Conceptualizing smart city applications: Requirements, architecture, security issues, and emerging trends 智能城市应用概念化:需求、架构、安全问题和新兴趋势
A. K. M. Bahalul Haque ^(1){ }^{1} | Bharat Bhushan ^(2){ }^{2} • | Gaurav Dhiman ^(3){ }^{3} • A.K. M. Bahalul Haque ^(1){ }^{1} | Bharat Bhushan ^(2){ }^{2} - | Gaurav Dhiman ^(3){ }^{3} -
^(1){ }^{1} Software Engineering, LENS, LUT University, Lappeenranta, Finland ^(1){ }^{1} 软件工程,LENS,LUT 大学,芬兰拉彭兰塔 ^(2){ }^{2} Department of Computer Science and Engineering, School of Engineering and Technology, Sharda University, Greater Noida, India ^(2){ }^{2} 印度大诺伊达夏尔达大学工程技术学院计算机科学与工程系 ^(3){ }^{3} Department of Computer Science, Government Bikram Collge of Commerce, Patiala, Punjab, India ^(3){ }^{3} 印度旁遮普省帕蒂亚拉市政府比克拉姆商学院计算机科学系
Correspondence 通信
Bharat Bhushan, Department of Computer Science and Engineering, School of Engineering and Technology, Sharda University, Greater Noida, India. Email: bharat_bhushan1989@yahoo.com 印度大诺伊达 Sharda 大学工程与技术学院计算机科学与工程系 Bharat Bhushan。电子邮件:bharat_bhushan1989@yahoo.com
Abstract 摘要
The emergence of smart cities and sustainable development has become a globally accepted form of urbanization. The epitome of smart city development has become possible due to the latest innovative integration of information and communication technology. Citizens of smart cities can enjoy the benefits of a smart living environment, ubiquitous connectivity, seamless access to services, intelligent decision making through smart governance, and optimized resource management. The widespread acceptance of smart cities has raised data security issues, authentication, unauthorized access, device-level vulnerability, and sustainability. This article focuses on the holistic overview and conceptual development of smart city. Initially, the work discusses the smart city idea and fundamentals explored in various pieces of literature. Further various smart city applications along with notable implementations, are put forth to understand the quality of living standards. Finally, the article depicts a solid understanding of different security and privacy issues, including some crucial future research directions. 智慧城市和可持续发展的出现已成为全球公认的城市化形式。信息和通信技术的最新创新整合使智慧城市发展成为可能。智慧城市的市民可以享受到智能生活环境、无处不在的连接、无缝接入服务、通过智能治理进行智能决策以及优化资源管理等好处。智慧城市的广泛接受引发了数据安全、身份验证、未经授权的访问、设备级漏洞和可持续性等问题。本文重点介绍智慧城市的整体概述和概念发展。首先,作品讨论了智慧城市的理念和各种文献中探讨的基本原理。此外,还提出了各种智慧城市应用以及显著的实施情况,以了解生活质量标准。最后,文章阐述了对不同安全和隐私问题的深刻理解,包括一些重要的未来研究方向。
KEYWORDS 关键词
architecture, blockchain, loT, privacy, quality of living, security, smart city 建筑、区块链、LoT、隐私、生活质量、安全、智慧城市
1 | INTRODUCTION 1 简介
Smart city is the idea of creating a sustainable living environment along with state-of-the-art technology (ICT) integration (Bhushan et al., 2020). The smart city citizens will have seamless and ubiquitous access to information that allows them to control their lives using collective cyber intelligence. The city will provide ICT-based innovative and sustainable solutions by utilizing natural and economic resources. The smart city concept includes a higher Quality of Life (QoL) for citizens that offer smart healthcare and institutes, decentralized economy and government, intelligent vehicles, B101and so on. 智慧城市的理念是通过整合最先进的技术(信息和通信技术),创造一个可持续的生活环境(Bhushan et al.)智慧城市的市民将可以无缝、无处不在地获取信息,从而利用集体网络智能控制自己的生活。城市将利用自然和经济资源,提供基于信息和通信技术的创新和可持续解决方案。智慧城市的概念包括为市民提供更高的生活质量(QoL),包括智能医疗保健和机构、分散式经济和政府、智能汽车、B101 等。
