这是用户在 2024-4-15 7:21 为 https://app.immersivetranslate.com/pdf-pro/8b6d65e7-6932-4faf-9581-b021614e3ae3 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_04_14_801638579b98e8ab30cdg

Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal
野生贻贝中微小塑料的含量较低,表明与饭后家用纤维飘落相比,人类摄入微小塑料的量很少。

Ana I. Catarino , Valeria Macchia , William G. Sanderson , Richard C. Thompson ,Theodore B. Henry a, ea Center for Marine Biodiversity & Biotechnology, Institute of Life and Earth Sciences, EGIS, Heriot-Watt University, Edinburgh EH14 4AS, UK
英国爱丁堡 EH14 4AS,Heriot-Watt 大学生命与地球科学研究所海洋生物多样性与生物技术中心
School of Applied Science, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh EH11 4BN, UK
英国爱丁堡纳皮尔大学应用科学学院,西希尔校区,西希尔法院,爱丁堡 EH11 4BN
' St Abbs Marine Station, St Abbs, Scottish Borders, TD14 5PW, UK
英国苏格兰边境区圣阿布斯海洋站,圣阿布斯,TD14 5PW
Marine Biology and Ecology Research Centre, University of Plymouth, Devon PL4 8AA, UK
英国普利茅斯大学海洋生物学与生态研究中心,德文 PL4 8AA
Department of Forestry, Wildlife and Fisheries, and Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA
田纳西大学诺克斯维尔分校林业、野生动物与渔业系及环境生物技术中心,美国田纳西州诺克斯维尔

A R T I C L E I N F O
文章信息

Article history: 文章历史

Received 24 October 2017
2017 年 10 月 24 日收到
Received in revised form
修订后收到
23 January 2018 2018 年 1 月 23 日
Accepted 21 February 2018
2018 年 2 月 21 日接受
Available online 29 March 2018
2018 年 3 月 29 日在网上可用

Keywords: 关键词:

Microplastics 微塑料
Mussels 贻贝
Fibres 纤维
Field assessment 田野评估
Airborne household dust 空气中的家庭尘埃

Abstract 摘要

A B S T R A C T Microplastics (MPs) are the most numerous debris reported in marine environments and assessment of the amounts of MPs that accumulate in wild organisms is necessary for risk assessment. Our objective was to assess MP contamination in mussels collected around the coast of Scotland (UK) to identify characteristics of MPs and to evaluate risk of human exposure to MPs via ingestion of mussels. We deployed caged mussels (Mytilus edulis) in an urbanised estuary (Edinburgh, UK) to assess seasonal changes in plastic pollution, and collected mussels (Mvtilus Spp and subtidal Modiolus modiolus) from eight sampling stations around Scotland to enumerate MP types at different locations. We determined the potential exposure of humans to household dust fibres during a meal to compare with amounts of MPs present in edible mussels. The mean number of MPs in M. modiolus was (SE, ) ww ( (SE) per mussel). In Mytilus spp, the mean number of MPs/g ww was ) (SE) per mussel), but weight dependent. The visual accuracy of plastic fibres identification was estimated to be between 48 and , using Nile Red staining and FT-IR methodologies, respectively, halving the observed amounts of MPs in wild mussels. We observed an allometric relationship between the number of MPs and the mussels wet weight. Our predictions of MPs ingestion by humans via consumption of mussels is particles/y/capita in the UK and can go up to 4620 particles/y/capita in countries with a higher shellfish consumption. By comparison, the risk of plastic ingestion via mussel consumption is minimal when compared to fibre exposure during a meal via dust fallout in a household (13,731-68,415 particles/Y/capita).
摘要 微塑料(MPs)是海洋环境中报告的数量最多的碎屑,评估在野生生物中积累的MPs数量对于风险评估是必要的。我们的目标是评估在苏格兰(英国)海岸附近收集的贻贝中的MP污染,以识别MP的特征并评估人类通过食用贻贝摄入MPs的风险。我们在城市化的河口(英国爱丁堡)部署了笼养贻贝(Mytilus edulis)以评估塑料污染的季节变化,并从苏格兰周围的八个取样站收集了贻贝(Mvtilus Spp和亚潮带Modiolus modiolus)以在不同位置枚举MP类型。我们确定了人类在用餐时暴露于家庭灰尘纤维的潜在风险,以与可食用贻贝中存在的MPs数量进行比较。Modiolus modiolus中MPs的平均数量为 (SE, ww( (SE)每只贻贝)。在Mytilus spp中,每克ww的MPs平均数量为 (SE)每只贻贝),但与重量有关。 通过尼罗红染色和 FT-IR 方法,估计塑料纤维识别的视觉准确性在 48 和 之间,分别减少了野生贻贝中 MPs 的观察量。我们观察到 MPs 数量与贻贝湿重之间的异速关系。我们对人类通过食用贻贝摄入 MPs 的预测为英国每人每年 颗颗粒,而在贻贝消费量更高的国家,这一数字可达到 4620 颗颗粒/人/年。相比之下,与在家庭餐桌上通过灰尘沉降暴露的纤维相比,通过贻贝消费摄入塑料的风险是微乎其微的(每人每年 13,731-68,415 颗颗粒)。

Crown Copyright ๑ 2018 Published by Elsevier Ltd. All rights reserved.
版权所有 ๑ 2018 由 Elsevier Ltd.出版。保留所有权利。

1. Introduction 1. 引言

Increasing levels of plastic debris are among the most prominent environmental issues faced by government agencies worldwide (e.g. House of Commons, 2016). Small pieces of plastic [1 , microplastics (MPs) (Arthur et al., 2009; Browne et al., 2007)] are the most numerous debris reported in marine environments (Eriksen et al., 2013), and contamination by these
塑料碎片的数量不断增加,是全球政府机构面临的最突出的环境问题之一(例如英国下议院,2016 年)。小块塑料,微塑料(MPs)(Arthur 等,2009 年;Browne 等,2007 年)是海洋环境中报告的最多的碎片,而这些颗粒物的污染可能对水生生物构成危害(Cole 等,2015 年;Wright 等,2013 年)。生物摄入 MPs 可能促进 MP 暴露在营养级别之间(Farrell 和 Nelson,2013 年),包括通过贝类食用可能导致人类暴露的潜在风险(Galloway,2015 年)。从胃肠道腔穿过上皮膜并进入内部组织的小型 MPs 的转移似乎很少(Batel 等,2016 年);然而,进一步的调查是必要的,特别是为了解决更小塑料颗粒(例如纳米塑料)在组织中的吸收/积累的潜在问题。
particulates can present a hazard for aquatic organisms (Cole et al., 2015; Wright et al., 2013). Ingestion of MPs by organisms can facilitate MP exposure across trophic levels (Farrell and Nelson, 2013), including a potential for human exposure via consumption of shellfish (Galloway, 2015). The transfer of small-sized MPs from the lumen of the gastrointestinal tract across epithelial membranes and into internal tissues appears to be minimal (Batel et al., 2016); however, further investigation is necessary, particularly to resolve potential absorption/accumulation of smaller plastic particles ( , nanoplastics) in tissues.
尽管关于塑料颗粒潜在负面影响的担忧很多,但建立基准
Despite the numerous concerns regarding the potential negative effects of plastic particles, the establishment of baseline
observations and long-term monitoring programmes are still in their early days, especially relating to the use of marine biota, and are highly regional [e.g. San Francisco Bay, USA (Sutton and Sedlak, 2017)]. The determination of the levels of MP contamination in targeted organisms is crucial as it will allow establishment of a temporal and spatial comparison, and enable assessment of real environmental and human health risks.
观察和长期监测计划仍处于早期阶段,特别是涉及海洋生物的使用,并且高度区域化[例如美国旧金山湾(Sutton和Sedlak,2017年)]。确定目标生物体中微塑料污染水平至关重要,因为这将允许建立时间和空间比较,并评估真实的环境和人类健康风险。
Mussels, already well established biomonitors for environmental contaminants (Andral et al., 2011; Beyer et al., 2017; Kimbrough et al., 2008), are good candidates for assessment of MP exposure in the environment (Beyer et al., 2017). Mussels have the ability to filter large volumes of water [e.g. for Mytilus edulis (Clausen and Riisgard, 1996),] and actively filter and trap suspended particulates such as algae and sediments (Bertolini et al., 2017; Engel et al., 2017). In laboratory experiments, the ingestion and retention of MPs within their gut has been observed [72 h (Ward and Kach, 2009) to up to (von Moos et al., 2012)]. The enumeration of particles can thus reflect an integrated exposure over time due to MPs retention either within the lumen of their digestive tract, within internal tissues, or even adherent to tissue surfaces. Because of their wide geographical and spatial distribution, that includes intertidal (e.g. Mytilus spp) and subtidal (e.g. Modiolus modiolus) environments. mussels can provide information on the MP contamination throughout various locations. However, to our knowledge, there are no long-term monitoring programmes specific for MPs contamination of mussels in place, comparable to other contamination assessment programmes such as the Mussel Watch Program led by The U.S. National Oceanic and Atmospheric Administration (NOAA) and the Mediterranean Science Commission (CIESM) Mussel Watch.
贻贝已经成为环境污染物生物监测的良好指标(Andral等,2011年;Beyer等,2017年;Kimbrough等,2008年),是评估环境中微塑料暴露的良好选择(Beyer等,2017年)。贻贝有能力过滤大量水(例如其能力达到 的北欧蛤(Clausen和Riisgard,1996年)),并主动过滤并捕捉悬浮颗粒,如藻类和沉积物(Bertolini等,2017年;Engel等,2017年)。在实验室实验中,已观察到其摄食和保留微塑料颗粒于其肠道内的情况(从72小时(Ward和Kach,2009年)到 达到(von Moos等,2012年))。因此,颗粒的计数可以反映由于微塑料颗粒在其消化道腔内、体内组织内甚至附着在组织表面而导致的经过一段时间的综合曝露。由于其广泛的地理和空间分布,包括潮间带环境(例如贻贝属物种)和潮下带环境(例如圆扇贻贝),贻贝能够提供有关各个地点微塑料污染的信息。 然而据我们所知,目前没有针对贻贝受微塑料污染的长期监测计划,类似于其他污染评估计划,如美国国家海洋和大气管理局(NOAA)领导的贻贝监测计划和地中海科学委员会(CIESM)的贻贝监测计划。
The establishment of MPs baseline levels in field mussels is problematic due to the difficulty of inter-studies comparisons. Currently, methods using enzymatic digestion have been developed to assess MP contamination in mussels, enabling a standard quantification of MPs (Catarino et al., 2017; Courtene-Jones et al., 2017). However, early works have used a variety of soft tissue digestions, some of which are aggressive to -sensitive polymers resulting in their destruction (Claessens et al., 2013). Recently, less aggressive digestion methods such as with the use of hydrogen peroxide and enzymatic digestion of soft tissue have reported a maximum number of 3 particles/g wet weight (ww) of tissue in farmed (Huahong, 2017, personal communication) M. galloprovincialis sampled in a food market in China (Li et al., 2015), and 4.44 particles/g ww of tissue in M. edulis from the west coast of Scotland (Courtene-Jones et al., 2017), respectively. However, representative concentration of particles associated with mussels over time and/or over a large geographic area are unknown.
在野生贻贝中建立微塑料基线水平存在问题,因为跨研究比较困难。目前,已经开发了使用酶消化的方法来评估贻贝中的微塑料污染,实现了对微塑料的标准定量(Catarino等,2017年;Courtene-Jones等,2017年)。然而,早期的研究使用了各种软组织消化方法,其中一些对 -敏感聚合物具有侵蚀性,导致其破坏(Claessens等,2013年)。最近,使用过氧化氢和软组织酶消化等较不侵蚀性的消化方法报告了在中国食品市场采样的养殖(华鸿,2017年,个人通讯)中的M. galloprovincialis中每克湿重组织中的最大微塑料颗粒数为3个(Li等,2015年),以及在苏格兰西海岸的M. edulis中每克湿重组织中的微塑料颗粒数为4.44个(Courtene-Jones等,2017年)。然而,随时间和/或在大范围地理区域内与贻贝相关的微塑料颗粒的代表性浓度尚不清楚。
Many species of the Mytilus genus (e.g. M. edulis, M. galloprovincialis, M. californianus) are of substantial commercial value as seafood items (Food and Agriculture Organization of the United Nations, 2017), and there are concerns about the potential for MP transfer and exposure in humans via ingestion (Galloway, 2015; Rochman et al., 2015; Van Cauwenberghe and Janssen, 2014). A potential load of 11,000 MPs per year to European shellfish consumers has been hypothesized (Van Cauwenberghe and Janssen, 2014), even if so far there is no evidence of the ingestion of MPs by humans through the food chain (CONTAM, 2016; Galloway, 2015). Furthermore, a recent statement issued by the European Food Safety Authority (EFSA) Panel for Contaminants in the Food Chain concludes that occurrence data in shellfish food items is limited (CONTAM, 2016), which implies that exposure levels are largely unknown.
Mytilus属的许多物种(例如M. edulis,M. galloprovincialis,M. californianus)作为海鲜产品具有可观的商业价值(联合国粮食及农业组织,2017年),人们担心通过摄入途径可能会导致微塑料对人类的转移和暴露(Galloway,2015年;Rochman等,2015年;Van Cauwenberghe和Janssen,2014年)。据推测,欧洲贝类消费者每年可能摄入11,000个微塑料颗粒(Van Cauwenberghe和Janssen,2014年),尽管迄今为止尚无证据表明通过食物链人类摄入微塑料(CONTAM,2016年;Galloway,2015年)。此外,欧洲食品安全局(EFSA)食品链中污染物专家组最近发布的一份声明得出结论,贝类食品中的发生数据有限(CONTAM,2016年),这意味着暴露水平在很大程度上是未知的。
Scotland offers a privileged space to assess plastic contamination in mussels, due to the large coastline facing both the North Atlantic and the North Sea and the wide distribution of various mussels species. Blue mussel (M. edulis) farming is a significant economic activity with a registered production of 7732 tonnes in 2016 for the table market (Scottish Government, 2017) and the establishment of baseline data on the current status of MPs contamination in Scotland will have a significant impact in conservational policies. Furthermore, other species, such as the horse mussel (Modiolus modiolus), have a special conservational status (Kent et al., 2016) and are protected in all of OSPAR regions (OSPAR Commission, 2009). However, there is no information on the relationship of MPs with this species. Preliminary studies have shown that there is potential to use mussels to monitor the presence of MPs in the Scottish coast, and MP contamination has been reported in M. edulis specimens from the estuary of the Forth (Edinburgh) (Catarino et al., 2017) and in the west coast of Scotland (Courtene-Jones et al., 2017).
苏格兰提供了一个特权空间,用于评估贻贝中的塑料污染,这是因为其面向北大西洋和北海的大海岸线以及各种贻贝物种的广泛分布。蓝贻贝(M. edulis)养殖是一项重要的经济活动,2016年餐桌市场的注册产量为7732吨(苏格兰政府,2017年),在苏格兰建立关于当前MPs污染状况的基线数据将对保护政策产生重要影响。此外,其他物种,如马贻贝(Modiolus modiolus),具有特殊的保护地位(Kent等,2016年),在OSPAR所有地区受到保护(OSPAR委员会,2009年)。然而,关于MPs与这种物种的关系没有信息。初步研究表明,有潜力利用贻贝监测苏格兰海岸中MPs的存在,M. edulis标本中已报告了MP污染,来自福斯特河口(爱丁堡)(Catarino等,2017年)和苏格兰西海岸(Courtene-Jones等,2017年)。
The aim of this project was to provide baseline information on the presence of MPs in mussels collected from intertidal and subtidal locations around Scotland, and to assess temporal variation of the MPs associated with Mytilus edulis placed in a caged field experiment. In particular, the objectives were: 1) to quantify the presence of MPs in Mytilus spp collected at various locations along the Scottish coast, 2 ) to assess presence of MPs in a subtidal mussel species (Modiolus modiolus) and 3) to assess presence of MPs in caged Mytilus edulis placed in Edinburgh (a highly populated area) over time ( 1 year). This work is the first to report on MPs associated with the protected species . modiolus and to use displaced and caged mussels (M. edulis) to assess MP contamination. Finally, to clarify the potential human exposure to MPs via mussel consumption, when compared to other sources, we quantified the amount of airborne fibres that food items contaminated within regular household spaces, during the preparation and consumption of a meal. We compared the amount of MPs present within mussels with the amount of MPs that humans potentially consume via airborne fibre contamination of food items within typical households in Edinburgh UK.
该项目的目的是提供关于苏格兰潮间带和亚潮间带贻贝中微塑料存在情况的基线信息,并评估与放置在笼式田野实验中的欧洲蛤(Mytilus edulis)相关的微塑料的时间变化。具体目标包括:1)量化苏格兰海岸沿线不同位置采集的贻贝中微塑料的存在情况,2)评估亚潮间带贻贝物种(Modiolus modiolus)中微塑料的存在情况,3)评估在爱丁堡(一个人口密集地区)放置的笼式欧洲蛤(M. edulis)中微塑料的存在情况(1年)。这项工作是首次报告与受保护物种M. modiolus相关的微塑料,并使用被转移和笼养的贻贝(M. edulis)来评估微塑料污染。最后,为了澄清与其他来源相比,通过贻贝消费潜在的人类暴露于微塑料的情况,我们量化了在常规家庭空间内食物受污染的空气纤维量,以及在准备和食用一顿饭时的情况。 我们比较了在英国爱丁堡典型家庭中通过空气纤维污染食物而潜在摄入的微塑料颗粒数量与贻贝中存在的微塑料颗粒数量。

