cd-induced cell death and neuronal apoptosis (Chen et al., 2008). Cd can enter into neurons through voltage-gated calcium channels which significantly affects the nervous system. Upon Cd exposure, increase in ROS and free radicals leads to an increase in αSyn aggregation and proinflammatory cytokines (IL-6 and TNF-α) with a decrease in IL-10 that ends up in neuroinflammation. Neuroinflammation inhibits CREB pathway which leads to behavioural impairment, neurodegeneration and decline in neurogenesis (Namgyal et al., 2021). Similarly, Cd-induced neuronal apoptosis is associated with MAPK activation, including Erk1/2, JNK and p38 MAPK and mTOR pathway (Kyriakis and Avruch, 2001). Growth factors such as epidermal growth factors, nerve growth factors or mutagens activates Erk1/2 which leads to cell differentiation, growth and survival, whereas JNK and p38 gets activated oxidative stress and cytokines directing to inflammation and apoptosis (Fan and Chambers, 2001). During these events, Cd upregulates caspase-3 and BAX proteins and down regulates BCl-2. However, the exact mechanism behind Cd-induced neurodegeneration is poorly understood but this possible effect is portrayed in Fig. 5.
镉积累增加了凋亡基因和解毒基因的表达,从而导致生理过程受阻( Green and Planchart,2018 )。从形态上看,暴露于镉的皮层神经元失去了神经元完整性,诱导细胞凋亡和树突收缩。因此,Cd通过细胞凋亡诱导神经元死亡,特别是在皮质和海马区,导致神经退行性疾病( Yan et al., 2012 )。 MAPK 和mTOR 信号通路的长期激活与 Cd 诱导的细胞死亡和神经元凋亡有关 ( Chen et al., 2008 )。镉可以通过电压门控钙通道进入神经元,对神经系统产生显着影响。暴露于 Cd 后,ROS 和自由基的增加导致 αSyn 聚集和促炎细胞因子(IL-6 和 TNF-α)增加,同时 IL-10 减少,最终导致神经炎症。神经炎症抑制CREB通路,导致行为障碍、神经变性和神经发生下降( Namgyal 等,2021 )。类似地,Cd诱导的神经元凋亡与MAPK激活相关,包括Erk1/2、JNK和p38 MAPK和mTOR途径( Kyriakis和Avruch,2001 )。 表皮生长因子、神经生长因子或诱变剂等生长因子激活 Erk1/2,导致细胞分化、生长和存活,而 JNK 和 p38 则激活氧化应激和细胞因子,导致炎症和细胞凋亡( Fan 和 Chambers,2001 )。在这些事件期间,Cd 上调 caspase-3 和 BAX 蛋白并下调 BCl-2。然而,人们对 Cd 诱导的神经变性背后的确切机制知之甚少,但这种可能的影响如图 5所示。
4.4. Li role in PD
4.4.李在PD中的角色
Li is a stabilizing agent utilized for bipolar disorder treatment (Arraf et al., 2012). However, various studies have proposed that this cation might delay neurodegeneration process (Camins et al., 2009). A widespread of in vivo and in vitro studies confirmed neuroprotective effect of Li against different insults (Alural et al., 2015). Glutamate-induced excitotoxicity has been implicated in PD. Li increases the activity of AP-1 and cyclic AMP-response element binding protein (CREB) in the similar cerebellar granule cell (CGC) cultures and in particular cerebrum regions (Chiu and Chuang, 2010). Significant evidences supports Li for oxidative stress within the neuronal death pathogenesis and where drugs such a Li and rasagiline may additionally exert ailment-enhancing consequences on disease progression (Arraf and Youdim, 2004). Li also decreases amyloid accumulation in cell lines and mice, probably by down regulating APP levels (Sofola-Adesakin et al., 2014). Li can also impact various ageing processes that could involve in protein secretion which finally results in neurodegenerative diseases like PD (Sofola-Adesakin et al., 2014). Li has already established molecular effect reversing pathophysiological modifications together with multiplied oxidative pressure, apoptosis, infection environmental stress, glial dysfunction, neuro trophic component disorder, excitotoxicity, mitochondrial and endoplasmic reticulum (ER) dysfunction, and disruption in epigenetic mechanisms. All these pathological outcomes strongly recommend molecular disparities that leads to neurodegenerative disease (Machado-Vieira et al., 2009).
Li 是一种用于双相情感障碍治疗的稳定剂( Arraf 等人,2012 )。然而,各种研究提出,这种阳离子可能会延迟神经变性过程( Camins et al., 2009 )。广泛的体内和体外研究证实了 Li 对不同损伤的神经保护作用( Alural 等,2015 )。谷氨酸诱导的兴奋性毒性与帕金森病有关。 Li 增加了类似的小脑颗粒细胞(CGC) 培养物和特别是大脑区域中 AP-1 和环 AMP 反应元件结合蛋白 (CREB) 的活性 ( Chiu 和 Chuang, 2010 )。大量证据支持 Li 在神经元死亡发病机制中的氧化应激作用,并且 Li 和雷沙吉兰等药物还可能对疾病进展产生加重病情的影响( Arraf 和 Youdim,2004 )。 Li 还可能通过下调 APP 水平来减少细胞系和小鼠中淀粉样蛋白的积累( Sofola-Adesakin 等,2014 )。 Li 还会影响各种可能涉及蛋白质分泌的衰老过程,最终导致 PD 等神经退行性疾病( Sofola-Adesakin 等,2014 )。李已经建立了逆转病理生理学改变以及氧化压力倍增、细胞凋亡、感染环境应激、神经胶质功能障碍、神经营养成分紊乱、兴奋性毒性、线粒体和内质网(ER)功能障碍以及表观遗传机制破坏的分子效应。所有这些病理结果强烈表明分子差异会导致神经退行性疾病( Machado-Vieira 等,2009 )。
4.4.1. Autophagy regulation by Li in PD
4.4.1. PD中Li的自噬调节
Generally, Li acts as a neuroprotectant by regulating autophagy in various neuropsychiatric disorders. While in neurodegenerative disorders, Li enhances protein aggregation and causes mitochondrial degradation through autophagy. In PD, autophagy is enhanced by mTOR pathway. However, mTOR -dependent pathway might be involved in constraining GSK-3β. Li involves directly or indirectly to inhibit GSK-3β, which functions in processes such as cell death, cell cycle, and carcinogenesis, and it is a vital regulator of many signal-transduction pathways (Motoi et al., 2014). Accumulation of αSyn leads to autophagy impairment and lysosomal functions (Cuervo et al., 2004). Li targets inositol monophosphatase (IMPase) which structurally related to phosphomonoesterases and GSK-3β (Motoi et al., 2014). Recently, in a PD murine model increased GSK-3β activity was observed and thus its inhibition could treat behavioural symptoms (Vallée et al., 2021). Currently, many reviews and research studies have been discussed on autophagic regulation of Li and its therapeutic way in PD. However, Li could be against PD because of its possible inhibitory results on oxidative stress, neuroinflammation and glutamatergic pathway. Li toxicity is said to occur when high dosage is given or treated over two decades. It is reported that Li causes side effects predominantly in old age patients (Damri et al., 2020). Through, inhibition of GSK-3β and stimulation of WNT/β-catenin pathway, Li could be a ground-breaking therapeutic measure in PD. Alternatively, Li has conveyed to prevent autophagy by activating GSK-3β with dysfunction in Akt and GSK-3β immunoreactivity in hypoxia–ischemia. GSK-3β induced caspase activation either by intrinsic pathway or decrease in heat shock proteins (Li et al., 2010). This mechanistic insight is depicted in Fig. 6.