Over the past couple of decades, the population has increased, and more than 50%50 \% live in urban areas. The estimation suggests the number shall rise to 70%70 \% within the next three decades (Nam & Pardo, 2011). The smart city idea is to provide sufficient food (Zhang, Sun, et al., 2020), energy (Zheng & Walsh, 2019), effective transportation (Shahidehpour et al., 2018), efficient supply chain management system (Wu et al., 2016), efficient infrastructure (Ota et al., 2017), smart data management (Zhang, Babar, et al., 2020), and so on. If the basic human need, including the other amenities, can be provided to the citizens, this will lead to a productive human resource, an effective working environment, good governance, and so on. A smart city is a self-containing city that focuses on people’s QoL above everything else. The goal of a smart city is multifaceted. Smart citizens should have digital identities, enabling them to share data that can be processed to improve the quality of services. Smart city demands sustainability that is the composition of a greener lifestyle and comfortable social life. Reducing environmental pollution and proper waste management preserves the smart city ecosystem (Shen et al., 2019). The governance and economy should be decentralized and completely transparent. Besides, different types of security attacks can compromise smart city applications and infrastructure. Citizens of a smart city can lose data. 过去几十年来,人口不断增加,超过 50%50 \% 居住在城市地区。据估计,在未来三十年内,这一数字将上升到 70%70 \% (Nam & Pardo, 2011)。智慧城市的理念是提供充足的食物(Zhang、Sun 等人,2020 年)、能源(Zheng & Walsh,2019 年)、有效的交通(Shahidehpour 等人,2018 年)、高效的供应链管理系统(Wu 等人,2016 年)、高效的基础设施(Ota 等人,2017 年)、智能数据管理(Zhang、Babar 等人,2020 年)等。如果能为市民提供基本的人类需求,包括其他便利设施,这将带来富有成效的人力资源、有效的工作环境、良好的治理等。智慧城市是一个自成一体的城市,它首先关注的是人们的生活质量。智慧城市的目标是多方面的。智慧公民应拥有数字身份,使他们能够共享数据,这些数据可被处理以提高服务质量。智慧城市要求可持续发展,这是更绿色的生活方式和舒适的社会生活的组成部分。减少环境污染和适当的废物管理可以保护智慧城市生态系统(Shen 等人,2019 年)。治理和经济应该是分散的、完全透明的。此外,不同类型的安全攻击会危及智慧城市应用程序和基础设施。智慧城市的市民可能会丢失数据。
Various organizations like banks, insurance companies, hospitals, and so on, can potentially be victims of data loss and face a massive crisis. Everything in a smart city is online and monitored for better safety and security. It can pose potential privacy and security issues (Ridhawi et al., 2020). 银行、保险公司、医院等各种机构都有可能成为数据丢失的受害者,面临巨大的危机。智慧城市中的一切都在线监控,以确保更好的安全和安保。这会带来潜在的隐私和安全问题(Ridhawi et al.)
Gharaibeh et al. (B11) discussed extensively about various smart city applications, and future research directions. Smart city applications have been described in details along with its components to understand the smart city infrastructure. Sookhak et al. (n.d.) provided a detailed comprehensive description of smart city security, privacy issues and solutions. Similarly, Elrawy et al. (2018) presented an extensive overview of loT based smart city security threats, protocols, intrusion issues, and countermeasures. A holistic survey of various attack detection systems has been put forth extensively by the author. On the other hand, Du et al. (2019) comprehensively outlined smart city architecture, applications and future research directions. Gharaibeh 等人(B11)广泛讨论了各种智慧城市应用和未来研究方向。他们详细描述了智慧城市应用及其组成部分,以了解智慧城市基础设施。Sookhak 等人(注)对智慧城市的安全、隐私问题和解决方案进行了详细全面的描述。同样,Elrawy 等人(2018 年)广泛概述了基于 loT 的智慧城市安全威胁、协议、入侵问题和应对措施。作者对各种攻击检测系统进行了全面调查。另一方面,Du 等人(2019 年)全面概述了智慧城市架构、应用和未来研究方向。
In another work, Silva et al. (2018) represented extensively and comprehensively about smart city architecture, applications and attributes of different smart cities around the world. Sánchez-Corcuera et al. (2019) provided a comprehensive, precise overview of recent literature about smart city issues, including a comparative analysis among these. The authors outlines architectures, applications, smart city examples and future research directions. In another work, Curzon et al. (2019) described the current situation of smart cities around the globe. The authors also tried to find out recent issues regarding smart city privacy and their state-of-the-art solutions. In another