2. Materials and methods
2. 材料和方法

2.1. Port Edgar: caged deployed mussels
2.1. Port Edgar:笼中贻贝部署

Live Mytilus edulis obtained from Scottish commercial suppliers, Scottish Shellfish Association, were transferred to Heriot-Watt University (HWU), Edinburgh, UK, and maintained at in a temperature controlled chamber on 12-12 h light cycle in a static seawater tank (up to seawater renewal every week) and fed a diet of live algae (a mixture of Tetraselmis suecica and Tisochrysis lutea) alternated with commercial Shellfish Diet (Reed Mariculture, USA). In 2015, during exposure periods, 16-18 mussels were held in the intertidal zone between Spring tides (two weeks) and evenly distributed in cylindrical stainless-steel cages , height and diameter respectively, Fig. S1) in the estuary of the Forth River, Edinburgh, UK, in Port Edgar ( , W ). A passive sampler (Fig. S1) was attached to each cage, which consisted of a stainless-steel wired scrubber (i.e. pad pot cleaner) of spheroid shape of . Following exposure, mussels and scrubs were collected and frozen until processing for enumeration of MPs. The number of processed samples per campaign was nine mussels, three randomly selected mussels per cage, and two passive samplers, i.e. scrubbers. To check for MPs presence and control the number of particles mussels might already have prior to exposure, reference mussels from the main stock were processed following the same procedure.
从苏格兰商业供应商获得的活的 Mytilus edulis(欧洲蛤)壳,由苏格兰贝类协会转移到英国爱丁堡的赫里奥特-瓦特大学(HWU),并在12-12小时光照循环的恒温环境中的静态海水箱里保存(每周更新一次海水),并喂食活海藻(Tetraselmis suecica 和 Tisochrysis lutea 的混合物),交替使用商业贝类食物(Reed Mariculture, 美国)。2015年,在暴露阶段,16-18只贝类被放置在进出潮区域(两周)的潮间带,并均匀分布在英国爱丁堡福斯河河口的博特埃德加(西经 -2.996,北纬 55.995)的圆柱形不锈钢笼(高度和直径分别为,图S1)。每个笼子上附有一个被动采样器(图S1),由不锈钢丝制成的球形刷洗器(即刷洗锅清洁器)组成,直径为(图S1)。在暴露后,贝类和刷洗器被收集并冷冻,直到进行微塑料的计数。 每次活动处理的样本数量为九只贻贝,每个笼子随机选择三只贻贝,以及两个被动采样器,即刷子。为了检查微塑料颗粒的存在并控制贻贝在暴露前可能已经具有的颗粒数量,来自主要库存的参考贻贝按照相同的程序进行处理。

2.2. Field samples collection
2.2. 野外样本收集

An assessment of field MPs was undertaken on environmental samples of both blue mussels (Mytilus spp) and horse mussels (Modiolus modiolus). It is impossible to visually distinguish between the three known Mytilus species occurring in Scotland and/or their hybrids (M. edulis, M. galloprovincialis, M. trossulus) (Dias et al., 2009). Therefore, we will refer to blue mussels as any of the collected Mytilus spp. Samples were collected throughout 2015 from various locations around Scotland (Fig. 1). Subtidal Modiolus modiolus were collected by scuba diving, whereas Mytilus spp were collected during low tide on intertidal rocky shores. In all cases samples were not given the opportunity to filter feed from the point of collection and frozen immediately after retrieval. A dedicated caged exposure campaign was also undertaken in an urbanised station, Newhaven (Edinburgh, UK), for comparison. Mytilus edulis from live stock kept at HWU were placed in cages (above) in the subtidal of the Southeastern part of the Forth Estuary (Fig. 1), for 4 weeks during November 2015. After collection, all mussels were transported to HWU facilities, and stored at until further processing. The soft tissue of a selected number of mussels (Mytilus spp.) was digested (see bellow) for MPs enumeration.
对蓝贻贝(Mytilus spp)和马蛤(Modiolus modiolus)的环境样本进行了野外MPs评估。在苏格兰发现的三种已知Mytilus物种及其杂交种(M. edulis、M. galloprovincialis、M. trossulus)之间是不可能通过肉眼区分的(Dias等,2009)。因此,我们将蓝贻贝称为任何收集到的Mytilus spp。样本在2015年整年从苏格兰各地收集(图1)。潜水员在潜水时收集了亚潮带的Modiolus modiolus,而Mytilus spp则是在潮间带岩石海岸的低潮时收集的。在所有情况下,样本在收集点未有机会进行滤食,并在检索后立即冷冻。还进行了一项专门的笼式暴露活动,用于在城市化站点Newhaven(英国爱丁堡)进行比较。来自爱丁堡大学海洋学院饲养的Mytilus edulis被放置在福斯河口东南部亚潮带的笼中(如图1所示),在2015年11月的4周内。收集后,所有贻贝被运送到爱丁堡大学海洋学院设施,并存放在 ,直至进一步处理。 选定数量的贻贝(Mytilus spp.)的软组织被消化(见下文)以进行微塑料的计数。

2.3. Sample processing and MPs enumeration
2.3. 样品处理和微塑料计数

The soft tissue of mussels was digested overnight using
贻贝的软组织在过夜期间被消化
Fig. 1. Map of the Scottish coast indicating sampling stations and mean number ( standard error) of observed fibres and particles per g of mussel soft tissue wet weight. Village Bay and Geo stations are both located in St Kilda island and correspond to the entrance of an intertidal cave and a reef, respectively. Isle of Skye samples were collected in Uig. The Lochmaddy station is located in North Uist. All organisms collected from the wild, with the exception of Newhaven and Port Edgar stations, Edinburgh, where MPs were sampled from deployed caged mussels. All samples were Mytilus spp, with the exception of Orkney where only Modiolus modiolus were collected. Using FT-IR analysis and Nile Red staining, we estimate that only half of the observed fibres are plastic polymers. For the allometric relationship of MPs/g ww and mussels soft tissue ww, see Fig. 4.
图1. 苏格兰海岸地图,显示取样站点和每克贻贝软组织湿重中观察到的纤维和颗粒的平均数量(标准误差)。Village Bay和Geo站点均位于圣基尔达岛,分别对应于潮间洞穴的入口和礁石。Skye岛的样本是在Uig收集的。Lochmaddy站位于北乌伊斯特。除了爱丁堡的Newhaven和Port Edgar站点外,所有野外采集的生物,其中从部署的笼子贻贝中采样了微塑料颗粒。所有样本均为Mytilus spp,除了在奥克尼只采集Modiolus modiolus的情况。通过FT-IR分析和尼罗红染色,我们估计观察到的纤维中只有一半是塑料聚合物。有关微塑料颗粒/g湿重和贻贝软组织湿重的异速生长关系,请参见图4。
Corolase enzyme mixture, for Mytilus spp and 19.3 UHb/mL for Modiolus modiolus, and MPs were extracted and quantified according to Catarino et al. (2017). Mussels length was measured (to ), all soft tissues were removed from the shell, weighed (wet weight to ), and placed in a glass Erlenmeyer flask for digestion (one mussel per flask). Due to their larger size, . modiolus sub-samples of the entire soft tissue were digested in separate flasks, observed, and particle enumeration pooled per individual. Special care was taken to avoid airborne fibres contamination and samples were covered to avoid air exposure, vials were capped with aluminium foil during digestion, personnel used protective cotton lab coats, equipment was thoroughly rinsed using Milli-Q water, and glassware was acid-washed prior to use. To assess airborne fibre contamination during this procedure, one Milli-Q water control sample ( ) was submitted to the same procedure during each digestion event. After digestion, the final product was vacuum filtered [Whatman filters of cellulose nitrate ]. Filters were observed using a Wild Heerbrugg dissection microscope (Germany, up to 310 magnification) and particles were classified as fibres, plastic films, spheres and other particles: fibres were elongated and narrow particles, spheres were round shaped, films were thin layers and other particles incorporated all irregular shaped observed MPs. Fibres were further classified by colour. Data was expressed in terms of number of particles per of mussel wet weight (ww) and number of particles per mussel.
Corolase酶混合物,对Mytilus spp为19.3 UHb/mL,对Modiolus modiolus为19.3 UHb/mL,MPs根据Catarino等人(2017年)的方法提取和定量。测量贻贝长度(至 ),将所有软组织从贝壳中取出,称重(湿重至 ),并放入一个 玻璃埃伦迈耶烧瓶中进行消化(每个烧瓶一个贻贝)。由于其较大的尺寸, 。modiolus的整个软组织亚样品在单独的烧瓶中消化,观察并将颗粒计数汇总到每个个体。特别注意避免空气中纤维污染,样品被覆盖以避免空气暴露,消化过程中瓶子用铝箔盖盖,人员穿着防护棉实验外套,设备在使用前用Milli-Q水彻底冲洗,玻璃器皿在使用前经过酸洗。为了评估此过程中的空气中纤维污染,每次消化事件都提交一个Milli-Q水对照样品( )。消化后,最终产品通过真空过滤[Whatman 纤维素硝酸酯 滤纸]。 使用Wild Heerbrugg解剖显微镜(德国制造,最高放大倍数为310倍)观察滤器,颗粒被分类为纤维、塑料薄膜、球体和其他颗粒:纤维是细长的颗粒,球体是圆形的,薄膜是薄层,其他颗粒包括所有观察到的不规则形状的微塑料颗粒。纤维还按颜色分类。数据以每个贻贝湿重单位(ww)颗粒数和每只贻贝颗粒数表示。
For MPs extraction, scrubbers were suspended in a beaker with the aid of a nylon wire, and inserted in a super-saturated sodium chloride solution. Corolase enzyme mixture was added to a concentration of and organic material was digested overnight , while stirring. Before collection of the top fraction of the mixture for filtration and MPs separation, the stirring process was ceased and the solution was held static for to allow for separation of particles by density (adapted from Hidalgo-Ruz et al., 2012). Procedural blanks were used in every processing event. Filtration, MPs observation and enumeration performed as described above. Data expressed as the number of observed particles per sample.
对于 MPs 提取,使用尼龙线将刷子悬挂在烧杯中,并插入一个过饱和的氯化钠溶液中。将 Corolase 酶混合物加入到一定浓度,并在搅拌的同时过夜消化有机物。在收集混合物顶部部分进行过滤和 MPs 分离之前,停止搅拌过程,使溶液静置一段时间,以便通过密度分离颗粒(改编自 Hidalgo-Ruz 等人,2012)。每次处理事件中都使用程序空白。过滤、MPs 观察和计数按上述描述进行。数据表示每个样品中观察到的颗粒数。