一般来说,Li 通过调节各种神经精神疾病中的自噬来充当神经保护剂。在神经退行性疾病中,Li 会增强蛋白质聚集,并通过自噬引起线粒体降解。在 PD 中,mTOR 通路增强自噬。然而,mTOR 依赖性途径可能参与限制 GSK-3β。 Li直接或间接抑制GSK-3β,GSK-3β在细胞死亡、细胞周期和癌发生等过程中发挥作用,是许多信号转导途径的重要调节因子( Motoi et al., 2014 )。 αSyn 的积累会导致自噬损伤和溶酶体功能( Cuervo 等,2004 )。 Li 靶向肌醇单磷酸酶(IMPase),其结构与磷酸单酯酶和 GSK-3β 相关 ( Motoi et al., 2014 )。最近,在 PD 小鼠模型中观察到 GSK-3β 活性增加,因此抑制它可以治疗行为症状( Vallée 等人,2021 )。目前,关于Li的自噬调节及其在PD中的治疗途径已经有很多综述和研究。然而,Li 可能具有抗 PD 作用,因为它可能对氧化应激、神经炎症和谷氨酸途径产生抑制作用。据称,当给予或治疗超过二十年的高剂量时,就会发生锂中毒。 据报道,Li 主要在老年患者中引起副作用( Damri 等人,2020 )。通过抑制 GSK-3β 和刺激 WNT/β-catenin 通路,Li 可能成为 PD 的突破性治疗措施。另外,Li 还提出通过在缺氧缺血时激活 Akt 功能障碍和 GSK-3β免疫反应性功能障碍的 GSK-3β 来防止自噬。 GSK-3β通过内在途径或热休克蛋白减少诱导caspase激活 ( Li et al., 2010 )。这种机制的见解如图 6所示。
5. Effect of heavy metals on genetic alterations in PD and neurodegeneration
5. 重金属对PD和神经退行性疾病遗传改变的影响
Genetic alterations can be deliberated as a contributing factor in individuals susceptible to heavy metals toxicity (Balachandar et al., 2010, 2011). However, a precise mechanistic strategy on these inherent factors in response to toxic substances, as well as their possibilities to be as major susceptibility factors are still need to be explored. Heavy metals and genetic mutations associated with PD alters the biochemical processes and as a result enhances PD pathology. Table 3 depicts the heavy metals associated with genetic alterations that involves in PD pathogenesis.
基因改变可以被认为是个体易受重金属毒性影响的一个促成因素( Balachandar 等,2010,2011 ) 。然而,仍然需要探索这些固有因素对有毒物质的反应的精确机制策略,以及它们作为主要易感因素的可能性。与帕金森病相关的重金属和基因突变会改变生化过程,从而增强帕金森病的病理学。表 3描述了与 PD 发病机制相关的基因改变相关的重金属。
Heavy Metals 重金属 | Genes Involved 涉及的基因 | Analytical method 分析方法 | Interaction of the Genes 基因的相互作用 | Outcome of the study 研究结果 | Reference 参考 |
---|---|---|---|---|---|
Cd and As 镉和砷 | HMOX1 | In silico analysis 计算机分析 | •↑ protein expression •↑蛋白表达 •↑mRNA expression • mRNA表达量↑ •↑ ↓ protein activity •↑ ↓ 蛋白质活性 | •Lewy body formation •路易体形成 •Oxidative stress •氧化应激 | Živančević et al., 2021 齐万切维奇等人,2021 |
GSTP1 | •↑ mRNA expression •↑ mRNA表达 | •Oxidative stress and glutathione metabolism •氧化应激和谷胱甘肽代谢 | |||
MAPT | •↑ ↓ mRNA and protein expression •↑ ↓ mRNA 和蛋白质表达 •↑ protein activity •↑蛋白质活性 | •ROS production •ROS生产 •Neuronal death •神经元死亡 | |||
NQ01 | •↑ mRNA expression and protein activity •↑ mRNA表达和蛋白质活性 | •Cellular detoxification •细胞排毒 •Neuronal death •神经元死亡 | |||
TH, TNF 肿瘤坏死因子、肿瘤坏死因子 | •↑ ↓ mRNA expression and protein expression •↑ ↓ mRNA表达和蛋白表达 | •Oxidative stress •氧化应激 •Neuroinflammation •神经炎症 •Mitochondrial dysfunction •线粒体功能障碍 | |||
SOD1, SOD2 超氧化物歧化酶1、超氧化物歧化酶2 | •↑ ↓ mRNA expression and protein expression •↑ ↓ mRNA表达和蛋白表达 | •Up regulation of SOD1 and SOD2 leads to elevated oxidative stress and mitochondrial homeostatsis •SOD1和SOD2的上调导致氧化应激和线粒体稳态升高 •Apoptosis •细胞凋亡 | |||
Cd 光盘 | IL6 | •↑ protein expression •↑蛋白表达 •↑ ↓ mRNA expression •↑ ↓ mRNA 表达 | •Folate and vitamin B12 metabolism, AGE-RAGE signalling pathway •叶酸和维生素B12代谢、AGE-RAGE信号通路 | ||
Cu 铜 | DJ-1 | •AAS analysis •原子吸收光谱分析 | •↑ protein accumulation •↑蛋白质积累 •↑ genetic mutation •↑ 基因突变 | •metal catalysed oxidation of intracellular proteins •金属催化细胞内蛋白质的氧化 | Björkblom et al., (2013) 比约克布洛姆等人,(2013) |
TH | •MTT assay •MTT测定 •RT-PCR •WB, HPLC-ECD •WB、HPLC-ECD •Flow cytometry •流式细胞仪 | •↓ cell viability •↓ 细胞活力 •↓ mRNA expression •↓ mRNA表达 •↓ DA levels •↓ DA 水平 •↓ MMP | •Mitochondrial dysfunction •线粒体功能障碍 •DA degeneration •DA变性 | Shi et al., (2008) 施等人,(2008) |
Cd: cadmium; As: arsenic; Cu: copper; HMOX1: heme oxygenase 1; GSTP1: glutathione S-transferase pi; MAPT: microtubule ssociated protein tau; NQ01: NAD(P)H dehydrogenase [quinone] 1; TH: tyrosine hydroxylase; TNF: tumor necrosis factor; SOD1: superoxide dismutase 1; SOD2: superoxide dismutase 2; IL6: interleukin 6; DJ-1: protein deglycase 1; AAS: atomic absorption spectrometry; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; RT-PCR: real time polymerase chain reaction; WB: western blotting; HPLC-ECD: high performance liquid chromatography – electrochemical detection; DA: dopamine; mRNA: messenger ribonucleic acid; ROS: reactive oxygen species.