work, Chen et al. (2019) provided a comprehensive survey of freshly growing research areas of smart city applications and artificial intelligence to provide potential readers with a solid understanding of the trends and open research issues. Similarly, Lau et al. (2019) described a comprehensive survey of artificial-intelligence-based approach for leveraging various issues of a smart city. On the other hand Laufs et al., (2020) described architecture and security issues. Kirimtat et al., 2020) discussed smart cities in one of the latest literatures related to smart city surveys. In this survey, authors have extensively explored the literature related to smart city surveys and provided a useful overview of smart city applications, elements, and prospects. Table 1 depicts a comparative analysis of smart city survey literatures in different scale, that is, detailed representation, partial representation and topics not covered. Parameters are described in the table. 在另一项研究中,Silva 等人(2018 年)广泛而全面地介绍了世界各地不同智慧城市的架构、应用和属性。Sánchez-Corcuera 等人(2019 年)全面、准确地概述了有关智慧城市问题的最新文献,包括对这些文献的比较分析。作者概述了架构、应用、智慧城市实例和未来研究方向。在另一部作品中,Curzon 等人(2019 年)描述了全球智慧城市的现状。作者还试图找出有关智慧城市隐私的最新问题及其最先进的解决方案。在另一篇论文中,Chen 等人(2019)对智能城市应用和人工智能等不断发展的新研究领域进行了全面调查,为潜在读者提供了对发展趋势和公开研究课题的扎实了解。同样,Lau 等人(2019)对基于人工智能的方法利用智慧城市的各种问题进行了全面调查。另一方面,Laufs 等人(2020 年)介绍了架构和安全问题。Kirimtat 等人,2020)在与智慧城市调查相关的最新文献中讨论了智慧城市。在这份调查报告中,作者广泛探讨了与智慧城市调查相关的文献,并对智慧城市的应用、要素和前景进行了有益的概述。表 1 对不同规模的智慧城市调查文献进行了比较分析,即详细表述、部分表述和未涉及的主题。表中对参数进行了说明。
Based on the literature discussed above and the comparative analysis presented in Table 1 significant research gap has been found. To the best of our findings and understandings, there is a need for a comprehensive review of the smart city architecture, applications of all domains, requirements, security, privacy, smart cities around the world and future research directions. The aims and objective of this study is to outline, highlight and represent information regarding the concepts, emergence and future research directions of smart city. This article can be a crucial source for potential scientists, researchers, and learners as future research directions and background study. The major contribution of this work is as follows. 根据上文讨论的文献和表 1 中的比较分析,我们发现了重大的研究空白。根据我们的发现和理解,有必要对智慧城市架构、所有领域的应用、需求、安全性、隐私、全球智慧城市和未来研究方向进行全面回顾。本研究的目的和目标是概述、强调和呈现有关智慧城市的概念、兴起和未来研究方向的信息。本文可作为潜在科学家、研究人员和学习者未来研究方向和背景研究的重要资料来源。这项工作的主要贡献如下。
This work represents a brief introduction of smart city emergence and its need for the urbanization. 本作品简要介绍了智慧城市的出现及其对城市化的需求。
This work analyses smart city requirements and different architectural components 本作品分析了智慧城市的要求和不同的建筑组件
This work highlights smart city architectural layers, including their attributes and functions. These are represented in a tabular format also. 本作品重点介绍了智慧城市建筑层,包括其属性和功能。这些内容也以表格形式呈现。
This work comprehensively reviews various smart city applications, including their recent advancements in detailed and tabular format which is one of the main impacts of this research. 本作品以详细的表格形式全面回顾了各种智慧城市应用,包括其最新进展,这是本研究的主要影响之一。
This work effectively summarizes the specifications of various smart cities around the world and their attributes. 这项工作有效地总结了世界各地各种智慧城市的规格及其属性。
Finally, this work enumerates future research directions for smart city applications, blockchain integration, security aspects, collaborative filtering and infrastructural improvements 最后,本作品列举了未来在智慧城市应用、区块链集成、安全方面、协同过滤和基础设施改进等方面的研究方向。
TABLE 1 Comparative analysis of existing literatures 表 1 现有文献的比较分析
Literatures 文学
Year 年份
1\mathbf{1}
2\mathbf{2}
3\mathbf{3}
4\mathbf{4}
5\mathbf{5}
6\mathbf{6}
7\mathbf{7}
8\mathbf{8}
9\mathbf{9}
Gharaibeh et al. (2017) Gharaibeh 等人(2017 年)
2017
L
L
M
H
L
L
M
M
H
Sookhak et al. (n.d.)