2.4. Validation of fibres identification
2.4. 纤维鉴定的验证

To verify the accuracy of particle visual observations by the various observers, a re-count of particles was done by one observer on 72 filters. To validate the visual assessment of fibres, a subsample of 30 items were randomly selected and examined with a Perkin-Elmer Spectrum 100 Fourier Transformation Infrared Microscope (FT-IR) equipped with a mercury cadmium telluride (MCT) detector. The spectra were recorded as the average of 16 scans in the range of with a resolution of (software Spectrum V 6.3.4.0164, Perkin-Elmer). Spectra obtained were visualised in OMNIC 9.2.106 (Thermo Fisher Scientific Inc.), analysed, and compared against a self-generated library (Blumenröder et al., 2017) and the Hummel Polymer and Additives FT-IR Spectral Library (Thermo Fisher Scientific Inc.). To confirm the proportion of fibres classified as microplastics we used a separate sub-sample of 27 items. These were moved to glass glass staining blocks and further digested using . Fibres were quantified, moved to a microscope slide, stained with Nile Red in methanol at (Erni-Cassola et al., 2017) and covered with a glass cover slip to protect samples from airborne contamination. This methodology has been validated and has a similar accuracy to FT-IR and Raman Spectroscopy (Erni-Cassola et al., 2017; Maes et al., 2017; Shim et al., 2016). Fibres were observed using a Axio Imager M2 fluorescence microscope (10x objective) coupled with an AxioCam MRm camera (ZEISS, Germany) and using the LED
为了验证各观察者对颗粒视觉观察的准确性,一名观察者对72个滤膜上的颗粒进行了重新计数。为了验证纤维的视觉评估,随机选择了30个样品进行检查,使用配备汞镉镉硒(MCT)探测器的Perkin-Elmer Spectrum 100 Fourier变换红外显微镜(FT-IR)。光谱记录为在 范围内进行16次扫描的平均值,分辨率为 (软件Spectrum V 6.3.4.0164,Perkin-Elmer)。获得的光谱在OMNIC 9.2.106(Thermo Fisher Scientific Inc.)中可视化,分析,并与自动生成的库(Blumenröder等,2017年)和Hummel聚合物和添加剂FT-IR光谱库(Thermo Fisher Scientific Inc.)进行比较。为了确认被分类为微塑料的纤维比例,我们使用了另一个包含27个样品的单独子样本。这些样品被移至玻璃染色块,并使用 进一步消化。纤维被定量化,移至显微镜载玻片上,在甲醇中用尼罗红染色,温度为 (Erni-Cassola等)。, 2017) 并覆盖玻璃盖玻片以保护样品免受空气污染。该方法已经经过验证,并且与 FT-IR 和拉曼光谱具有类似的准确性(Erni-Cassola 等,2017 年;Maes 等,2017 年;Shim 等,2016 年)。使用 Axio Imager M2 荧光显微镜(10 倍物镜)配备 AxioCam MRm 相机(ZEISS,德国)并使用 LED

Illumination system pE-300 (Cool-LED, USA). For particle visualisation, the filter was set for Fluorescein (FTIC) in green (excitation max at and emission max at ) (Erni-Cassola et al., 2017). Known pristine materials (natural cotton, polyethylene, polypropylene rope fragments, nylon fragments) were subjected to both FT-IR and Nile Red methodologies and used as standards for comparison purposes.
照明系统 pE-300(Cool-LED,美国)。对于颗粒的可视化,滤光片设置为荧光素(FTIC)为绿色(激发峰值在 处,发射峰值在 处)(Erni-Cassola 等,2017 年)。已知的原始材料(天然棉,聚乙烯,聚丙烯绳碎片,尼龙碎片)均经过 FT-IR 和尼罗红方法学处理,并用作比较目的的标准。

2.5. Passive sampling of airborne fibres during meals
餐饮期间空气纤维的被动采样

To quantify the level of airborne fibres of a food item of similar surface area to a mussel, we used stationary passive samplers adapted from dust collectors described by Adams et al. (2015); Dris et al. (2017). Two rectangular double-sided adhesive white pads were placed in plastic petri dishes (90 mm diameter) and airborne fibres fallout was collected in April 2017 according to the following treatments: a) control, i.e. petri dish closed, b) petri dish open for 20 min during cooking, ) petri dish open for 20 min during meal consumption; d) petri dish open for min during cooking and food consumption. Petri dishes were transported closed and sealed externally with tape, from the lab to three different households in Edinburgh. They were opened during the evening meal period, closed after exposure according to treatment and sealed until further observation and MPs enumeration. The presence of a stickytape surface allowed for a reduced fibre loss and the colour contrast facilitated particle enumeration. Sampling time was shorter than usual household dust passive sampling (Adams et al., 2015; Dris et al., 2017) to account for fibre fallout during the meal period only.
为了量化与贻贝相似表面积的食物中空气中纤维的水平,我们使用了由Adams等人(2015年)和Dris等人(2017年)描述的尘埃收集器改编的静态被动采样器。两个长方形双面粘性白色垫子被放置在塑料培养皿(直径90毫米)中,2017年4月根据以下处理收集了空气中的纤维沉降:a)对照,即培养皿关闭,b)烹饪过程中培养皿开启20分钟,c)进餐过程中培养皿开启20分钟;d)烹饪和食物消耗过程中培养皿开启分钟。培养皿从实验室运送到爱丁堡的三个不同家庭时是关闭的,并用胶带外部密封。它们在晚餐时间打开,根据处理暴露后关闭,并密封直到进一步观察和MPs计数。粘性胶带表面的存在减少了纤维损失,颜色对比有助于颗粒计数。采样时间比通常的家庭尘埃被动采样时间短(Adams等,2015年;Dris等)。, 2017) 仅在用餐期间考虑纤维脱落。
Two yearly exposure scenarios of human ingestion of particles were calculated: 1) by using the mean number of particles observed in wild caught Mytillus spp in this study and the yearly consumption of mussels per capita in the UK and other EU countries and 2) by extrapolating the number of fibres collected in the passive dust samplers to that of a regular plate of of radius ( of area).
计算了人类摄入颗粒物的两种年度暴露情景:1) 使用本研究中野生捕获的 Mytillus spp 中观察到的颗粒物平均数量以及英国和其他欧盟国家人均食用贻贝量,2) 通过将被动尘埃采样器中收集的纤维数量外推到常规直径为 的盘子的数量。

2.6. Data analysis 2.6. 数据分析

2.6.1. Field data and blanks
2.6.1. 字段数据和空白

The numbers of MPs in each mussel observation were pooled according to site location, season, and particle type. Particles were enumerated (abundance) per location or sampling season (sample) according to particle type and fibre colour, which resulted in a high proportion of non-detected samples (i.e., no MPs present). Due to the non-parametric nature of these data (high number of zero observations), we used a resemblance permutation-based analysis of similarity (ANOSIM, Primer 5 software) to assess similarities among locations or season based on type of particles present. This analysis method developed by Clarke (1993) and Clarke and Warwick (2001) is widely used in ecology and microbiology for assessing similarities among samples according to species abundance, and a similar approach for field litter data analysis has previously been done by Tekman et al. (2017). The abundance of MPs other than fibres was pooled, as the number of these observed particles was low (total 20 particles in 141 observations). The ANOSIM R statistic obtained at the end of each analysis informs on the (dis)similarity between groups, with a value close to " 1 " indicating a high dissimilarity of the tested samples (locations) and a value close to " 0 " indicating that locations are similar in terms of abundance and diversity of particles (Clarke and Warwick, 2001).
根据地点、季节和颗粒类型,将每个贻贝观察中的 MPs 数量进行汇总。根据颗粒类型和纤维颜色,对每个地点或取样季节的颗粒进行计数(丰度),这导致了大量未检测到的样本(即没有 MPs 存在)。由于这些数据的非参数性质(零观测次数较多),我们使用了一种基于相似性的重复排列分析(ANOSIM,Primer 5 软件)来评估根据存在的颗粒类型在地点或季节之间的相似性。这种分析方法由 Clarke(1993 年)和 Clarke 和 Warwick(2001 年)开发,被广泛应用于生态学和微生物学,用于根据物种丰度评估样本之间的相似性,而 Tekman 等人(2017 年)之前已经对野外枯叶数据进行了类似的分析。除纤维外的 MPs 丰度被汇总,因为观察到的这些颗粒数量较少(共 141 次观测中有 20 个颗粒)。 在每次分析结束时获得的 ANOSIM R 统计量告知组之间的(不)相似性,数值接近“1”表明被测试样本(位置)之间存在较高的不相似性,数值接近“0”表明位置在颗粒的丰度和多样性方面相似(Clarke 和 Warwick,2001)。
a) Blanks: Particles present in procedural blanks were checked verify if they were similar to mussel samples location, and according to the type of fibres/MPs observed. Abundance data was
a)空白样本:检查程序空白中存在的颗粒,以验证它们是否类似于贻贝样本位置,并根据观察到的纤维/MPs 的类型。丰度数据

fourth-root transformed (to reduce the influence of large numbers of one fibre type in the final analysis) prior to calculation of the Bray-Curtis similarity matrix, which was followed by a 1-way ANOSIM (factor Location). As the obtained indicated a high similarity between blanks and sample location in terms of the particles present (Fig. 2, i), we concluded that particle counts in observed samples could be strongly influenced by airborne contamination. Therefore, from subsequent data analysis, the type and number of observed fibres in blanks was subtracted from observations corresponding to the same digestion event. A new 1-way ANOSIM was performed and an increased dissimilarity between blanks and locations confirmed (Fig. 2, ii). Scrubs enumeration of MPs equally took into account airborne fibre contamination observed in procedural blank filters and type and number of fibres were subtracted by each processing event.
在计算Bray-Curtis相似性矩阵之前,对四次根进行转换(以减少最终分析中某一纤维类型的大量影响),随后进行一向单因素ANOSIM(位置因素)。由于所得到的 表明空白和样本位置在所含颗粒方面具有高度相似性(图2,i),我们得出结论,观察样本中的颗粒计数可能受到空气污染的强烈影响。因此,在随后的数据分析中,从空白中观察到的纤维类型和数量被减去与相同消化事件对应的观察值。进行了新的一向单因素ANOSIM,并确认了空白和位置之间的增加的不相似性 (图2,ii)。对微塑料颗粒的计数同样考虑了程序空白滤膜中观察到的空气纤维污染,并且每次处理事件都减去了纤维的类型和数量。
b) Port Edgar: To understand if sampling seasons were similar in terms of abundance and diversity of fibres and MPs, a 1-way ANOSIM was performed using the Bray-Curtis similarity matrix obtained after a fourth-root transformation. To compare sampling seasons in terms of total load of particles in the exposed mussels (particles/g ww), a 1-way ANOVA was performed after transformation of data. ANOVA was preceded by homogeneity of variance (Levene's) and normality (Shapiro-Wilk) tests. A probability level of was used to determine if differences were statistically significant. The analysis was followed by Fisher's LSD post hoc test for multiple comparisons. Total number of particles per passive sampler (scrub) present in each season was tested for significant differences using a 1-way ANOVA ( ).
b) Port Edgar:为了了解在纤维和微塑料的丰度和多样性方面,取样季节是否相似,使用布雷-柯蒂斯相似性矩阵进行了一次单因素ANOSIM分析,该矩阵是在进行了四次根转换后获得的。为了比较暴露贻贝中颗粒总量(颗粒/克湿重)的取样季节,对数据进行 转换后进行了一次单因素ANOVA分析。在进行ANOVA分析之前,进行了方差齐性(Levene's)和正态性(Shapiro-Wilk)检验。使用 的概率水平确定差异是否具有统计学意义。分析后进行了Fisher's LSD事后多重比较检验。每个季节中每个被动采样器(擦拭)中的颗粒总数经过一次单因素ANOVA检验,以检验是否存在显著差异( )。
c) Observations on Wild Mussels: The number of MPs per of soft tissue was dependent on the total mass of the mussels tissue following an allometric equation . Using the mean weight specific pumping rate of . edulis according to wet weight , Jones et al., 1992), we computed a model able to predicted number of plastics per of wet weight of mussel tissue according to mussel wet weight specific pumping rate. The number of MPs observed was transformed and analysed using a covariance analysis (ANCOVA) to check for significant differences among locations, using total soft tissue wet weight as a continuous independent variant. To understand if sampling between locations were similar in terms of observed types of fibres and other MPs a 1-way ANOSIM was performed using the Bray-Curtis similarity matrix obtained after a fourth-root transformation.
c) 野生贻贝的观察:每克软组织中的微塑料颗粒数量取决于贻贝组织的总质量,遵循一个异速生长方程。根据湿重计算出的平均重量比抽水速率(Jones 等人,1992 年),我们建立了一个模型,能够预测每克贻贝组织湿重中的塑料颗粒数量,根据贻贝湿重比抽水速率。观察到的微塑料颗粒数量进行了转换和分析,使用协方差分析(ANCOVA)检查不同地点之间是否存在显著差异,使用总软组织湿重作为连续独立变量。为了了解不同地点之间在观察到的纤维类型和其他微塑料颗粒方面是否相似,进行了一种 Bray-Curtis 相似性矩阵的四次根转换后获得的 1-way ANOSIM。