Cd:镉;如:砷; Cu:铜; HMOX1 : 血红素加氧酶 1; GSTP1 : 谷胱甘肽 S-转移酶 pi; MAPT : 微管相关蛋白 tau; NQ01 :NAD(P)H脱氢酶[醌]1; TH : 酪氨酸羟化酶; TNF : 肿瘤坏死因子; SOD1 : 超氧化物歧化酶1; SOD2 : 超氧化物歧化酶2; IL6 :白细胞介素6; DJ-1:蛋白去糖酶1; AAS:原子吸收光谱法; MTT:3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四唑; RT-PCR:实时聚合酶链式反应; WB:蛋白质印迹; HPLC-ECD:高效液相色谱-电化学检测; DA:多巴胺; mRNA:信使核糖核酸; ROS:活性氧。
Cd plays a vital role in various gene expressions such as heme oxygenase 1 (HMOX1), glutathione S-transferase pi (GSTP1), interleukin 6 (IL6), microtubule associated protein tau (MAPT), NQ01, superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), TH, and tumor necrosis factor (TNF). Interaction of Cd and As with HMOX1, SOD1, SOD2 and NQ01 genes leads to increased mRNA expression and increased protein expression, also showing both increased and decreased protein activity which results in the Lewy body formation in dopaminergic neurons, elevated oxidative stress, mitochondrial homeostasis and cellular detoxification respectively. As enhances SOD1 and SOD2 genes to both decreased and increased in mRNA and protein expression which results in neuronal cell death that leads to apoptosis. Interaction of Cd and As with GSTP1 leads to an increased mRNA expression which results in oxidative stress and glutathione metabolism. IL6 leads to increased protein expression along with an increased and decreased mRNA expression which results in folate, vitamin B12 and AGE-RAGE signalling pathway. Contradictorily, Cd and As with MAPT leads to decreased mRNA and protein expression resulting in the ROS and neuronal death respectively. TH and TNF leads to altered levels of mRNA expression, increased protein expression resulting in oxidative stress, mitochondrial dysfunction, inflammation and programmed cell death promoting neurodegeneration. These findings have been elucidated in a toxicogenomic data mining study conducted by (Živančević et al., 2021). Binding of Cu to ceruloplasmin is decreased in PD patients that results in oxidative pressure and neurodegeneration (Baldari et al., 2020). In an in vitro study, DJ1 binds Cu and mercury which showed protective effects whereas in in vivo the concomitant addition of dopamine adducts improves metal catalysed oxidation of intracellular proteins (Björkblom et al., 2013). Cu toxicity was investigated in MES23.5 dopaminergic cells where it resulted with decreased cellular function and mitochondrial dysfunction (Shi et al., 2008). The aforementioned studies recommend the need of investigation on genetic insights due to heavy metals exposure raising the possibility of neurodegenerative condition.
Cd 在多种基因表达中起着至关重要的作用,例如血红素加氧酶 1 ( HMOX1 )、谷胱甘肽S-转移酶 pi ( GSTP1) 、白细胞介素 6 ( IL6 )、微管相关蛋白 tau ( MAPT) 、 NQ01 、超氧化物歧化酶 1 ( SOD1 )、超氧化物歧化酶2 ( SOD2 )、 TH和肿瘤坏死因子( TNF)。 Cd 和 As 与HMOX1 、 SOD1 、 SOD2和NQ01基因的相互作用导致 mRNA 表达增加和蛋白质表达增加,还显示蛋白质活性增加和减少,从而导致多巴胺能神经元中路易体的形成、氧化应激升高、线粒体稳态和分别进行细胞解毒。 As 增强SOD1和SOD2基因,使 mRNA 和蛋白质表达减少或增加,导致神经元细胞死亡,从而导致细胞凋亡。 Cd 和 As 与GSTP1的相互作用导致 mRNA 表达增加,从而导致氧化应激和谷胱甘肽代谢。 IL6导致蛋白质表达增加以及 mRNA 表达增加和减少,从而导致叶酸、维生素 B12和 AGE-RAGE 信号通路。相反,Cd 和 As 与MAPT一起导致 mRNA 和蛋白质表达降低,分别导致 ROS 和神经元死亡。 TH和TNF会导致 mRNA 表达水平改变、蛋白质表达增加,从而导致氧化应激、线粒体功能障碍、炎症和程序性细胞死亡,从而促进神经退行性变。这些发现已在 ( Živančević et al., 2021 )进行的毒物基因组数据挖掘研究中得到阐明。 PD 患者中铜与铜蓝蛋白的结合减少,导致氧化压力和神经变性 ( Baldari et al., 2020 )。在一项体外研究中, DJ1结合铜和汞,显示出保护作用,而在体内,同时添加多巴胺加合物可改善金属催化的细胞内蛋白质氧化( Björkblom 等,2013 )。在 MES23.5 多巴胺能细胞中研究了铜毒性,导致细胞功能下降和线粒体功能障碍( Shi et al., 2008 )。 上述研究表明,由于重金属暴露增加了神经退行性疾病的可能性,因此需要对遗传见解进行调查。
6. Conclusion 六、结论
Metals ions are necessary for various physiological processes which has a distinguished role in the quality of life. Moreover, metal homeostasis and its forms play a major concern in human health. Although PD pathophysiology is still unclear, metals toxicity has been found to play a role in PD pathogenesis by numerous epidemiological studies with diverse plausible mechanisms. In many studies, metals equilibrium is distressed in brain, which lead to neuronal impairment due to neuroinflammation, oxidative stress, apoptosis and mitochondrial dysfunctions that results in PD. Taken together, metals play a vital role in PD etiology and pathogenesis. By understanding the mechanistic behaviour of metals in neurodegenerative process, novel therapeutic approaches can be delineated to setback or treat PD progression.