2018
L
L
M
M
L
L
H
H
H
Elrawy et al. (2018) Elrawy 等人(2018 年)
2018
L
L
M
L
L
L
H
H
H
Du et al. (2019) 杜等人(2019)
2018
L
L
H
M
L
L
L
L
H
Silva et al. (2018) 席尔瓦等人(2018)
2018
L
L
H
H
H
L
L
L
M
Sánchez-Corcuera et al. (2019) 桑切斯-科奎拉等人 (2019)
2019
L
L
M
H
H
L
L
L
H
Curzon et al. (2019) Curzon 等人(2019 年)
2019
L
M
H
H
L
L
L
L
M
Chen et al. (2019) 陈等人(2019)
2019
L
M
L
H
L
L
L
L
H
Lau et al. (2019) 刘等人(2019)
2020
L
L
M
H
L
L
L
L
H
Laufs et al. (2020) 劳夫斯等人(2020 年)
2020
L
L
H
L
L
L
H
L
M
This Paper 本文
H
H
H
H
H
H
H
H
H
Literatures Year 1 2 3 4 5 6 7 8 9
Gharaibeh et al. (2017) 2017 L L M H L L M M H
Sookhak et al. (n.d.) 2018 L L M M L L H H H
Elrawy et al. (2018) 2018 L L M L L L H H H
Du et al. (2019) 2018 L L H M L L L L H
Silva et al. (2018) 2018 L L H H H L L L M
Sánchez-Corcuera et al. (2019) 2019 L L M H H L L L H
Curzon et al. (2019) 2019 L M H H L L L L M
Chen et al. (2019) 2019 L M L H L L L L H
Lau et al. (2019) 2020 L L M H L L L L H
Laufs et al. (2020) 2020 L L H L L L H L M
This Paper H H H H H H H H H| Literatures | Year | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Gharaibeh et al. (2017) | 2017 | L | L | M | H | L | L | M | M | H |
| Sookhak et al. (n.d.) | 2018 | L | L | M | M | L | L | H | H | H |
| Elrawy et al. (2018) | 2018 | L | L | M | L | L | L | H | H | H |
| Du et al. (2019) | 2018 | L | L | H | M | L | L | L | L | H |
| Silva et al. (2018) | 2018 | L | L | H | H | H | L | L | L | M |
| Sánchez-Corcuera et al. (2019) | 2019 | L | L | M | H | H | L | L | L | H |
| Curzon et al. (2019) | 2019 | L | M | H | H | L | L | L | L | M |
| Chen et al. (2019) | 2019 | L | M | L | H | L | L | L | L | H |
| Lau et al. (2019) | 2020 | L | L | M | H | L | L | L | L | H |
| Laufs et al. (2020) | 2020 | L | L | H | L | L | L | H | L | M |
| This Paper | | H | H | H | H | H | H | H | H | H |
Note: Need for smart city=1: Requirements of Smart City = 2: Smart City Architecture/Components = 3: Applications of Smart City = 4: Smart City Examples Around the Globe =5=5 :Secutity Attributes =6=6 : Leveraging Security issues =7=7 : Privacy issues = 8: Future Research =9.H==9 . \mathrm{H}= denotes detailed representation; M=M= denotes partial representation; L=L= denotes topics are not covered. 注:智慧城市的需求=1:智慧城市的要求=2:智慧城市的架构/组成部分=3:智慧城市的应用=4:全球智慧城市实例 =5=5 :安全属性 =6=6 :利用安全问题 =7=7 :隐私问题=8:未来研究 =9.H==9 . \mathrm{H}= 表示详细表述; M=M= 表示部分表述; L=L= 表示未涉及主题。
The remainder of this articleis as follows. Section 2 explores the components, pillars, architecture, and requirements of the smart city. Section 3 presents a comprehensive review of various smart city applications, including a tabular representation of their recent advancements. Section 4 discussed various smart city examples around the globe. Section 5 outlines smart city security and privacy issues. This section also analyses the smart city security attributes. Section 6 presents future research directions followed by a conclusion in Section 7. 本文的其余部分如下。第 2 节探讨了智慧城市的组成部分、支柱、架构和要求。第 3 节全面回顾了各种智慧城市应用,并以表格形式介绍了这些应用的最新进展。第 4 节讨论了全球各地的各种智慧城市实例。第 5 节概述了智慧城市的安全和隐私问题。本节还分析了智慧城市的安全属性。第 6 节介绍了未来的研究方向,第 7 节是结论。