2.6.2. Household fibres enumeration
2.6.2. 家庭纤维计数

The mean number of observed fibres in procedural blanks was subtracted from observed samples in each sample (similar type of observed fibre). A two-way ANOVA after squareroot transformation was used to check for differences between treatments and households (two independent variables). Data was previously checked for homogeneity of variance (Levene's) and normality (Shapiro-Wilk). In case probability was lower than 0.05 , analysis was followed by Fisher's LSD post hoc test for multiple comparisons.
在每个样本中,从程序空白中观察到的纤维的平均数量被减去(观察到的相似类型的纤维)。进行平方根转换后使用双向 ANOVA 检查处理和家庭之间的差异(两个独立变量)。数据先前已经检查过方差的均匀性(Levene's)和正态性(Shapiro-Wilk)。如果概率小于 0.05,则分析后进行 Fisher's LSD 事后多重比较检验。

3. Results 3. 结果

3.1. Procedural blanks 3.1. 程序空白

The majority (98.6%) of particles observed in blanks were fibres of which were transparent (Fig. 2). The mean number of particles observed per procedural blank processed during digestion of soft tissue of mussels was (SE), while in procedural blanks from processing of scrubbers was (SE). When the number and type of particles observed in blanks per digestion event is subtracted from the observed particles in each sample, the relative abundance of each particle type changes in sampling stations (Fig. 2).
在空白样品中观察到的大多数颗粒(98.6%)是纤维,其中 是透明的(图 2)。在消化贻贝软组织过程中处理的每个程序空白中观察到的颗粒平均数量为 (SE),而在处理洗涤器的程序空白中为 (SE)。当从每个样品中观察到的颗粒中减去每个消化事件中空白中观察到的颗粒的数量和类型时,各种颗粒类型在取样站中的相对丰度会发生变化(图 2)。

3.2. Port Edgar

Exposed Mytilus edulis mussels were long and their soft tissue mean wet weight ( ) was (SE). Mussels exposed in Port Edgar had a mean load of (SE) particles/g ww, equivalent to (SE) particles per mussel. Of the observed particles, were fibres. The mean number of particles observed per passive sampler (i.e. scrubber, was , with a maximum number of 9 particles per scrubber. With the exception of one sphere observed in a sampler exposed in Spring (2015), all other observed particles were fibres. In reference mussels , from the main stock kept in the lab, a mean value of (SE) particles ww of soft tissue of mussels was observed, corresponding to a mean value of
暴露的欧洲蛤(Mytilus edulis)贝壳长度为 ,其软组织的平均湿重( )为 (标准误)。在Port Edgar暴露的贝壳平均负载为 (标准误)颗颗粒/克湿重,相当于每只贝壳 (标准误)颗颗粒。观察到的颗粒中, 为纤维。每个被动采样器(即刷子, )观察到的平均颗粒数为 ,每个刷子最多可观察到9颗颗粒。除了观察到的2015年春季暴露的一个球体外,所有其他观察到的颗粒均为纤维。在实验室保存的主要存货中的参考贝壳 ,观察到软组织的平均值为 (标准误)颗颗粒 湿重的贝壳。

i)
Fig. 2. Relative abundance of the observed types of particles in blank samples, sampling stations and reference mussels (stock): i) before subtraction of number and type of fibres in blank treatments and ii) after subtraction of number and type of fibres in blank treatments. Abbreviations: MPs: other observed microplastics besides fibres, R: Red fibres, T: Transparent fibres, BC: Black fibres, B: Blue fibres, W: White fibres, BR: Brown fibres, G: Green fibres, O: Orange fibres, GY: Grey fibres, P: Purple fibres. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
图 2. 空白样品、采样站和参考贻贝(库存)中观察到的颗粒类型的相对丰度:i)在减去空白处理中纤维数量和类型之前和 ii)在减去空白处理中纤维数量和类型之后。缩写:MPs:除纤维外观察到的其他微塑料,R:红色纤维,T:透明纤维,BC:黑色纤维,B:蓝色纤维,W:白色纤维,BR:棕色纤维,G:绿色纤维,O:橙色纤维,GY:灰色纤维,P:紫色纤维。(对于本图例中颜色的解释,请参阅本文的网络版本。)

(SE) particles per mussel. Reference mussels were within the same size range of exposed mussels: (SE) long and their soft tissue mean wet weight was .
(SE)每只贻贝的颗粒。参考贻贝的大小范围与暴露贻贝相同: (SE)长,其软组织平均湿重为
The MPs in mussels collected in different seasons were similar in terms of present types of fibres and MPs (ANOSIM ). However, in terms of numbers of MPs in mussels, significantly more particles were observed in mussels during the first winter sampling campaign (Winter 1) in Port Edgar (Fisher LSD p 0.0001) (Fig. 3,i). Number of particles per passive sampler did not differ significantly through season (Fig. 3, ii).
不同季节采集的贻贝中的微塑料纤维和微塑料颗粒类型相似(ANOSIM )。然而,在贻贝中微塑料颗粒的数量方面,在第一个冬季采样活动(冬季 1)中在埃德加港观察到的微塑料颗粒明显更多(Fisher LSD p 0.0001)(图 3,i)。每个 passsive 采样器中的颗粒数量在季节间没有显著差异(图 3,ii)。

3.3. Field samples 3.3. 野外样本

Mytilus spp collected in the field and processed for MPs enumeration were long and their soft tissue mean wet weight ( ) was (SE). In these mussels the mean load of observed particles was (SE) particles/g ww, equivalent to (SE) particles per mussel. Modiolus modiolus were substantial heavier, (SE) g, and their mean size was (SE) cm. The mean number of MPs observed was (SE) particles ww, the equivalent of (SE) particles per mussel.
野外采集的淡菜属贻贝并进行微塑料颗粒计数处理 长,其软组织平均湿重( )为 (SE)。在这些贻贝中,观察到的颗粒平均负载为 (SE)颗/g ww,相当于每只贻贝 (SE)颗颗粒。拟蛤属贻贝明显更重, (SE)g,平均尺寸为 (SE)cm。观察到的微塑料颗粒平均数量为 (SE)颗 ww,相当于每只贻贝 (SE)颗颗粒。
The number of particles per wet weight of soft tissue was dependent on soft tissue mass ) (Fig. 4, i), but did not differ according to location , ANCOVA), when total weight used as a co-variant in the statistical analysis. Using the mean ww-pumping rate presented by Jones et al. (1992), was possible to compute a model of the predicted number of plastics per of wet weight of mussel tissue according to mussel wet weight specific pumping rate , where is the mussel pumping rate ) and is the number of MPs per of mussel ww) (Fig. 4, ii). Locations were very similar between themselves in terms of observed types of fibres and MPs (ANOSIM ) observed in samples.
软组织每湿重单位粒子数取决于软组织质量,但在统计分析中使用总重量作为协变量时,根据位置并没有差异。利用Jones等人(1992年)提出的平均湿重泵送速率,可以根据贻贝湿重特定泵送速率计算预测的每湿重单位贻贝组织中塑料颗粒数的模型,其中泵送速率是贻贝泵送速率,是每湿重单位贻贝湿重中的MPs数。在观察到的纤维和MPs类型方面,各地点之间非常相似。
Based on an assumption that humans ingest MPs via the consumption of mussels, we can predict the number of particles to which they are exposed. According to SEAFISH (2016) (Seafood Authority for the UK) there is a mean annual consumption of of seafood per capita in the UK [2014 data], of which c.a. 1% is of mussels . Assuming each wild mussel would have a load of 3 particles per , of which only about would be microplastics (see section 3.4). we can conclude that an individual could be exposed up to 123 particles per vear, via ingestion of mussels in the UK. In countries with a higher consumption rate of mussels capita) such as Spain, France or Belgium (Food and Agriculture
基于一个假设,即人类通过食用贻贝摄入微塑料颗粒,我们可以预测他们暴露于的颗粒数量。根据 SEAFISH(2016)(英国海鲜管理局)的数据,英国人均每年消费约 的海鲜[2014 年数据],其中约 1%为贻贝 。假设每只野生贻贝负载 3 个颗粒,其中只有约 是微塑料(见第 3.4 节)。我们可以得出结论,一个个体通过在英国食用贻贝可能暴露于每年多达 123 个颗粒。在西班牙、法国或比利时等贻贝消费率较高的国家(联合国粮农组织,2017 年),消费者通过食用贻贝可能每年暴露于高达 4,620 个颗粒。

Organization of the United Nations, 2017), a consumer would be exposed up to 4,620 particles/y via mussel ingestion.
3.4. 纤维鉴定的验证

3.4. Validation of fibres identification

In the 72 independent re-count of observed particles from field samples, 10 differed from the original number of fibres reported. The mean deviation (|observed value - expected value|) of the recounts was (SE) fibres and the mean error (|observed value - expected value|/expected value x 100 ) was (SE). Fifty percent of the 30 observed fibres using FT-IR were identified and the two most common types of observed polymers were Polyethylene terephthalate (Polyester or PET, 40%) and Poly (etherurethane) (20%). Using the Nile Red staining method (Fig. S2), we were able to confirm that of the observed 27 fibres were microplastics. Plastic fibres were easily distinguished from "natural" ones as latter would not show fluorescence, or from cotton, which although stained, are flatted (in opposition to cylindric polymer fibres) and presented a very characteristic twisted ribbonlike shape (Fig. S2). Stained plastic fibres measured between 0.2 and length, and thickness.
在对野外样本中观察到的颗粒进行 72 次独立重新计数中,有 10 个与报告的原始纤维数量不同。重新计数的平均偏差(|观察值 - 预期值|)为 (标准误)纤维,平均误差(|观察值 - 预期值|/预期值 x 100)为 (标准误)。使用 FT-IR 鉴定的 30 条观察到的纤维中,有 50% 被识别为两种最常见的聚合物:聚对苯二甲酸乙二醇酯(涤纶或 PET,40%)和聚(醚脲)(20%)。使用尼罗红染色方法(图 S2),我们确认观察到的 27 条纤维中有 条是微塑料。塑料纤维与“天然”纤维容易区分,因为后者不会显示荧光,也不同于虽然染色但是扁平的棉花(与圆柱形聚合物纤维相反),并且呈现出非常特征性的扭曲带状形状(图 S2)。染色的塑料纤维长度在 0.2 到 之间,厚度为

3.5. Household fibres observation
3.5. 家庭纤维观察

The mean number of fibres was higher in Household SE) than in the other two households (Fisher LSD ). Samples collected during the meal period [1 fibre had a significant lower exposure to airborne fibre contamination (Fisher LSD ), whereas while cooking the mean fibre fallout was of (SE) (Fig. 5). If a conservative exposure level is assumed, in bands with a surface of we expect the arrival of 1 particle in . We can then extrapolate that in a plate with of radius, i.e. an area of , we could find 114 particles for the same period of time, assuming a constant exposure rate. This is equivalent to a potential exposure to MPs via ingestion of 41,610 particles per year per person, for during consumption of evening meals. During the cooking period ( , if we assume a constant fibre fallout of 5 particles per , the potential human ingestion increases to 207,320 particles per year per person. According to Dris et al. (2017), 33% of household dust fallout is microplastics, whereas other fibres can be of natural origin, such as cellulose. We can then extrapolate that human ingestion of microplastics during evening meals could be in a range of particles per year.
纤维的平均数量在家庭 SE)中高于其他两个家庭(Fisher LSD )。在用餐期间收集的样本[1纤维 ]暴露于空气纤维污染的情况明显较低(Fisher LSD ),而在烹饪过程中,平均纤维沉降为 (SE)(图5)。如果假定一个保守的暴露水平,在表面积为 的带状区域中,我们预计会有1个粒子到达 。然后我们可以推断,在半径为 的盘子中,即 的面积中,我们可以在同一时间段内找到114个粒子,假设暴露速率恒定。这相当于通过摄入每年每人41,610个粒子的潜在暴露,用于 在晚餐时的消费。在烹饪期间( ,如果我们假设每 有5个粒子的纤维沉降速率恒定,潜在的人类摄入量增加到每年每人207,320个粒子。根据Dris等人(2017)的研究,33%的家庭尘埃沉降是微塑料,而其他纤维可能是天然来源,如纤维素。 然后我们可以推断,人类在晚餐时摄入微塑料的量可能在每年 颗微粒的范围内。

Fig. 3. i) Mean number ( ) of particles per ww of mussels soft tissue and ii) mean number ) of particles per passive sampler (scrub), observed at different sampling seasons, 2015, in Port Edgar, Edinburgh, UK. Symbol * (i) indicates statistically significant differences ( , Fisher LSD).
图 3. i) 每 克贻贝软组织中的平均数量( )和 ii) 每个被动采样器(擦拭)中的平均数量 )的微粒数,观察不同的采样季节,2015 年,在英国爱丁堡 Port Edgar。符号*(i)表示统计学上的显著差异( ,Fisher LSD)。

Fig. 4. i) Number of microplastics (MPs) per ww of Mytilus spp plotted according to total soft tissue wet weight ( , ) and mean weight specific pumping rate of . edulis according to wet weight as per Jones et al., 1992. ii) Model, computed using previous equations, of the predicted number of plastics per of wet weight of mussel tissue according to mussel wet weight specific pumping rate , where is the mussel pumping rate ( ww) and y is the number of MPs per of mussel ).
图 4. i) 每 克 Mytilus spp 软组织中的微塑料(MPs)数量,根据总软组织湿重( )和根据湿重 的 edulis 的平均重量比泵送速率 ,根据 Jones 等人,1992 年。ii) 模型,使用先前的方程计算,根据贻贝湿重比泵送速率 ,预测每 贻贝组织湿重中的塑料数量,其中 是贻贝泵送速率( ww),y 是每 贻贝 )的 MPs 数量。
Fig. 5. Mean number of particles ( ) observed at different sampling times in households in Edinburgh, UK. The symbol * indicates statistically significant differences ( ).
图 5. 在英国爱丁堡家庭中不同采样时间观察到的颗粒平均数( )。符号*表示统计学上的显著差异( )。