金属离子是各种生理过程所必需的,对生活质量具有显着的作用。此外,金属稳态及其形式在人类健康中起着重要作用。尽管帕金森病的病理生理学仍不清楚,但大量流行病学研究发现金属毒性在帕金森病的发病机制中发挥作用,其机制多种多样。在许多研究中,大脑中的金属平衡受到破坏,从而导致神经炎症、氧化应激、细胞凋亡和线粒体功能障碍导致神经元损伤,从而导致帕金森病。总的来说,金属在帕金森病的病因和发病机制中起着至关重要的作用。通过了解金属在神经退行性过程中的机制行为,可以制定新的治疗方法来阻止或治疗帕金森病的进展。
Authors contribution 作者贡献
Conceptualization: BV; Data curation: AS, PS, KSA, MYP, HW, MI, DV; Funding Acquisition: BV; Investigation: MI, DV; Roles/Writing-original draft: AS, PS, KSA, MYP, HW, MI, DV; Resources: MI, DV; Supervision: BV, SG, JKR, AVG, AN, KRSSR, SKN, SP.
概念化:BV;数据管理:AS、PS、KSA、MYP、HW、MI、DV;资金收购:BV;检查:MI、DV;角色/写作-原稿:AS、PS、KSA、MYP、HW、MI、DV;资源:MI、DV;监督:BV、SG、JKR、AVG、AN、KRSSR、SKN、SP。
Funding 资金
This work was supported by the Indian Council of Medical Research DHR-GIA [grant number: GIA/2019/000276/PRCGIA], Government of India.
这项工作得到了印度政府印度医学研究委员会DHR-GIA [授权号: GIA/2019/000276/PRCGIA ] 的支持。
Declaration of competing interest
竞争利益声明
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
作者声明,他们没有已知的可能影响本文报告工作的相互竞争的经济利益或个人关系。
Acknowledgment 致谢
The author Dr. VB would like to thank Bharathiar University for providing the necessary infrastructure facility and the Indian Council of Medical Research DHR-GIA [grant number: GIA/2019/000276/PRCGIA], Government of India, New Delhi for providing necessary help in carrying out this review process.
作者 VB 博士感谢巴拉蒂亚尔大学提供必要的基础设施,感谢印度医学研究委员会DHR-GIA [授权号: GIA/2019/000276/PRCGIA ]、印度新德里政府提供必要的帮助在执行此审查过程中。
References
- Abbaoui et al., 2016Copper poisoning induces neurobehavioral features of Parkinson's disease in rat: alters dopaminergic system and locomotor performancePark. Relat. Disord., 22 (2016), Article e188
- Abdel Moneim et al., 2014The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in ratsBiol. Trace Elem. Res., 160 (2014), pp. 392-399, 10.1007/s12011-014-0066-9IF: 3.4 Q2 B3
- Ajsuvakova et al., 2020Assessment of copper, iron, zinc and manganese status and speciation in patients with Parkinson's disease: a pilot studyJ. Trace Elem. Med. Biol., 59 (2020), p. 126423
- Alural et al., 2015Lithium protects against paraquat neurotoxicity by NRF2 activation and miR-34a inhibition in SH-SY5Y cellsFront. Cell. Neurosci., 9 (2015), p. 209
- Anand et al., 2020Dysregulated iron metabolism in C. elegans catp-6/ATP13A2 mutant impairs mitochondrial functionNeurobiol. Dis., 139 (2020), p. 104786, 10.1016/j.nbd.2020.104786IF: 5.1 Q1 B2
- Andrade et al., 2017Neurotoxicity of metal mixturesAdv Neurobiol, 18 (2017), pp. 227-265, 10.1007/978-3-319-60189-2_12
- Arraf et al., 2012Lithium and oxidative stress lessons from the MPTP model of Parkinson's diseaseNeurosci. Lett., 516 (2012), pp. 57-61
- Arraf and Youdim, 2004Prevention of MPTP (N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium: involvements of Bcl-2 and BaxNeuropharmacology, 46 (2004), pp. 1130-1140
- Bakulski et al., 2020Heavy metals exposure and Alzheimer's disease and related dementiasJ. Alzheimers Dis., 76 (2020), pp. 1215-1242, 10.3233/JAD-200282IF: 3.4 Q2 B3
- Balachandar et al., 2010Evaluation of the genetic alterations in direct and indirect exposures of hexavalent chromium [Cr (VI)] in leather tanning industry workers North Arcot District, South IndiaInt. Arch. Occup. Environ. Health, 83 (2010), pp. 791-801
- Balachandar et al., 2011Evaluation of genetic alterations in inhabitants of a naturally high level background radiation and Kudankulam nuclear power project site in IndiaAsian Pac. J. Cancer Prev. APJCP, 12 (2011), pp. 35-41
- Baldari et al., 2020Current biomedical use of copper chelation therapyInt. J. Mol. Sci., 21 (2020), 10.3390/ijms21031069IF: 4.9 Q1 B2
- Björkblom et al., 2013Parkinson disease protein DJ-1 binds metals and protects against metal-induced cytotoxicityJ. Biol. Chem., 288 (2013), pp. 22809-22820, 10.1074/jbc.M113.482091IF: 4.0 Q2 B2
- Bjorklund et al., 2018Metals and Parkinson's disease: mechanisms and biochemical processesCurr. Med. Chem., 25 (2018), pp. 2198-2214, 10.2174/0929867325666171129124616IF: 3.5 Q2 B4
- Camins et al., 2009Calpains as a target for therapy of neurodegenerative diseases: putative role of lithiumCurr. Drug Metabol., 10 (2009), pp. 433-447
- Carocci et al., 2018Oxidative stress and neurodegeneration: the involvement of ironBiometals, 31 (2018), pp. 715-735, 10.1007/s10534-018-0126-2IF: 4.1 Q2 B3
- Castro et al., 2014Copper-uptake is critical for the down regulation of synapsin and dynamin induced by neocuproine: modulation of synaptic activity in hippocampal neuronsFront. Aging Neurosci., 6 (2014), p. 319, 10.3389/fnagi.2014.00319IF: 4.1 Q2 B2
- Chen et al., 2008Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5Free Radic. Biol. Med., 45 (2008), pp. 1035-1044, 10.1016/j.freeradbiomed.2008.07.011IF: 7.1 Q1 B2
- Chen et al., 2016Metals and Neurodegeneration(2016), 10.12688/f1000research.7431.1F1000Res 5
- Cheng et al., 2021Mechanisms of metal-induced mitochondrial dysfunction in neurological disordersToxics, 9 (2021), p. 142
- Cheng et al., 2015Dietary intake of iron, zinc, copper, and risk of Parkinson's disease: a meta-analysisNeurol. Sci., 36 (2015), pp. 2269-2275, 10.1007/s10072-015-2349-0IF: 2.7 Q2 B4
- Chiu and Chuang, 2010Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disordersPharmacol. Ther., 128 (2010), pp. 281-304
- Cholanians et al., 2016From the cover: arsenic induces accumulation of α-synuclein: implications for synucleinopathies and neurodegenerationToxicol. Sci., 153 (2016), pp. 271-281, 10.1093/toxsci/kfw117IF: 3.4 Q2 B3