2 | SMART CITY BACKGROUND 2 | 智慧城市背景
Urbanization is becoming difficult due to the ever-increasing population. For this reason, education, transportation, energy, healthcare, and so on, need proper management. Transparency, trustworthiness, optimization, and monitoring are required for better administrative decision making and implementation. It is widely agreed that sustainability, decentralization, and information integration, and communication technology are crucial for smart cities. The subsections below highlight the importance of a smart city, its components, pillars, requirements, and architecture. 由于人口不断增加,城市化变得越来越困难。因此,教育、交通、能源、医疗等都需要妥善管理。为了更好地进行行政决策和实施,需要透明度、可信度、优化和监督。人们普遍认为,可持续性、权力下放、信息整合和通信技术对智慧城市至关重要。以下各小节强调了智慧城市的重要性、其组成部分、支柱、要求和架构。
2.1 | Need for smart city 2.1 智慧城市的需求
Smart City has the potential of being one of the next significant technological advancements. It incorporates technology in every aspect of life to improve QoL. Some notable contributions of smart cities are discussed below. 智慧城市有可能成为下一个重大技术进步之一。它将技术融入生活的方方面面,以提高生活质量。下文将讨论智慧城市的一些显著贡献。
2.1.1 | Sustainability 2.1.1 | 可持续性
Smart cities aim to build smart and sustainable healthcare, sustainable energy consumption framework, and inspire a greener lifestyle. Social issues, climate change, waste and pollution management, and using natural resources intelligently are crucial for building smart cities. Technological advancement often reduces and degrades the emotional and physical well-being of humans. Smart cities will put humans at the center and adjust technology to improve their QoL. 智慧城市旨在建立智能和可持续的医疗保健、可持续的能源消费框架,并激发更环保的生活方式。社会问题、气候变化、废物和污染管理以及自然资源的智能化利用是建设智慧城市的关键。技术进步往往会减少和降低人类的情感和身体健康。智慧城市将以人为本,通过调整技术来改善人类的生活质量。
2.1.2 | Security 2.1.2 | 安全
Smart city requires secure communication, monitoring, and response. Each element of a smart city is interconnected through various devices. These devices help connect citizens of the smart city also. Smart city infrastructure, state of the art technology improves physical architecture and cybersecurity situation. Blockchain and other technologies are used as a security provider for the smart city. The pseudo-anonymity of blockchain technology secures the transmission of big data in the smart city. Blockchain creates an environment of trustless transactions that prevents fraud and eliminates a third party (Ghandour et al., 2018). 智慧城市需要安全的通信、监控和响应。智慧城市的每个要素都通过各种设备相互连接。这些设备也有助于连接智慧城市的市民。智慧城市的基础设施、最先进的技术改善了物理架构和网络安全状况。区块链和其他技术被用作智慧城市的安全保障。区块链技术的伪匿名性确保了智慧城市中大数据传输的安全。区块链创造了一个无信任交易的环境,可以防止欺诈并消除第三方(Ghandour et al.)