4. Discussion 4. 讨论

We observed that airborne fibres contamination of processed soft tissue, during microplastics (MPs) assessment in field mussels, can alter the relative proportion of the type of fibres observed in samples. Quantification of MPs in field organisms will need to take contamination into account and by subtracting in the data not only the number, but also the type of particles observed in blanks, leading to a more reliable data analysis and report. Airborne fibres contamination of field samples is a challenge in MP studies and this can take place any time during collection, processing and/or microscopic observation, with sample dissection and digestion of mussels being the most vulnerable steps to contamination (Catarino et al., 2017). Contamination is extremely hard to eliminate, even in highly controlled and/or forensic conditions (Torre et al., 2016; Woodall et al., 2015). So it is essential to systematically use procedural blanks to quantify it (Catarino et al., 2017), to apply good laboratorial practices (GLP) for quality assurance (Torre et al., 2016) and to report openly real levels of contamination, so that appropriate data analysis, interpretation and inter-studies comparisons can be done. Even though we applied GLP (see Catarino et al., 2017), we observed contamination in our procedural blanks, which, if not taken into consideration in particle counts, influenced data analysis results and therefore interpretation (Fig. 2). So, in our data analysis, we subtracted the type and number of observed fibres in blanks from observations corresponding to the same digestion event, aiming at obtaining a more representative sampling from what can be found in the field.
我们观察到,在野外贻贝微塑料(MPs)评估过程中,加工软组织的空气纤维污染可能会改变样本中观察到的纤维类型的相对比例。在野外生物体中量化MPs将需要考虑污染,并通过在数据中减去不仅是空白样本中观察到的颗粒数量,还有类型,从而实现更可靠的数据分析和报告。野外样本的空气纤维污染是MP研究中的一个挑战,这可能发生在收集、加工和/或显微观察过程中的任何时间,对贻贝进行解剖和消化是最容易受到污染的步骤(Catarino等,2017年)。即使在高度受控和/或法庭条件下,污染也极其难以消除(Torre等,2016年;Woodall等,2015年)。因此,有必要系统地使用程序性空白样本来量化它(Catarino等,2017年),并应用良好的实验室实践(GLP)进行质量保证(Torre等)。, 2016) 并公开报告实际污染水平,以便进行适当的数据分析、解释和跨研究比较。尽管我们应用了GLP(参见Catarino等,2017年),但我们观察到在我们的程序空白中存在污染,如果在颗粒计数中不予考虑,将影响数据分析结果和因此的解释(图2)。所以在我们的数据分析中,我们从观察到的相同消化事件对应的观察中减去了在空白中观察到的纤维的类型和数量,旨在获得更具代表性的样品,以反映在实地发现的情况。
We have shown that the use of cage deployed mussels in the field can be an effective method to quantify and assess plastic pollution in the field. This assessment is particularly useful in areas where mussel beds are not necessarily present, such as an urban port (Forth Estuary, Port Edgar, Edinburgh, UK). We were also able to detect seasonal changes in the particle load, even if the proportion of each type of fibre was similar throughout the sampling seasons. The same seasonal change was not detected when using passive samplers (scrubs). We recommend the use of mussels instead of this specific type of samplers, due to a reduced number of particles captured compared to mussels, inability to detect season changes and to the more complex/time consuming extraction procedure. Samples indicated that mussels had a higher number of particles in the first 2015 winter campaign, corresponding to a high water flow period in the River Forth (Fig. S3., National River Flow Archive). Rivers are a major source of microplastics in marine coastal environments (Lebreton et al., 2017), and increased land runoff during winter/early Spring in Europe increases the number of microplastic particles in the water (Lebreton et al., 2017), as detected in our samples. The use of caged mussels to monitor microplastics has clear advantages that are very similar to other biomonitoring purposes. These include improved experimental control over sampling period and location, and use of mussels as bioindicators in areas where mussels may not be present (Beyer et al., 2017). We highly recommend the progression in this area and the development of standardized procedures for future field studies using caged organisms.
我们已经证明,在野外使用笼子部署的贻贝可以是一种有效的方法,用于量化和评估野外的塑料污染。这种评估在贻贝床并不一定存在的地区特别有用,比如城市港口(英国爱丁堡的福斯河口,埃德加港)。我们还能够检测到颗粒负荷的季节性变化,即使在采样季节中每种纤维的比例是相似的。当使用被动采样器(擦拭)时,并未检测到相同的季节性变化。我们建议使用贻贝而不是这种特定类型的采样器,因为相比贻贝,这种采样器捕获的颗粒数量较少,无法检测季节变化,而且提取过程更复杂/耗时。样本表明,在2015年冬季第一次采样活动中,贻贝中的颗粒数量较高,对应于福斯河水流量较大的时期(图S3,国家河流流量档案)。河流是海洋沿岸环境中微塑料的主要来源(Lebreton等)。, 2017), 并且欧洲冬季/初春增加的陆地径流会增加水中微塑料颗粒的数量(Lebreton 等人, 2017), 正如我们样本中检测到的那样。 使用圈养贻贝监测微塑料具有明显的优势,与其他生物监测目的非常相似。 这些包括改善对采样期间和位置的实验控制,并在可能没有贻贝存在的区域使用贻贝作为生物指示物(Beyer 等人, 2017)。 我们强烈推荐在这一领域的进展以及未来使用圈养生物进行野外研究的标准化程序的发展。
Mussels kept in the lab and used as reference also presented particles. These were kept in a temperature-controlled chamber, where open tanks were subject to a strong air-conditioned ventilation and in a space available to several other department users. Airborne fibres can be present in this environment and so exposure to atmospheric contamination was likely the major source of these
实验室中保存的贻贝并用作参考样本也呈现颗粒。 这些贻贝保存在一个温控室中,开放水槽受到强力空调通风的影响,并且是供多个其他部门用户使用的空间。 空气中的纤维可能存在于这种环境中,因此暴露于大气污染很可能是这些颗粒的主要来源。

particles in mussel tanks. However, deployed mussels were kept in the field for periods of over two weeks and as mussels are capable of particle depuration within after exposure (Ward and Kach, 2009), we believe that the number of particles observed reflects local and punctual field pollution and not lab contamination.
然而,已部署的贻贝在田间保留了超过两周的时间,由于贻贝在暴露后能够在 内进行颗粒净化(Ward和Kach,2009年),我们认为观察到的颗粒数量反映了当地和瞬时的田间污染,而不是实验室污染。
The number of particles found in both Mvtilus spp. (SE). and in the subtidal species Modiolus modiolus, (SE) particles per mussel. was similar. However, when these values are converted to number of particles per wet weight of soft tissue, the similarity disappears , and , (SE) particles/g ww, respectively). This could be due to M. modiolus being larger and having a higher body mass translated into a high capability of their filtration apparatus, capable of clearance rates of up to (Navarro and Thompson, 1996). These results are halved if the accuracy of visual plastic particle identification (FT-IR and Nile Red staining techniques) is accounted for, an estimation within the range of recent reports on freshwater clams (81%) (Su et al., 2018), fish gut contents (22%) (Wagner et al., 2017) and coastal bivalves (6%) (Phuong et al., 2017). If we now consider a value of ww Mytilus spp, the amount of particles observed in our study shows lower levels of plastic contamination in wild caught mussels, such as for M. galloprovincialis (3 particles/g ww) (Li et al., 2015), and for Scottish M. edulis (4.44 particles/g ww) (Courtene-Jones et al., 2017). This can be further due to sampling/ methodological and/or regional contamination differences or due to seasonal variability.
在Mvtilus spp.和亚潮带物种Modiolus modiolus中发现的颗粒数量(SE)相似。然而,当这些值转换为每克湿重软组织中的颗粒数量时,相似性消失了,分别为(SE)颗粒/克ww和(SE)颗粒/克ww。这可能是因为M. modiolus体型较大,体重较高,转化为其过滤器官的高能力,能够达到高达的清除率(Navarro和Thompson,1996)。如果考虑到视觉塑料颗粒识别的准确性(FT-IR和Nile Red染色技术),这些结果会减半,这是最近关于淡水蚌类(81%)(Su等,2018)、鱼类肠内容物(22%)(Wagner等,2017)和沿海双壳类动物(6%)(Phuong等,2017)的报道范围内的估计。如果我们现在考虑一个ww Mytilus spp的值,我们研究中观察到的颗粒数量显示出野生捕捞的贻贝中塑料污染水平较低,例如M. galloprovincialis(3颗粒/克ww)(Li等,2015),以及苏格兰M. edulis(4。44 颗微粒/克 ww) (Courtene-Jones 等人,2017 年)。这可能进一步归因于采样/方法论和/或区域污染差异或季节变异。
This was the first time that the presence of microplastics was reported from subtidal . modiolus, a species with a protected status in OSPAR areas. Modiolus modiolus is well known to actively trap suspended particulates such as algae and sediments (Lindenbaum et al., 2008), and can double sediment deposition rates (Kent et al., 2017); engineering large reefs of substantial biodiversity value (Sanderson et al., 2008). The role of mussels in the deposition rates of MPs in biogenic reefs and on the possibility of trapping particles together with sediments is unknown. The observed microplastics in field samples from both Mytilus spp and . modiolus indicates the need to assess the real risk to other species that might be present in these biogenic reefs.
这是首次报道在亚潮间带发现微塑料存在,这是 OSPAR 地区受保护地位的一种物种 modiolus。Modiolus modiolus 以积极地捕捉悬浮颗粒物如藻类和沉积物而闻名(Lindenbaum 等人,2008 年),并且可以使沉积速率翻倍(Kent 等人,2017 年);工程化大型珊瑚礁具有重要的生物多样性价值(Sanderson 等人,2008 年)。贻贝在生物礁中微塑料沉积速率以及与沉积物一起捕捉颗粒物的作用尚不清楚。从 Mytilus spp 和 modiolus 的野外样本中观察到的微塑料表明有必要评估可能存在于这些生物礁中的其他物种的真实风险。
In the MPs enumerated in Mytilus spp, there is mass dependent relationship when particle numbers are reported per wet weight of mussel (Fig. 4, i). When using this relationship and normalizing our data with mussel weight (co-variant), our (ANCOVA) analyses showed no significant difference between locations . This was observed, despite the number of MPs/g ww seeming higher in mussels from stations in Skye, the largest island in the Inner Hebrides archipelago, and St Kilda (Village Bay and Geo), an isolated archipelago in the North Atlantic Ocean, containing the westernmost islands of the Outer Hebrides of Scotland (Fig. 1). This discrepancy can be explained by the fact that in Mytilus edulis, and other Mytilus species, both pumping rates (water transport) and filtration rates (particle clearance) decrease with higher soft tissue mass (ww), among other parameters (Jacobs et al., 2015; Riisgard et al., 2014; Tsuchiya, 1980). Gill area also scales with weight and size of the organism (Jones et al., 1992; Riisgard et al., 2014), a key feature in controlling the individuals pumping, filtration and biodeposit rates (Jones et al., 1992; Tsuchiya, 1980). According to our model (Fig. 4, ii), a higher number of particles per ww will accumulate in mussels with higher pumping rates per , i.e. in smaller individuals. Future studies will need to take a size effect into consideration, and will need to clearly establish if within same sampling stations, larger mussels will trap lower number of fibres due to size dependent filtration rates. Other factors such as soft tissue mass and sexual maturation (i.e. gonadal development, which accounts heavily into weight) will play an important role when reporting data according to soft tissue wet weight. When establishing a monitoring programme of microplastic contamination using Mytilus spp., we recommend the use of individuals with a wet weight over . To our knowledge, this is the first time the relationship of mass of soft tissue to number of reported particles was observed in a microplastics report and we expect it may be applicable to other species of filter-feeders.
在 Mytilus spp 中列举的微塑料颗粒中,当以每只贻贝湿重报告颗粒数量时,存在质量相关关系(图4,i)。当使用这种关系并将我们的数据与贻贝重量(协变量)进行标准化时,我们的(ANCOVA)分析显示出不同位置之间没有显著差异。尽管从斯凯岛(内赫布里底群岛中最大的岛屿)的站点和圣基尔达(村湾和Geo)的贻贝中每克湿重的微塑料颗粒数量似乎更高,但观察到这一点,圣基尔达是北大西洋中的一个孤立群岛,包括苏格兰外赫布里底群岛最西端的岛屿(图1)。这种差异可以通过以下事实解释:在欧洲蛤(Mytilus edulis)和其他欧洲蛤物种中,随着软组织质量(湿重)的增加,泵送速率(水运输)和过滤速率(颗粒清除)均会降低,还有其他参数(Jacobs等,2015年;Riisgard等,2014年;Tsuchiya,1980年)。鳃面积也随着生物体的重量和大小而变化(Jones等,1992年;Riisgard等,2014年),这是控制个体泵送、过滤和生物沉积速率的关键特征(Jones等,1992年;Tsuchiya,1980年)。 根据我们的模型(图4,ii),每个 单位的微小颗粒将会积聚在流水速率更高的掘肃类动物体内,也就是说,在体型更小的个体中。未来的研究将需要考虑尺寸效应,并且需要清楚地确定是否在同一采样站内更大的贻贝因尺寸相关的过滤速率而能够捕捉更少的纤维。软组织质量和性成熟度(即生殖腺发育,对重量有很大影响)等因素在报告软组织湿重相关数据时将扮演重要角色。在建立利用深利贝属动物进行微塑料污染监测计划时,我们建议使用湿重超过 的个体。据我们所知,这是在微塑料报告中首次观察到软组织质量与报告颗粒数之间的关系,并且我们预计这可能适用于其他滤食动物种类。
The most frequently observed particles in our samples were fibres and of which a high proportion is estimated to be Polyester (Polyethylene Terephthalate), in accordance to observations in other bivalves (Browne et al., 2011; Rochman et al., 2015; Su et al., 2018). It is believed that a large number of fibres present in marine environments are of textile origin, for instance released during washing cycles (Napper and Thompson, 2016; Sillanpää and Sainio, 2017) and not trapped in waste water plants (Browne et al., 2011). Textile fibres are associated with dyes resistant to washing detergents and bleach agents which stay sorbed to fibres as a result of the presence of binders and mordants (reviewed in Drumond Chequer et al., 2013; Qian et al., 2017). Toxicity of these agents and dyes (see Drumond Chequer et al., 2013; Klemola, 2015), and their subproducts due to photodegradation (de Luna et al., 2014), via textile fibres ingestion is virtually unknown for aquatic organisms, and requires further investigation. There is also a lack of information on retention times by Mytilus spp of ingested fibres, as these can differ of those of microbeads, and that could influence the level of exposure of mussels to co-contaminants during particle passage through their gut.
在我们的样本中观察到最频繁的颗粒是纤维,其中高比例被估计为聚酯(聚对苯二甲酸乙二醇酯),与其他双壳类动物的观察结果一致(Browne等,2011年;Rochman等,2015年;Su等,2018年)。据信海洋环境中存在大量纤维是纺织品来源,例如在洗涤循环中释放(Napper和Thompson,2016年;Sillanpää和Sainio,2017年),而不是被困在污水处理厂中(Browne等,2011年)。纺织纤维与耐洗涤剂和漂白剂的染料相关联,这些染料由于粘合剂和媒染剂的存在而吸附在纤维上(参见Drumond Chequer等,2013年;Qian等,2017年)。这些剂和染料的毒性(参见Drumond Chequer等,2013年;Klemola,2015年),以及由于光降解而产生的副产品(de Luna等,2014年),通过摄入纺织纤维对水生生物的毒性几乎是未知的,需要进一步调查。 关于Mytilus spp对摄入纤维的保留时间的信息也缺乏,因为这些时间可能与微珠的保留时间不同,这可能会影响贻贝在颗粒通过其肠道时暴露于共存污染物的水平。
Using a conservative approach. we calculated that the incidental human ingestion of airborne fibres during a meal can lead to an exposure between 13.731 and 68.415 particles/y/person. This is a much higher figure when compared with the potential ingestion of particles via mussels consumption: 123 particles per year in the UK or up to 4620 particles/y in countries such as France, Belgium or Spain. The latter figure is also lower than the previously reported 11,000/y/European consumer, calculated by Van Cauwenberghe and Janssen (2014). In Europe and around the world, various species of mussels, namely from the Mytilus genus, have a highly commercial value and they are highly appreciated shellfish items (Food and Agriculture Organization of the United Nations, 2017). Urban dust fallout can be composed of 33% of microplastics (Dris et al., 2017) and has been pointed as a potential source of MPs for human exposure, including through ingestion (Dehghani et al., 2017; Dris et al., 2017). Younger children are in particular risk of ingesting of microplastics via dust and airborne fibres, with estimated rates of indoor dust ingestion ranging between for teenagers and for toddlers (Wilson et al., 2013). The concerns to human health by ingestion of MPs via shellfish is minimal compared to much higher levels of exposure via household dust ingestion. Besides particle load, exposure to associated cocontaminants (toxicants) in both cases can be of concern, and so we suggest a strong emphasis on the investigation of environmental relevant levels of exposure via marine microplastics and other major sources.
采用保守方法,我们计算出在用餐过程中意外摄入空气中纤维颗粒可能导致每人每年暴露于13.731至68.415个颗粒之间。与通过食用贻贝摄入颗粒相比,这个数字要高得多:在英国每年为123个颗粒,而在法国、比利时或西班牙等国家最高可达4620个颗粒/年。后者的数字也低于Van Cauwenberghe和Janssen(2014)计算的之前报道的每年每个欧洲消费者11,000个颗粒。在欧洲和世界各地,各种贻贝,尤其是来自Mytilus属的贻贝,具有很高的商业价值,是备受推崇的贝类食品(联合国粮食及农业组织,2017年)。城市尘埃沉降物中可能含有33%的微塑料(Dris等,2017年),并被指出是人类暴露于微塑料的潜在来源,包括通过摄入(Dehghani等,2017年;Dris等,2017年)。 年幼儿童特别容易通过灰尘和空气中的纤维摄入微塑料,室内灰尘摄入率估计在 之间,青少年为 ,幼儿为 (Wilson 等人,2013 年)。与通过贝类摄入 MPs 对人类健康的担忧相比,通过家庭灰尘摄入的暴露水平要高得多。除了颗粒负荷外,两种情况下暴露于相关共污染物(毒素)可能引起关注,因此我们建议重点调查海洋微塑料和其他主要来源的环境相关暴露水平。