- Coon et al., 2006Whole-body lifetime occupational lead exposure and risk of Parkinson's diseaseEnviron. Health Perspect., 114 (2006), pp. 1872-1876, 10.1289/ehp.9102IF: 10.1 Q1 B1
- Cruces-Sande et al., 2019Copper increases brain oxidative stress and enhances the ability of 6-Hydroxydopamine to cause dopaminergic degeneration in a rat model of Parkinson's diseaseMol. Neurobiol., 56 (2019), pp. 2845-2854, 10.1007/s12035-018-1274-7IF: 4.6 Q1 B2
- Cuervo et al., 2004Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagyScience, 305 (2004), pp. 1292-1295, 10.1126/science.1101738IF: 44.7 Q1 B1
- Dadar et al., 2014Evaluation of the bioaccumulation of heavy metals in white shrimp (Litopenaeus vannamei) along the Persian Gulf coastBull. Environ. Contam. Toxicol., 93 (2014), pp. 339-343, 10.1007/s00128-014-1334-2IF: 2.7 Q3 B4
- Dadar et al., 2016A comparative study of trace metals in male and female Caspian kutum (Rutilus frisii kutum) from the southern basin of Caspian SeaEnviron. Sci. Pollut. Res. Int., 23 (2016), pp. 24540-24546, 10.1007/s11356-016-6871-2
- Damri et al., 2020Is there justification to treat neurodegenerative disorders by repurposing drugs? The case of Alzheimer's disease, lithium, and autophagyInt. J. Mol. Sci., 22 (2020), 10.3390/ijms22010189IF: 4.9 Q1 B2
- Davies et al., 2014Copper pathology in vulnerable brain regions in Parkinson's diseaseNeurobiol. Aging, 35 (2014), pp. 858-866
- de la Fuente-Fernández, 2013Imaging of dopamine in PD and implications for motor and neuropsychiatric manifestations of PDFront. Neurol., 4 (2013), p. 90, 10.3389/fneur.2013.00090IF: 2.7 Q2 B3
- Devi et al., 2021Mitochondrial function and epigenetic outlook in Leber's Hereditary optic Neuropathy (LHON)Neurol. Perspect., 1 (2021), pp. 220-232
- Devos et al., 2014Targeting chelatable iron as a therapeutic modality in Parkinson's diseaseAntioxidants Redox Signal., 21 (2014), pp. 195-210, 10.1089/ars.2013.5593IF: 5.9 Q1 B2
- Dexter et al., 1989Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's diseaseJ. Neurochem., 52 (1989), pp. 1830-1836, 10.1111/j.1471-4159.1989.tb07264.xIF: 4.2 Q2 B3
- Dhivya and Balachandar, 2017Cell replacement therapy is the remedial solution for treating Parkinson's diseaseStem Cell Invest., 4 (2017)No 6 (June 2017): Stem Cell Investigation
- Dhivya et al., 2016Screening of genetic mutations in early onset parkinsonism patients: a family based study in Tamil Nadu populationnull, 16 (2016), pp. 158-165, 10.1080/09723757.2016.11886293IF: <0.1 Q4 B4
- Dias et al., 2013The role of oxidative stress in Parkinson's diseaseJ. Parkinsons Dis., 3 (2013), pp. 461-491
- D'Mello and Kindy, 2020Overdosing on iron: elevated iron and degenerative brain disordersExp. Biol. Med., 245 (2020), pp. 1444-1473, 10.1177/1535370220953065IF: 2.8 Q2 B4
- Donthamsetti et al., 2020Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivationMol. Psychiatr., 25 (2020), pp. 2086-2100, 10.1038/s41380-018-0212-4IF: 9.6 Q1 B1
- Dringen et al., 2013Copper metabolism of astrocytesFront. Aging Neurosci., 5 (2013), p. 9, 10.3389/fnagi.2013.00009IF: 4.1 Q2 B2
- Fan and Chambers, 2001Role of mitogen-activated protein kinases in the response of tumor cells to chemotherapyDrug Resist. Updates, 4 (2001), pp. 253-267, 10.1054/drup.2001.0214IF: 15.8 Q1 B1
- Fu et al., 2021Arsenic induces autophagy-dependent apoptosis via Akt inactivation and AMPK activation signaling pathways leading to neuronal cell deathNeurotoxicology, 85 (2021), pp. 133-144, 10.1016/j.neuro.2021.05.008IF: 3.4 Q2 B3
- Genoud et al., 2020Meta‐Analysis of copper and iron in Parkinson's disease brain and biofluidsMov. Disord., 35 (2020), pp. 662-671
- Goldstein et al., 2008Biomarkers to detect central dopamine deficiency and distinguish Parkinson disease from multiple system atrophyPark. Relat. Disord., 14 (2008), pp. 600-607, 10.1016/j.parkreldis.2008.01.010IF: 3.1 Q2 B3
- Gorell et al., 1997Occupational exposures to metals as risk factors for Parkinson's diseaseNeurology, 48 (1997), pp. 650-658, 10.1212/wnl.48.3.650IF: 7.7 Q1 B1
- Gou et al., 2021Inhibition of copper transporter 1 prevents α-synuclein pathology and alleviates nigrostriatal degeneration in AAV-based mouse model of Parkinson's diseaseRedox Biol., 38 (2021), p. 101795, 10.1016/j.redox.2020.101795IF: 10.7 Q1 B1
- Green and Planchart, 2018The neurological toxicity of heavy metals: a fish perspectiveComp. Biochem. Physiol. C Toxicol. Pharmacol., 208 (2018), pp. 12-19, 10.1016/j.cbpc.2017.11.008IF: 3.9 Q1 B3
- Grolez et al., 2015Ceruloplasmin activity and iron chelation treatment of patients with Parkinson's diseaseBMC Neurol., 15 (2015), p. 74, 10.1186/s12883-015-0331-3IF: 2.2 Q3 B3
- Gupta et al., 2018Involvement of PKA/DARPP-32/PP1α and β- arrestin/Akt/GSK-3β signaling in cadmium-induced DA-D2 receptor-mediated motor dysfunctions: protective role of quercetinSci. Rep., 8 (2018), p. 2528, 10.1038/s41598-018-20342-zIF: 3.8 Q1 B2
- Hare et al., 2013A delicate balance: iron metabolism and diseases of the brainFront. Aging Neurosci., 5 (2013), p. 34, 10.3389/fnagi.2013.00034IF: 4.1 Q2 B2
- He et al., 2020Increased iron-deposition in lateral-ventral substantia nigra pars compacta: a promising neuroimaging marker for Parkinson's diseaseNeuroimage Clin., 28 (2020), p. 102391, 10.1016/j.nicl.2020.102391IF: 3.4 Q2 B2