5. Conclusions 5. 结论

Quantification of MPs using field mussels is a feasible procedure to assess field contamination and the use of deployed specimens is an effective advantageous method in the establishment of monitoring programmes, in particular in locations where mussel beds are not present. Our data shows that even in remote locations such as St Kilda, Scotland, mussels can indicate the presence of MPs. A better knowledge of baseline levels of contamination is necessary, to allow for recommendations to policymakers, such as on better waste treatment, and to establish real levels of environmental contamination of microplastics in mussels and other species. The
使用野生贻贝来量化微塑料是一种可行的程序,用于评估野外污染情况,而部署标本的使用是建立监测计划的有效优势方法,特别是在贻贝床不存在的地方。我们的数据显示,即使在苏格兰的圣基尔达等偏远地区,贻贝也能指示微塑料的存在。更好地了解基线污染水平是必要的,以便向决策者提出建议,例如改善废物处理,并建立贻贝和其他物种中微塑料的环境污染实际水平。

size of studied mussels and their soft tissue mass will need to be taken into consideration when particle load is being reported, as this seems weight/size dependent, and data will require standardization to be comparable between studies. Good laboratory practices are not sufficient to completely eliminate airborne fibre contamination of samples, so the use procedural blanks is of high importance, as well as the honest report of observed particles in blanks, so to establish comparable reports. Quantification of the proportion of plastic fibres from field observations (using FT-IR and/or Nile Red) is critical to establish realistic concentrations of synthetic particles in the environment. Finally, concerns of human exposure to MPs via shellfish ingestion need to be placed into context, since their potential for ingestion is minimal when compared to exposure to MPs via household dust fallout.
研究贻贝的大小和软组织质量在报告颗粒负荷时需要考虑,因为这似乎与重量/大小有关,数据将需要标准化才能在研究之间进行比较。良好的实验室实践不足以完全消除样品中空气中纤维的污染,因此使用程序空白非常重要,以及诚实地报告空白中观察到的颗粒,以建立可比较的报告。通过野外观察量化塑料纤维的比例(使用 FT-IR 和/或尼罗红)对于建立环境中合成颗粒的实际浓度至关重要。最后,需要将人类通过贝类摄入微塑料的担忧放置在背景下,因为与通过家庭灰尘沉降暴露于微塑料相比,它们摄入的潜力是微小的。

Acknowledgements 致谢

Thanks to H. Barras, J. Vad, C. Mackenzie, A. Lyndon, M. Stobie, M. Hartl, A. Santos and Heriot-Watt Scientific Divers (Heriot-Watt University, UK) for technical support, and to J. da Luz, G. Patsios and S. Kumar for advice. Industrial enzymes provided by AB Enzymes . Mussels for caged experiments were kindly provided by the Scottish Shellfish Association. G. Erni-Cassola (University of Warwick) and C. Ewins (University of the West of Scotland) have provided crucial assistance in fibre identification. This work was funded by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement # PIEF-GA-2013-625915 and by the Natural Environment Research Council, UK, grant number NERC NE/N006526/1]. This work received further funding (ref. # BFSSG7) from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (ref. # HR09011) and contributing institutions.
感谢 H. Barras,J. Vad,C. Mackenzie,A. Lyndon,M. Stobie,M. Hartl,A. Santos 和 Heriot-Watt 科学潜水员(英国 Heriot-Watt 大学)提供技术支持,以及 J. da Luz,G. Patsios 和 S. Kumar 提供建议。AB Enzymes 提供工业酶。用于笼子实验的贻贝由苏格兰贝类协会慷慨提供。G. Erni-Cassola(华威大学)和 C. Ewins(苏格兰西部大学)在纤维鉴定方面提供了关键帮助。本工作由欧盟第七框架计划 FP7/2007-2013/的 People 计划(玛丽居里行动)资助,根据 REA 授予协议编号 PIEF-GA-2013-625915,以及英国自然环境研究委员会(NERC)资助,编号 NERC NE/N006526/1。本工作还从 MASTS 汇集倡议(苏格兰海洋科学与技术联盟)获得进一步资助(参考编号 BFSSG7)。MASTS 由苏格兰资助委员会(参考编号 HR09011)和各参与机构资助。

Appendix A. Supplementary data
附录 A. 补充数据

Supplementary data related to this article can be found at https://doi.org/10.1016/j.envpol.2018.02.069.
与本文相关的补充数据可在 https://doi.org/10.1016/j.envpol.2018.02.069 找到。

References 参考文献

Adams, R.I., Tian, Y., Taylor, J.W., Bruns, T.D., Hyvärinen, A., Täubel, M., 2015. Passive dust collectors for assessing airborne microbial material. Microbiome 3, 46 https://doi.org/10.1186/s40168-015-0112-7.
Adams, R.I., Tian, Y., Taylor, J.W., Bruns, T.D., Hyvärinen, A., Täubel, M., 2015. 用于评估空气中微生物物质的被动尘埃收集器。微生物组 3, 46 https://doi.org/10.1186/s40168-015-0112-7.
Andral, B., Galgani, F., Tomasino, C., Bouchoucha, M., Blottiere, C., Scarpato, A., Benedicto, J., Deudero, S., Calvo, M., Cento, A., Benbrahim, S., Boulahdid, M., Sammari, C., 2011. Chemical contamination baseline in the Western basin of the Mediterranean sea based on transplanted mussels. Arch. Environ. Contam. Toxicol. 61, 261-271. https://doi.org/10.1007/s00244-010-9599-x.
Andral, B., Galgani, F., Tomasino, C., Bouchoucha, M., Blottiere, C., Scarpato, A., Benedicto, J., Deudero, S., Calvo, M., Cento, A., Benbrahim, S., Boulahdid, M., Sammari, C., 2011. 基于移植贻贝的地中海西部盆地的化学污染基线。环境污染与毒理学档案 61, 261-271. https://doi.org/10.1007/s00244-010-9599-x.
Arthur, C., Baker, J., Bamford, H., 2009. Proceedings of the international Research workshop on the occurrence, effects and fate of microplastic marine debris. In NOAA Technical Memorandum NOS-OR&R-30, p. 47.
Arthur, C., Baker, J., Bamford, H., 2009. 国际研究车间关于微塑料海洋垃圾的发生、影响和命运会议录。在 NOAA 技术备忘录 NOS-OR&R-30,第 47 页。
Batel, A., Linti, F., Scherer, M., Erdinger, L., Braunbeck, T., 2016. Transfer of benzo[a] pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environ. Toxicol. Chem. 35, 1656-1666. https://doi.org/ 10.1002/etc. 3361
Batel, A., Linti, F., Scherer, M., Erdinger, L., Braunbeck, T., 2016. 苯并[a]芘从微塑料转移到卤虫幼体,进一步通过营养食物链实验转移到斑马鱼:CYP1A 诱导和持久有机污染物的视觉追踪。环境。毒理。化学。35, 1656-1666. https://doi.org/10.1002/etc. 3361
Bertolini, C., Geraldi, N.R., Montgomery, W.I., O'Connor, N.E., 2017. Substratum type and conspecific density as drivers of mussel patch formation. J. Sea Res. 121, 24-32. https://doi.org/10.1016/j.seares.2017.01.004.
Bertolini, C., Geraldi, N.R., Montgomery, W.I., O'Connor, N.E., 2017. 底栖类型和同种密度作为贻贝斑块形成的驱动因子。J。海洋研究。121,24-32。https://doi.org/10.1016/j.seares.2017.01.004.
Beyer, J., Green, N.W., Brooks, S., Allan, I.J., Ruus, A., Gomes, T., Bråte, I.L.N. Schøyen, M., 2017. Blue mussels ( Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: a review. Mar. Environ. Res. https://doi.org/ 10.1016/j.marenvres.2017.07.024.
Beyer, J., Green, N.W., Brooks, S., Allan, I.J., Ruus, A., Gomes, T., Bråte, I.L.N. Schøyen, M., 2017. 蓝贻贝(欧洲蛤 Mytilus edulis spp.)作为沿海污染监测中的哨兵生物:一项综述。海洋环境研究。https://doi.org/10.1016/j.marenvres.2017.07.024.
Blumenröder, J., Sechet, P., Kakkonen, J.E., Hartl, M.G.J., 2017. Microplastic contamination of intertidal sediments of Scapa Flow, Orkney: a first assessment. Mar. Pollut. Bull. 124, 112-120. https://doi.org/10.1016/j.marpolbul.2017.07.009.
Blumenröder, J., Sechet, P., Kakkonen, J.E., Hartl, M.G.J., 2017. Orkney Scapa Flow 潮间带沉积物的微塑料污染:首次评估。海洋污染公报。124, 112-120。https://doi.org/10.1016/j.marpolbul.2017.07.009.
Browne, M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T., Thompson, R., 2011. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ. Sci. Technol. 45, 9175-9179. https://doi.org/10.1021 es201811s.
Browne, M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T., Thompson, R., 2011. 全球海岸线微塑料的积累:来源和汇。环境科学技术。45, 9175-9179。https://doi.org/10.1021 es201811s.
Browne, M.A., Galloway, T., Thompson, R., 2007. Microplastic-an emerging contaminant of potential concern? Integrated Environ. Assess. Manag. 3, 559-561. https://doi.org/10.1002/ieam.5630030412.
Browne, M.A., Galloway, T., Thompson, R., 2007. 微塑料-一种潜在关注的新兴污染物?综合环境评估与管理。3, 559-561。https://doi.org/10.1002/ieam.5630030412。
Catarino, A.I., Thompson, R., Sanderson, W., Henry, T.B., 2017. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environ. Toxicol. Chem. 36, 947-951. https:// doi.org/10.1002/etc. 3608.
Catarino, A.I., Thompson, R., Sanderson, W., Henry, T.B., 2017. 开发和优化一种用于酶消化软组织中贻贝中微塑料提取的标准方法。环境毒理学与化学。36, 947-951。https://doi.org/10.1002/etc. 3608。
Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M.B., Janssen, C.R., 2013. New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull. 70, 227-233. https://doi.org/10.1016/ j.marpolbul.2013.03.009
Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M.B., Janssen, C.R., 2013. 沉积物和野外采集生物中微塑料检测的新技术。海洋污染公报。70, 227-233。https://doi.org/10.1016/ j.marpolbul.2013.03.009。
Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117-143. https://doi.org/10.1111/j.14429993.1993.tb00438.x.
Clarke, K.R.,1993 年。社区结构变化的非参数多元分析。 Aust. J. Ecol. 18,117-143。https://doi.org/10.1111/j.14429993.1993.tb00438.x。
Clarke, K.R., Warwick, R.M., 2001. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation, second ed. Prim. Plymouth, UK. doi:1.
Clarke, K.R.,Warwick, R.M.,2001 年。海洋社区的变化:一种统计分析和解释方法,第二版。Prim. Plymouth, UK。doi:1。
Clausen, I., Riisgard, H.U., 1996. Growth, filtration and respiration in the mussel Mytilus edulis: No evidence for physiological regulation of the filter-pump to nutritional needs. Mar. Ecol. Prog. Ser. 141, 37-45. https://doi.org/10.3354/ Meps141037.
Clausen, I.,Riisgard, H.U.,1996 年。蚌类 Mytilus edulis 的生长、过滤和呼吸:没有证据表明过滤泵受营养需求的生理调节。Mar. Ecol. Prog. Ser. 141,37-45。https://doi.org/10.3354/ Meps141037。
Cole, M., Lindeque, P., Fileman, E., Halsband, C., Galloway, T.S., 2015. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol. 49, 1130-1137. https:// doi.org/10.1021/es504525u.
Cole, M., Lindeque, P., Fileman, E., Halsband, C., Galloway, T.S., 2015. 聚苯乙烯微塑料对海洋桡足类动物 Calanus helgolandicus 的摄食、功能和繁殖力的影响. 环境科学技术. 49, 1130-1137. https://doi.org/10.1021/es504525u.
CONTAM, 2016. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J 14, 4501-4531. https://doi.org/10.2903/ j.efsa.2016.4501.
CONTAM, 2016. 食品中微塑料和纳米塑料的存在,特别关注海鲜. EFSA J 14, 4501-4531. https://doi.org/10.2903/j.efsa.2016.4501.
Courtene-Jones, W., Quinn, B., Murphy, F., Gary, S.F., Narayanaswamy, B.E., 2017. Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics. Anal. Methods 9, 1437-1445. https://doi.org/10.1039/C6AY02343F.
Courtene-Jones, W., Quinn, B., Murphy, F., Gary, S.F., Narayanaswamy, B.E., 2017. 酶消化的优化和用于分析摄入微塑料的标本保存方法的验证. 分析方法. 9, 1437-1445. https://doi.org/10.1039/C6AY02343F.
de Luna, L.A.V., da Silva, T.H.G., Nogueira, R.F.P., Kummrow, F., Umbuzeiro, G.A., 2014. Aquatic toxicity of dyes before and after photo-Fenton treatment J. Hazard Mater. 276, 332-338. https://doi.org/10.1016/j.jhazmat.2014.05.047.
de Luna, L.A.V., da Silva, T.H.G., Nogueira, R.F.P., Kummrow, F., Umbuzeiro, G.A., 2014. 染料在光 Fenton 处理前后的水生毒性 J. 危险物质 276, 332-338. https://doi.org/10.1016/j.jhazmat.2014.05.047.
Dehghani, S., Moore, F., Akhbarizadeh, R., 2017. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ. Sci. Pollut. Res. 1-12. https:// doi.org/10.1007/s11356-017-9674-1.
Dehghani, S., Moore, F., Akhbarizadeh, R., 2017. 微塑料污染在德黑兰大都市沉积尘土中的研究. 环境科学与污染研究 1-12. https://doi.org/10.1007/s11356-017-9674-1.
Dias, P.J., Dordor, A., Tulett, D., Piertney, S., Davies, I.M., Snow, M., 2009. Survey of mussel (Mytilus) species at Scottish shellfish farms. Aquacult. Res. 40, 1715-1722. https://doi.org/10.1111/j.1365-2109.2009.02274.x.
Dias, P.J., Dordor, A., Tulett, D., Piertney, S., Davies, I.M., Snow, M., 2009. 苏格兰贝类养殖场贻贝(Mytilus)物种调查. 水产研究 40, 1715-1722. https://doi.org/10.1111/j.1365-2109.2009.02274.x.
Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., Tassin, B., 2017. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 221, 453-458. https://doi.org/10.1016/ j.envpol.2016.12.013.
Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., Tassin, B., 2017. 室内和室外环境中纺织纤维(包括微塑料)的首次概述。环境污染。221,453-458。https://doi.org/10.1016/j.envpol.2016.12.013。
Drumond Chequer, F.M., de Oliveira, G.A.R., Anastacio Ferraz, E.R., Carvalho, J., Boldrin Zanoni, M.V., de Oliveir, D.P., 2013. Textile dyes: dyeing process and environmental impact. In: Eco-friendly Textile Dyeing and Finishing. InTech. https://doi.org/10.5772/53659.
Drumond Chequer, F.M., de Oliveira, G.A.R., Anastacio Ferraz, E.R., Carvalho, J., Boldrin Zanoni, M.V., de Oliveir, D.P., 2013. 纺织染料:染色过程和环境影响。在:环保纺织染色和整理。InTech。https://doi.org/10.5772/53659。
Engel, F.G., Alegria, J., Andriana, R., Donadi, S., Gusmao, J.B., van Leeuwe, M.A., Matthiessen, B., Eriksson, B.K., 2017. Mussel beds are biological power stations on intertidal flats. Estuar. Coast Shelf Sci. 191, 21-27. https://doi.org/10.1016/ j.ecss.2017.04.003.
Engel, F.G., Alegria, J., Andriana, R., Donadi, S., Gusmao, J.B., van Leeuwe, M.A., Matthiessen, B., Eriksson, B.K., 2017. 贻贝床是潮间带平坦生物发电站。河口。海岸架科学。191,21-27。https://doi.org/10.1016/j.ecss.2017.04.003。
Eriksen, M., Maximenko, N., Thiel, M., Cummins, A., Lattin, G., Wilson, S., Hafner, J., Zellers, A., Rifman, S., 2013. Plastic pollution in the South Pacific subtropical gyre. Mar. Pollut. Bull. 68, 717-726. https://doi.org/10.1016/ j.marpolbul.2012.12.021.
Eriksen, M., Maximenko, N., Thiel, M., Cummins, A., Lattin, G., Wilson, S., Hafner, J., Zellers, A., Rifman, S., 2013. 南太平洋亚热带环流中的塑料污染. 海洋污染公报. 68, 717-726. https://doi.org/10.1016/ j.marpolbul.2012.12.021.
Erni-Cassola, G., Gibson, M.I., Thompson, R.C., Christie-Oleza, J.A., 2017. Lost, but found with nile red: a novel method for detecting and quantifying small microplastics ( to ) in environmental samples. Environ. Sci. Technol. 51, 13641-13648. https://doi.org/10.1021/acs.est.7b04512.
Erni-Cassola, G., Gibson, M.I., Thompson, R.C., Christie-Oleza, J.A., 2017. 用尼罗红找到的失落的微小塑料的新方法: 一种在环境样本中检测和定量小微塑料的新方法 ( to ). 环境科学技术. 51, 13641-13648. https://doi.org/10.1021/acs.est.7b04512.
Farrell, P., Nelson, K., 2013. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 177, 1-3. https://doi.org/10.1016/ j.envpol.2013.01.046.
Farrell, P., Nelson, K., 2013. 微塑料的营养级转移: 淡菜 (L.) 到绿蟹 (L.). 环境污染. 177, 1-3. https://doi.org/10.1016/ j.envpol.2013.01.046.
Food and Agriculture Organization of the United Nations, F, 2017. GLOBEFISH Analysis and Information on World Fish Trade [WWW Document]. URL. http:// www.fao.org/in-action/globefish/fishery-information/resource-detail/en/c/ 338588/. (Accessed 14 October 2017).
联合国粮食及农业组织,F,2017 年。全球鱼类贸易的 GLOBEFISH 分析和信息[网络文档]。网址。http:// www.fao.org/in-action/globefish/fishery-information/resource-detail/en/c/ 338588/.(访问日期:2017 年 10 月 14 日)。
Galloway, T.S., 2015. Micro- and nano-plastics and human health. In: Bergmann, M., Gutow, L., Klages, M. (Eds.), Marine Anthropogenic Litter. Springer International Publishing, Cham, pp. 343-366. https://doi.org/10.1007/978-3-319-16510-3_13.
Galloway, T.S.,2015 年。微观和纳米塑料与人类健康。在:Bergmann, M., Gutow, L., Klages, M.(编),海洋人类产生的垃圾。施普林格国际出版,香槟,343-366 页。https://doi.org/10.1007/978-3-319-16510-3_13。
Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060-3075. https://doi.org/10.1021/ es2031505.
Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., 2012 年。海洋环境中的微塑料:对用于鉴定和定量化的方法的回顾。环境科学技术。46,3060-3075。https://doi.org/10.1021/ es2031505。
House of Commons, Environmental Audit Committee, 2016. Environmental Impact of Microplastics. https://doi.org/10.1016/B0-12-176480-X/00420-4. Available at: https://goo.gl/39a2o8.
英国下议院环境审计委员会,2016 年。微塑料的环境影响。https://doi.org/10.1016/B0-12-176480-X/00420-4。可在 https://goo.gl/39a2o8 获取。
Jacobs, P., Troost, K., Riegman, R., van der Meer, J., 2015. Length- and weightdependent clearance rates of juvenile mussels (Mytilus edulis) on various planktonic prey items. Helgol. Mar. Res. 69, 101-112. https://doi.org/10.1007/ s10152-014-0419-y.
Jacobs, P., Troost, K., Riegman, R., van der Meer, J., 2015 年。不同浮游生物猎物对幼年贻贝(Mytilus edulis)长度和体重相关的清除率。Helgol. Mar. Res. 69, 101-112。https://doi.org/10.1007/ s10152-014-0419-y。
Jones, H.D., Richards, O.G., Southern, T.A., 1992. Gill dimensions, water pumping rate and body size in the mussel Mytilus edulis L. J. Exp. Mar. Biol. Ecol. 155, 213-237. https://doi.org/10.1016/0022-0981(92)90064-H.
Jones, H.D., Richards, O.G., Southern, T.A., 1992 年。贻贝 Mytilus edulis L.的鳃尺寸、水泵速率和体型。J. Exp. Mar. Biol. Ecol. 155, 213-237。https://doi.org/10.1016/0022-0981(92)90064-H。
Kent, F.E.A., Last, K.S., Harries, D.B., Sanderson, W.G., 2017. In situ biodeposition measurements on a Modiolus modiolus (horse mussel) reef provide insights
肯特,F.E.A.,拉斯特,K.S.,哈里斯,D.B.,桑德森,W.G.,2017 年。对 Modiolus modiolus(马蛤)礁的原位生物沉积测量提供见解