- He et al., 2003Dopaminergic cell death precedes iron elevation in MPTP-injected monkeysFree Radic. Biol. Med., 35 (2003), pp. 540-547
- Henry and Scherman, 1989Radioligands of the vesicular monoamine transporter and their use as markers of monoamine storage vesiclesBiochem. Pharmacol., 38 (1989), pp. 2395-2404, 10.1016/0006-2952(89)90082-8IF: 5.3 Q1 B2
- Holmes et al., 2016Effects of oxidative stress and testosterone on pro-inflammatory signaling in a female rat dopaminergic neuronal cell lineEndocrinology, 157 (2016), pp. 2824-2835, 10.1210/en.2015-1738IF: 3.8 Q2 B3
- Iyer et al., 2021Role of RhoA-ROCK signaling in Parkinson's diseaseEur. J. Pharmacol., 894 (2021), p. 173815, 10.1016/j.ejphar.2020.173815IF: 4.2 Q1 B3
- Jacobson et al., 2012Arsenite interferes with protein folding and triggers formation of protein aggregates in yeastJ. Cell Sci., 125 (2012), pp. 5073-5083, 10.1242/jcs.107029IF: 3.3 Q3 B3
- Jayaramayya et al., 2020Unraveling correlative roles of dopamine transporter (DAT) and Parkin in Parkinson's disease (PD) - a road to discovery?Brain Res. Bull., 157 (2020), pp. 169-179, 10.1016/j.brainresbull.2020.02.001IF: 3.5 Q2 B3
- Jiang et al., 2006Neuroprotective effects of iron chelator Desferal on dopaminergic neurons in the substantia nigra of rats with iron-overloadNeurochem. Int., 49 (2006), pp. 605-609, 10.1016/j.neuint.2006.04.015IF: 4.4 Q1 B3
- Jiang et al., 2007Peripheral iron dextran induced degeneration of dopaminergic neurons in rat substantia nigraNeurochem. Int., 51 (2007), pp. 32-36, 10.1016/j.neuint.2007.03.006IF: 4.4 Q1 B3
- Jomova and Valko, 2011Importance of iron chelation in free radical-induced oxidative stress and human diseaseCurr. Pharmaceut. Des., 17 (2011), pp. 3460-3473, 10.2174/138161211798072463IF: 2.6 Q2 B4
- Jomova et al., 2010Metals, oxidative stress and neurodegenerative disordersMol. Cell. Biochem., 345 (2010), pp. 91-104, 10.1007/s11010-010-0563-xIF: 3.5 Q3 B2
- Karri et al., 2018Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: deepening into the molecular mechanism of neurodegenerative diseasesJ. Proteonomics, 187 (2018), pp. 106-125, 10.1016/j.jprot.2018.06.020IF: 2.8 Q2 B2
- Karri et al., 2020A systems toxicology approach to compare the heavy metal mixtures (Pb, As, MeHg) impact in neurodegenerative diseasesFood Chem. Toxicol., 139 (2020), p. 111257, 10.1016/j.fct.2020.111257IF: 3.9 Q1 B3
- Kelly et al., 1998Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptationsJ. Neurosci., 18 (1998), pp. 3470-3479, 10.1523/JNEUROSCI.18-09-03470.1998IF: 4.4 Q1 B2
- Khan et al., 2019Caffeine modulates cadmium-induced oxidative stress, neuroinflammation, and cognitive impairments by regulating Nrf-2/HO-1 in vivo and in vitroJ. Clin. Med., 8 (2019), 10.3390/jcm8050680IF: 3.0 Q1 B3
- Kim et al., 2021Combined exposure to metals in drinking water alters the dopamine system in mouse striatumInt. J. Environ. Res. Publ. Health, 18 (2021), 10.3390/ijerph18126558
- Kyriakis and Avruch, 2001Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammationPhysiol. Rev., 81 (2001), pp. 807-869, 10.1152/physrev.2001.81.2.807IF: 29.9 Q1 B1
- Lau et al., 2013Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent mannerMol. Cell Biol., 33 (2013), pp. 2436-2446, 10.1128/MCB.01748-12IF: 3.2 Q2 B2
- Lee et al., 2021Increased prevalence of Parkinson's disease in soils with high arsenic levelsPark. Relat. Disord., 88 (2021), pp. 19-23, 10.1016/j.parkreldis.2021.05.029IF: 3.1 Q2 B3
- Li et al., 2020Ferroptosis: past, present and futureCell Death Dis., 11 (2020), p. 88, 10.1038/s41419-020-2298-2IF: 8.1 Q1 B1
- Li et al., 2010Lithium reduces apoptosis and autophagy after neonatal hypoxia-ischemiaCell Death Dis., 1 (2010), Article e56, 10.1038/cddis.2010.33IF: 8.1 Q1 B1
- Li et al., 2020Copper and iron ions accelerate the prion-like propagation of α-synuclein: a vicious cycle in Parkinson's diseaseInt. J. Biol. Macromol., 163 (2020), pp. 562-573
- Lorentzon et al., 2021Effects of the toxic metals arsenite and cadmium on α-synuclein aggregation in vitro and in cellsInt. J. Mol. Sci., 22 (2021), 10.3390/ijms222111455IF: 4.9 Q1 B2
- Ma et al., 2012Nifedipine prevents iron accumulation and reverses iron-overload-induced dopamine neuron degeneration in the substantia nigra of ratsNeurotox. Res., 22 (2012), pp. 274-279, 10.1007/s12640-012-9309-8IF: 2.9 Q2 B3
- Machado‐Vieira et al., 2009The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesisBipolar Disord., 11 (2009), pp. 92-109
- Mahalaxmi et al., 2021Dysfunction in mitochondrial electron transport chain complex I, pyruvate dehydrogenase activity, and mutations in ND1 and ND4 gene in autism spectrum disorder subjects from Tamil Nadu population, IndiaMol. Neurobiol., 58 (2021), pp. 5303-5311, 10.1007/s12035-021-02492-wIF: 4.6 Q1 B2
- Maodaa et al., 2016Effect of parsley (Petroselinum crispum, Apiaceae) juice against cadmium neurotoxicity in albino mice (Mus musculus)Behav. Brain Funct., 12 (2016), p. 6, 10.1186/s12993-016-0090-3IF: 4.7 Q1 B2
- Mariani et al., 2013Effects of hemochromatosis and transferrin gene mutations on peripheral iron dyshomeostasis in mild cognitive impairment and Alzheimer's and Parkinson's diseasesFront. Aging Neurosci., 5 (2013), p. 37, 10.3389/fnagi.2013.00037IF: 4.1 Q2 B2
- Martin-Bastida et al., 2017Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson's diseaseSci. Rep., 7 (2017), p. 1398, 10.1038/s41598-017-01402-2IF: 3.8 Q1 B2