into ecosystem services. Estuar. Coast Shelf Sci. 184, 151-157. https://doi.org/ 10.1016/j.ecss.2016.11.014.
到生态系统服务。河口海岸架科学。184,151-157。https://doi.org/10.1016/j.ecss.2016.11.014。
Kent, F.E.A., Mair, J.M., Newton, J., Lindenbaum, C., Porter, J.S., Sanderson, W.G., 2016. Commercially important species associated with horse mussel (Modiolus modiolus) biogenic reefs: a priority habitat for nature conservation and fisheries benefits. Mar. Pollut. Bull. 118, 71-78. https://doi.org/10.1016/ j.marpolbul.2017.02.051.
肯特,F.E.A.,梅尔,J.M.,牛顿,J.,林登鲍姆,C.,波特,J.S.,桑德森,W.G.,2016 年。与马蛤(Modiolus modiolus)生物礁相关的商业重要物种:自然保护和渔业效益的优先栖息地。海洋污染公报。118,71-78。https://doi.org/10.1016/j.marpolbul.2017.02.051。
Kimbrough, K.L., Johnson, W.E., Lauenstein, G.G., Christensen, J.D., Apeti, D. a., 2008. An assessment of two decades of contaminant monitoring in the Nation's coastal zone. In: NOAA Technical Memorandum NOS NCCOS. https://doi.org/ 10.1007/s10661-009-1190-4.
Kimbrough, K.L.,Johnson, W.E.,Lauenstein, G.G.,Christensen, J.D.,Apeti, D. a.,2008 年。对全国沿海区域两十年污染物监测的评估。在:NOAA 技术备忘录 NOS NCCOS。https://doi.org/10.1007/s10661-009-1190-4。
Klemola, K., 2015. Textile toxicants in environmental and human health. In: Environmental Indicators. Springer Netherlands, Dordrecht, pp. 859-869. https:// doi.org/10.1007/978-94-017-9499-2_48.
Klemola, K.,2015 年。环境和人类健康中的纺织品毒物。在:环境指标。Springer Netherlands,Dordrecht,页 859-869。https://doi.org/10.1007/978-94-017-9499-2_48。
Lebreton, L.C.M., van der Zwet, J., Damsteeg, J.-W., Slat, B., Andrady, A., Reisser, J., 2017. River plastic emissions to the world's oceans. Nat. Commun. 8, 15611 https://doi.org/10.1038/ncomms15611.
Lebreton, L.C.M.,van der Zwet, J.,Damsteeg, J.-W.,Slat, B.,Andrady, A.,Reisser, J.,2017 年。河流塑料向世界海洋的排放。Nat. Commun. 8,15611 https://doi.org/10.1038/ncomms15611。
Li, J., Yang, D., Li, L., Jabeen, K., Shi, H., 2015. Microplastics in commercial bivalves from China. Environ. Pollut. 207, 190-195. https://doi.org/10.1016/ j.envpol.2015.09.018.
来源
Lindenbaum, C., Bennell, J.D., Rees, E.I.S., McClean, D., Cook, W., Wheeler, A.J., Sanderson, W.G., 2008. Small-scale variation within a Modiolus modiolus (Mollusca: Bivalvia) reef in the Irish Sea: I. Seabed mapping and reef morphology. J. Mar. Biol. Assoc. U. K. 88 https://doi.org/10.1017/ S0025315408000374.
林德恩鲍姆,贝内尔,里斯,麦克林,库克,惠勒,桑德森,2008 年。爱尔兰海中 Modiolus modiolus(软体动物:双壳类)礁内的小尺度变化:I.海床制图和礁体形态。英国海洋生物学会杂志。88 https://doi.org/10.1017/S0025315408000374。
Maes, T., Jessop, R., Wellner, N., Haupt, K., Mayes, A.G., 2017. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci. Rep. 7, 44501 https://doi.org/10.1038/srep44501.
马斯,杰索普,韦尔纳,豪普特,梅斯,2017 年。一种基于尼罗红荧光标记的快速筛查微塑料的方法。科学报告。7,44501 https://doi.org/10.1038/srep44501。
Napper, I.E., Thompson, R.C., 2016. Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar. Pollut. Bull. 112, 39-45. https://doi.org/10.1016/ j.marpolbul.2016.09.025.
Napper, I.E., Thompson, R.C., 2016. 从家用洗衣机释放合成微塑料纤维:织物类型和洗涤条件的影响。海洋污染公报 112, 39-45。https://doi.org/10.1016/j.marpolbul.2016.09.025。
Navarro, J.M., Thompson, R.J., 1996. Physiological energetics of the horse mussel Modiolus modiolus in a cold ocean environment. Mar. Ecol. Prog. Ser. 138, 135-148. https://doi.org/10.3354/meps138135.
Navarro, J.M., Thompson, R.J., 1996. 冷海洋环境中马蚌 Modiolus modiolus 的生理能量学。海洋生态进展系列 138, 135-148。https://doi.org/10.3354/meps138135。
OSPAR Commission, 2009. Background document for Modiolus modiolus beds. OSPAR Comm. Biodivers. Ser. 30.
OSPAR Commission, 2009. Modiolus modiolus 床的背景文件。OSPAR Comm. 生物多样性系列 30。
Phuong, N.N., Poirier, L., Pham, Q.T., Lagarde, F., Zalouk-Vergnoux, A., 2017. Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: location, season and/or mode of life? Mar. Pollut. Bull. 0-1. https:// doi.org/10.1016/j.marpolbul.2017.10.054.
Phuong, N.N., Poirier, L., Pham, Q.T., Lagarde, F., 2017. 影响法国大西洋海岸贻贝微塑料污染的因素:地点、季节和/或生活方式? 海洋污染公报 0-1。https://doi.org/10.1016/j.marpolbul.2017.10.054。
Qian, H.-F., Feng, G., Bai, G., Liu, Y.-C., Hu, L.-L., 2017. A contrastive study of adsorption behaviors on polyurethane fiber with diester/diurethane tethered and non-tethered azo disperse dyes. Dyes Pigments 145, 301-306. https:// doi.org/10.1016/j.dyepig.2017.06.013.
钱, H.-F., 冯, G., 白, G., 刘, Y.-C., 胡, L.-L., 2017. 聚氨酯纤维上二酯/二脲基和非脲基偶氮分散染料的吸附行为对比研究。 染料颜料 145, 301-306。https://doi.org/10.1016/j.dyepig.2017.06.013。
Riisgard, H.U., Larsen, P.S., Pleissner, D., 2014. Allometric equations for maximum filtration rate in blue mussels Mytilus edulis and importance of condition index. Helgol. Mar. Res. 68, 193-198. https://doi.org/10.1007/s10152-013-0377-9.
Riisgard, H.U., Larsen, P.S., Pleissner, D., 2014. 蓝贻贝 Mytilus edulis 最大过滤速率的全异速方程及条件指数的重要性。 Helgol。海洋研究 68, 193-198。https://doi.org/10.1007/s10152-013-0377-9。
Rochman, C.M., Tahir, A., Williams, S.L., Baxa, D.V., Lam, R., Miller, J.T., Teh, F., Werorilangi, S., Teh, S.J., 2015. Anthropogenic debris in seafood : plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Nat. Publ. Gr 1-10. https://doi.org/10.1038/srep14340.
Rochman, C.M., Tahir, A., Williams, S.L., Baxa, D.V., Lam, R., Miller, J.T., Teh, F., Werorilangi, S., Teh, S.J., 2015. 海鲜中的人为废弃物:用于人类消费的鱼类和双壳类贝类中的塑料废弃物和纤维。Nat. Publ. Gr 1-10. https://doi.org/10.1038/srep14340.
Sanderson, W.G., Holt, R.H.F., Kay, L., Ramsay, K., Perrins, J., McMath, A.J., Rees, E.I.S.,
2008. Small-scale variation within a Modiolus modiolus (Mollusca: Bivalvia) reef in the Irish Sea. II. Epifauna recorded by divers and cameras. J. Mar. Biol. Assoc. U. K. 88 https://doi.org/10.1017/S0025315408000040.
2008. 爱尔兰海中 Modiolus modiolus(软体动物:双壳类)礁内的小尺度变化。II. 潜水员和摄像机记录的外生动物。J. Mar. Biol. Assoc. U. K. 88 https://doi.org/10.1017/S0025315408000040.
Scottish Government, 2017. Scottish Shellfish Farm Production Survey 2016.
苏格兰政府,2017 年。2016 年苏格兰贝类养殖生产调查。
SEAFISH, 2016. Seafood Industry Factsheet, Seafood Consumption (2016 Update) [WWW Document]. SEAFISH. Seaf. Auth. UK. URL. http://www.seafish.org/ media/Publications/Seafood_Consumprion_2016_update.pdf. (Accessed 14 October 2017).
SEAFISH,2016 年。海鲜行业简报,海鲜消费(2016 年更新)[网络文档]。SEAFISH。Seaf. Auth. 英国。URL。http://www.seafish.org/media/Publications/Seafood_Consumprion_2016_update.pdf。(2017 年 10 月 14 日访问)。
Shim, W.J., Song, Y.K., Hong, S.H., Jang, M., 2016. Identification and quantification of microplastics using Nile Red staining. Mar. Pollut. Bull. 113, 469-476. https:// doi.org/10.1016/j.marpolbul.2016.10.049
Shim, W.J., Song, Y.K., Hong, S.H., Jang, M., 2016 年。使用尼罗红染色法鉴定和定量微塑料。海洋污染通报。113,469-476。https://doi.org/10.1016/j.marpolbul.2016.10.049
Sillanpää, M., Sainio, P., 2017. Release of polyester and cotton fibers from textiles in machine washings. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-0179621-1.
Sillanpää, M., Sainio, P., 2017. 从纺织品中释放聚酯和棉纤维的机洗过程。环境科学与污染研究。https://doi.org/10.1007/s11356-0179621-1。
Su, L., Cai, H., Kolandhasamy, P., Wu, C., Rochman, C.M., Shi, H., 2018. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ. Pollut. 234, 347-355. https://doi.org/10.1016/j.envpol.2017.11.075.
Su, L., Cai, H., Kolandhasamy, P., Wu, C., Rochman, C.M., Shi, H., 2018. 以亚洲蛤作为淡水生态系统微塑料污染的指示物。环境污染 234, 347-355。https://doi.org/10.1016/j.envpol.2017.11.075。
Sutton, R., Sedlak, M., 2017. Microplastic Monitoring and Science Strategy for San Francisco Bay.
Sutton, R., Sedlak, M., 2017. 旧金山湾微塑料监测和科学策略。
Tekman, M.B., Krumpen, T., Bergmann, M., 2017. Marine litter on deep Arctic seafloor continues to increase and spreads to the North at the HAUSGARTEN observatory. Deep. Res. Part I Oceanogr. Res. Pap 120, 88-99. https://doi.org/ 10.1016/j.dsr.2016.12.011.
Tekman, M.B., Krumpen, T., Bergmann, M., 2017. 深海北极海底的海洋垃圾继续增加并向北扩散,HAUSGARTEN 观测站。深海研究。第一部分海洋研究论文 120,88-99。https://doi.org/10.1016/j.dsr.2016.12.011。
Torre, M., Digka, N., Anastasopoulou, A., Tsangaris, C., Mytilineou, C., 2016 Anthropogenic microfibres pollution in marine biota. A new and simple methodology to minimize airborne contamination. Mar. Pollut. Bull. 113, 55-61. https://doi.org/10.1016/j.marpolbul.2016.07.050.
Torre, M., Digka, N., Anastasopoulou, A., Tsangaris, C., Mytilineou, C., 2016 年海洋生物体中人为微纤维污染。一种新的简单方法来减少空气污染。海洋污染公报 113,55-61。https://doi.org/10.1016/j.marpolbul.2016.07.050。
Tsuchiya, M., 1980. Biodeposit production by the mussel Mytilus edulis L on rocky shores. J. Exp. Mar. Biol. Ecol. 47, 203-222.
Tsuchiya, M., 1980 年。贻贝 Mytilus edulis L 在岩石海岸上的生物沉积物产生。实验性海洋生物学与生态学杂志 47,203-222。
Van Cauwenberghe, L., Janssen, C.R., 2014. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 193, 65-70. https://doi.org/10.1016 j.envpol.2014.06.010.
Van Cauwenberghe, L., Janssen, C.R., 2014. 用于人类消费的贝类中的微塑料。环境污染。193,65-70。https://doi.org/10.1016 j.envpol.2014.06.010。
von Moos, N., Burkhardt-Holm, P., Köhler, A., 2012. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327-11335. https://doi.org/ 10.1021/es302332w.
von Moos, N., Burkhardt-Holm, P., Köhler, A., 2012. 微塑料对蓝贻贝 Mytilus edulis L.细胞和组织的摄取和影响。实验暴露后的环境科学技术。46,11327-11335。https://doi.org/10.1021/es302332w。
Wagner, J., Wang, Z., Ghosal, S., Rochman, C., Gassel, M., Wall, S., 2017. Novel method for the extraction and identification of microplastics in ocean trawl and fish gut matrices. Anal. Methods 9, 1479-1490. https://doi.org/10.1039/C6AY02396G.
Wagner, J., Wang, Z., Ghosal, S., Rochman, C., Gassel, M., Wall, S., 2017. 海洋拖网和鱼肠中微塑料提取和鉴定的新方法。分析方法。9,1479-1490。https://doi.org/10.1039/C6AY02396G。
Ward, J.E., Kach, D.J., 2009. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 68, 137-142. https://doi.org/ 10.1016/j.marenvres.2009.05.002.
Ward, J.E., Kach, D.J., 2009. 海洋聚集物促进悬浮式贝类摄入纳米颗粒。海洋环境研究。68, 137-142。https://doi.org/10.1016/j.marenvres.2009.05.002。
Wilson, R., Jones-Otazo, H., Petrovic, S., Mitchell, I., Bonvalot, Y., Williams, D., Richardson, G.M., 2013. Revisiting dust and soil ingestion rates based on handto-mouth transfer. Hum. Ecol. Risk Assess. 19, 158-188. https://doi.org/10.1080/ 10807039.2012.685807
Wilson, R., Jones-Otazo, H., Petrovic, S., Mitchell, I., Bonvalot, Y., Williams, D., Richardson, G.M., 2013. 根据手-口传递重新审视尘土和土壤摄入率。人类生态风险评估。19, 158-188。https://doi.org/10.1080/10807039.2012.685807
Woodall, L.C., Gwinnett, C., Packer, M., Thompson, R.C., Robinson, L.F., Paterson, G.L.J., 2015. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Mar Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2015.04.044.
Woodall, L.C., Gwinnett, C., Packer, M., Thompson, R.C., Robinson, L.F., Paterson, G.L.J., 2015. 使用法庭科学方法最小化环境污染并在海洋沉积物中识别微纤维。海洋污染公报。https://doi.org/10.1016/j.marpolbul.2015.04.044。
Wright, S.L., Thompson, R.C., Galloway, T.S., 2013. The physical impacts of microplastics on marine organisms: a review. Environ. Pollut. 178, 483-492. https:// doi.org/10.1016/j.envpol.2013.02.031.
赖特,S.L.,汤普森,R.C.,加洛韦,T.S.,2013 年。微塑料对海洋生物的物理影响:综述。环境污染。178,483-492。https://doi.org/10.1016/j.envpol.2013.02.031。

    • This paper has been recommended for acceptance by Eddy Y. Zeng.
      Eddy Y. Zeng 建议接受这篇论文。
    • Corresponding author. 通讯作者。
    E-mail addresses: a.catarino@hw.ac.uk, catarino.anai@gamil.com (A.I. Catarino).
    电子邮件地址:a.catarino@hw.ac.uk, catarino.anai@gamil.com(A.I. Catarino)。