- Mochizuki, 2019Arsenic neurotoxicity in humansInt. J. Mol. Sci., 20 (2019), p. 3418
- Mohana Devi et al., 2020Does retina play a role in Parkinson's Disease?Acta Neurol. Belg., 120 (2020), pp. 257-265, 10.1007/s13760-020-01274-wIF: 2.0 Q3 B4
- Motoi et al., 2014Lithium and autophagyACS Chem. Neurosci., 5 (2014), pp. 434-442, 10.1021/cn500056qIF: 4.1 Q2 B3
- Muhoberac and Vidal, 2013Abnormal iron homeostasis and neurodegenerationFront. Aging Neurosci., 5 (2013), p. 32, 10.3389/fnagi.2013.00032IF: 4.1 Q2 B2
- Muñoz et al., 2016Parkinson's disease: the mitochondria-iron linkParkinsons Dis. (2016), p. 7049108, 10.1155/2016/7049108IF: 2.1 Q3 B42016
- Nagaraja and Desiraju, 1993Regional alterations in the levels of brain biogenic amines, glutamate, GABA, and GAD activity due to chronic consumption of inorganic arsenic in developing and adult ratsBull. Environ. Contam. Toxicol., 50 (1993), pp. 100-107, 10.1007/BF00196547IF: 2.7 Q3 B4
- Namgyal et al., 2021Curcumin Ameliorates the Cd-induced anxiety-like behavior in mice by regulating oxidative stress and neuro-inflammatory proteins in the prefrontal cortex region of the brainAntioxidants, 10 (2021), 10.3390/antiox10111710IF: 6.0 Q1 B2
- Ohiomokhare et al., 2020The pathopharmacological interplay between vanadium and iron in Parkinson's disease modelsInt. J. Mol. Sci., 21 (2020), 10.3390/ijms21186719IF: 4.9 Q1 B2
- Ortega-Arellano et al., 2021Melatonin increases life span, restores the locomotor activity, and reduces lipid peroxidation (LPO) in transgenic knockdown parkin Drosophila melanogaster exposed to paraquat or paraquat/ironNeurotox. Res., 39 (2021), pp. 1551-1563, 10.1007/s12640-021-00397-zIF: 2.9 Q2 B3
- Park et al., 2016Regulation of histone acetylation by autophagy in Parkinson diseaseJ. Biol. Chem., 291 (2016), pp. 3531-3540, 10.1074/jbc.M115.675488IF: 4.0 Q2 B2
- Petersen et al., 2008Impact of dietary exposure to food contaminants on the risk of Parkinson's diseaseNeurotoxicology, 29 (2008), pp. 584-590, 10.1016/j.neuro.2008.03.001IF: 3.4 Q2 B3
- Piao et al., 2005Oxidative DNA damage in relation to neurotoxicity in the brain of mice exposed to arsenic at environmentally relevant levelsJ. Occup. Health, 47 (2005), pp. 445-449, 10.1539/joh.47.445IF: 2.6 Q2 B4
- Piao et al., 2017Restless legs syndrome in Parkinson disease: clinical characteristics, abnormal iron metabolism and altered neurotransmittersSci. Rep., 7 (2017), p. 10547, 10.1038/s41598-017-10593-7IF: 3.8 Q1 B2
- Pulido et al., 2019The administration of cadmium for 2, 3 and 4 Months causes a loss of recognition memory, promotes neuronal hypotrophy and apoptosis in the Hippocampus of ratsNeurochem. Res., 44 (2019), pp. 485-497, 10.1007/s11064-018-02703-2IF: 3.7 Q2 B3
- Raj et al., 2021Metals associated neurodegeneration in Parkinson's disease: insight to physiological, pathological mechanisms and managementNeurosci. Lett., 753 (2021), p. 135873, 10.1016/j.neulet.2021.135873IF: 2.5 Q3 B4
- Rasheed et al., 2021Epigenetic regulation of neuroinflammation in Parkinson's diseaseInt. J. Mol. Sci., 22 (2021), 10.3390/ijms22094956IF: 4.9 Q1 B2
- Rasia et al., 2005Structural characterization of copper(II) binding to alpha-synuclein: insights into the bioinorganic chemistry of Parkinson's diseaseProc. Natl. Acad. Sci. U. S. A., 102 (2005), pp. 4294-4299, 10.1073/pnas.0407881102IF: 9.4 Q1 B1
- Renu et al., 2021Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, Nickel and cadmium) induced hepatotoxicity–A reviewChemosphere (2021), p. 129735
- Ríos et al., 2009Decreased nitric oxide markers and morphological changes in the brain of arsenic-exposed ratsToxicology, 261 (2009), pp. 68-75, 10.1016/j.tox.2009.04.055IF: 4.8 Q1 B3
- Saedi et al., 2021Prepubertal exposure to high dose of cadmium induces hypothalamic injury through transcriptome profiling alteration and neuronal degeneration in female ratsChem. Biol. Interact., 337 (2021), p. 109379, 10.1016/j.cbi.2021.109379IF: 4.7 Q1 B2
- Sanyal et al., 2020PARK2 and PARK7 gene polymorphisms as risk factors associated with serum element concentrations and clinical symptoms of Parkinson's diseaseCell. Mol. Neurobiol., 40 (2020), pp. 357-367
- Shavali and Sens, 2008Synergistic neurotoxic effects of arsenic and dopamine in human dopaminergic neuroblastoma SH-SY5Y cellsToxicol. Sci., 102 (2008), pp. 254-261, 10.1093/toxsci/kfm302IF: 3.4 Q2 B3
- Shen and Dryhurst, 1998Iron- and manganese-catalyzed autoxidation of dopamine in the presence of L-cysteine: possible insights into iron- and manganese-mediated dopaminergic neurotoxicityChem. Res. Toxicol., 11 (1998), pp. 824-837, 10.1021/tx980036tIF: 3.7 Q2 B3
- Shi et al., 2008Mitochondria dysfunction was involved in copper-induced toxicity in MES23.5 cellsNeurosci. Bull., 24 (2008), pp. 79-83, 10.1007/s12264-008-0079-5IF: 5.9 Q1 B2
- Silva et al., 2012Memory impairment induced by brain iron overload is accompanied by reduced H3K9 acetylation and ameliorated by sodium butyrateNeuroscience, 200 (2012), pp. 42-49, 10.1016/j.neuroscience.2011.10.038IF: 2.9 Q2 B3
- Singh et al., 2011Mechanisms pertaining to arsenic toxicityToxicol. Int., 18 (2011), pp. 87-93, 10.4103/0971-6580.84258
- Sofic et al., 1988Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brainJ. Neural. Transm., 74 (1988), pp. 199-205
- Sofola-Adesakin et al., 2014Lithium suppresses Aβ pathology by inhibiting translation in an adult Drosophila model of Alzheimer's diseaseFront. Aging Neurosci., 6 (2014), p. 190
- Son et al., 2011Biomarker discovery and proteomic evaluation of cadmium toxicity on a collembolan species, Paronychiurus kimi (Lee)Proteomics, 11 (2011), pp. 2294-2307, 10.1002/pmic.200900690IF: 3.4 Q2 B4
- Srivastava et al., 2018Protective effect of curcumin by modulating BDNF/DARPP32/CREB in arsenic-induced alterations in dopaminergic signaling in rat corpus striatumMol. Neurobiol., 55 (2018), pp. 445-461, 10.1007/s12035-016-0288-2IF: 4.6 Q1 B2
- Subramaniam et al., 2020Oxidative Stress and Mitochondrial Transfer: A New Dimension towards Ocular DiseasesGenes & Diseases (2020)
- Szewczyk, 2013Zinc homeostasis and neurodegenerative disordersFront. Aging Neurosci., 5 (2013), p. 33, 10.3389/fnagi.2013.00033IF: 4.1 Q2 B2
- Teismann et al., 2003Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegenerationProc. Natl. Acad. Sci. U. S. A., 100 (2003), pp. 5473-5478, 10.1073/pnas.0837397100IF: 9.4 Q1 B1
- Temlett et al., 1994Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysisJ. Neurochem., 62 (1994), pp. 134-146, 10.1046/j.1471-4159.1994.62010134.xIF: 4.2 Q2 B3
- Thomas et al., 2021Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson's diseaseBrain, 144 (2021), pp. 1787-1798, 10.1093/brain/awab084IF: 10.6 Q1 B1
- Tolins et al., 2014The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposureAnn. Global Health, 80 (2014), pp. 303-314
- Tórsdóttir et al., 1999Copper, ceruloplasmin, superoxide dismutase and iron parameters in Parkinson's diseasePharmacol. Toxicol., 85 (1999), pp. 239-243, 10.1111/j.1600-0773.1999.tb02015.x
- Ullah et al., 2021Metal elements and pesticides as risk factors for Parkinson's disease - a reviewToxicol Rep, 8 (2021), pp. 607-616, 10.1016/j.toxrep.2021.03.009
- Unsal et al., 2015Role of quercetin in cadmium-induced oxidative stress, neuronal damage, and apoptosis in ratsToxicol. Ind. Health, 31 (2015), pp. 1106-1115, 10.1177/0748233713486960IF: 1.7 Q3 B4
- Vallée et al., 2021Parkinson's disease: potential actions of lithium by targeting the WNT/β-Catenin pathway, oxidative stress, inflammation and glutamatergic pathwayCells, 10 (2021), 10.3390/cells10020230IF: 5.1 Q2 B2
- Venkatesan et al., 2021aA late-onset Parkinson's disease in tribes in India – a case reportBrain Disorders, 3 (2021), p. 100015, 10.1016/j.dscb.2021.100015
- Venkatesan et al., 2020Kynurenine pathway in Parkinson's disease-An updateeNeurologicalSci, 21 (2020), p. 100270, 10.1016/j.ensci.2020.100270
- Venkatesan et al., 2021bThe association between multiple risk factors, clinical correlations and molecular insights in Parkinson's disease patients from Tamil Nadu population, IndiaNeurosci. Lett., 755 (2021), p. 135903, 10.1016/j.neulet.2021.135903IF: 2.5 Q3 B4
- Wang and Du, 2013Cadmium and its neurotoxic effectsOxid. Med. Cell. Longev. (2013), p. 898034, 10.1155/2013/8980342013
- Weinreb et al., 2013Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelatorsFree Radic. Biol. Med., 62 (2013), pp. 52-64, 10.1016/j.freeradbiomed.2013.01.017IF: 7.1 Q1 B2
- White et al., 2015Metals and neurodegeneration: restoring the balanceFront. Aging Neurosci., 7 (2015), p. 127
- Wright and Baccarelli, 2007Metals and neurotoxicologyJ. Nutr., 137 (2007), pp. 2809-2813, 10.1093/jn/137.12.2809IF: 3.7 Q2 B3
- Xu et al., 2017Oxidative damage induced by arsenic in mice or rats: a systematic review and meta-analysisBiol. Trace Elem. Res., 176 (2017), pp. 154-175, 10.1007/s12011-016-0810-4IF: 3.4 Q2 B3
- Xuan et al., 2017Different iron deposition patterns in early- and middle-late-onset Parkinson's diseasePark. Relat. Disord., 44 (2017), pp. 23-27, 10.1016/j.parkreldis.2017.08.013IF: 3.1 Q2 B3
- Yadav et al., 2009Attenuation of arsenic neurotoxicity by curcumin in ratsToxicol. Appl. Pharmacol., 240 (2009), pp. 367-376, 10.1016/j.taap.2009.07.017IF: 3.3 Q2 B3
- Yadav et al., 2010Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in ratsNeurotoxicology, 31 (2010), pp. 533-539, 10.1016/j.neuro.2010.05.001IF: 3.4 Q2 B3
- Yan et al., 2012Oxidative stress and apoptotic changes of rat cerebral cortical neurons exposed to cadmium in vitroBiomed. Environ. Sci., 25 (2012), pp. 172-181, 10.3967/0895-3988.2012.02.008
- Zayed et al., 1990[Environmental factors in the etiology of Parkinson's disease]Can. J. Neurol. Sci., 17 (1990), pp. 286-291
- Zhu et al., 2007Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelatorsFaseb. J., 21 (2007), pp. 3835-3844, 10.1096/fj.07-8386comIF: 4.4 Q1 B2
- Živančević et al., 2021Elucidating the influence of environmentally relevant toxic metal mixture on molecular mechanisms involved in the development of neurodegenerative diseases: in silico toxicogenomic data-miningEnviron. Res., 194 (2021), p. 110727, 10.1016/j.envres.2021.110727IF: 7.7 Q1 B2
Cited by (50) 被引用 (50)
Cadmium causes cerebral mitochondrial dysfunction through regulating mitochondrial HSF1
镉通过调节线粒体HSF1导致脑线粒体功能障碍2024, Environmental Pollution
2024年,环境污染Study of the cyto- and genotoxic activity of water from the Kapshagai reservoir (Kazakhstan) on laboratory mice
卡普沙盖水库(哈萨克斯坦)水对实验小鼠的细胞和基因毒性活性研究2024, Environmental Toxicology and Pharmacology
2024,环境毒理学与药理学Chitosan – An alternative drug delivery approach for neurodegenerative diseases
壳聚糖——神经退行性疾病的替代药物输送方法2024, Carbohydrate Polymer Technologies and Applications
2024,碳水化合物聚合物技术与应用
© 2022 Elsevier Ltd. 保留所有权利。