Cyber attacks can happen on various smart city infrastructure. Smart city uses various sensor network and loT devices for building context aware applications. Sensor network are prone to cyber-attack due to their architecture and build. Due the attacks on infrastructure the devices can be unavailable, data loss can happen, smart city citizens can have privacy leakage, malicious codes can be injected to feed wrong information and hence infect smart city infrastructure. Feeding wrong information can cause catastrophic damage to the total environment and the living standard can significantly downgrade. For this reason, smart city implements state-of-the-art security attack countermeasures against anytime of attack. 网络攻击可能发生在各种智能城市基础设施上。智能城市使用各种传感器网络和 loT 设备来构建情境感知应用程序。传感器网络由于其架构和构造,很容易受到网络攻击。由于基础设施受到攻击,设备可能无法使用,数据可能丢失,智能城市市民的隐私可能被泄露,恶意代码可能被注入,从而提供错误信息,进而感染智能城市基础设施。输入错误信息会对整个环境造成灾难性破坏,生活水平也会大幅下降。因此,智慧城市采用了最先进的安全攻击对策,以应对随时可能发生的攻击。
If personal data of the citizens is leaked due to any type of software and hardware failure, it can cause significant damage to the city dwellers. If the information fall into the wrong hand, the perpetrator can physically harm the person. In addition the citizen can face identity theft which can be used for any types of crime including cybercrime. Moreover, privacy leakage can lead to unwanted spam attack or ransomware attacks. The smart city infrastructure is equipped with blockchain based security system as well as intelligent intrusion detection and prevention system against all of those. 如果市民的个人数据因任何类型的软件和硬件故障而泄露,就会给城市居民造成重大损失。如果信息落入坏人之手,犯罪者可能会对个人造成人身伤害。此外,市民还可能面临身份被盗,从而被用于包括网络犯罪在内的任何类型的犯罪。此外,隐私泄露还可能导致不必要的垃圾邮件攻击或勒索软件攻击。智慧城市基础设施配备了基于区块链的安全系统以及智能入侵检测和防御系统,可以防范所有这些问题。
2.1.3 | Connectivity 2.1.3 | 连接
Smart city thrives on connectivity and a collective approach through an interconnected society for learning will increase creativity and ultimately contribute to making humans smart. Connectivity in a smart city is provided using both wired and wireless medium. Seamless connectivity of smart city make data transmission easier and provide real time application and security services to the city dwellers. 智慧城市的发展离不开互联互通,通过互联互通的社会学习集体方法将提高创造力,并最终促进人类的智慧发展。智慧城市中的连接是通过有线和无线媒介实现的。智慧城市的无缝连接使数据传输更容易,并为城市居民提供实时应用和安全服务。
2.1.4 | Decentralization 2.1.4 | 权力下放
One of the main goals of building smart cities is decentralizing governance, healthcare, education, finance, and so on. So that people can receive services anytime, anywhere, without restrictions. If individual records (i.e., property ownership) are stored using blockchain technology, transparency and immutability shall prevent fraudulent activities. Digital identity is already being utilized in some counties. It can be used for authentication purposes at an individual and business level. 建设智慧城市的主要目标之一是下放治理、医疗、教育、金融等方面的权力。这样,人们就可以随时随地、不受限制地获得服务。如果使用区块链技术存储个人记录(即财产所有权),透明度和不变性将防止欺诈活动。一些国家已经开始使用数字身份。它可用于个人和企业层面的身份验证。
2.2 | Requirements of smart city 2.2 智慧城市的要求
Smart cities are the newest concept of urbanization. A smart city is interconnected, intelligent, and sustainable. Many sectors need to be considered to create a safe and secure smart city. These are as follows. 智慧城市是城市化的最新概念。智慧城市是互联的、智能的和可持续的。要创建一个安全可靠的智慧城市,需要考虑许多方面。具体如下
2.2.1 | Smart human capital 2.2.1 | 智能人力资本
Smart human capital means effective, efficient, and knowledgeable human resources. Human resources are one of the most critical factors for any kind of society. Citizens use their education, knowledge, creativity, and intelligence to develop themselves. Social learning is another factor that is immensely impacted by sustainable social infrastructures. Critical thinking is a crucial element for the personal and social improvement of a citizen. Proper monitoring and authoritative control over citizen’s data are needed. As people inside a smart city are connected dynamically, a digital identity is required. Digital identity shall help the citizens to use all types of services seamlessly. Protecting emotional and physical stability is very important for the integrity of a smart city. 智能人力资本是指有效、高效和知识丰富的人力资源。人力资源是任何一种社会最关键的因素之一。公民利用他们的教育、知识、创造力和智慧来发展自己。社会学习是另一个受到可持续社会基础设施巨大影响的因素。批判性思维是公民个人和社会进步的关键因素。需要对公民数据进行适当的监测和权威控制。由于智慧城市中的人们是动态连接的,因此需要数字身份。数字身份应帮助市民无缝使用各类服务。保护情绪和身体的稳定对智慧城市的完整性非常重要。
2.2.2 | Smart infrastructure 2.2.2 | 智能基础设施
Developing the infrastructure of a city is vital for its development. Smart buildings are infrastructural improvements in smart cities. The smart building has efficient energy consumption and environmental protection. Buildings can use solar energy. Various sensors and loT technologies are used in such an infrastructure for better performance. The infrastructure development of smart cities also includes smart transportation systems. Driverless and hassle-free transportation is envisioned for smart city infrastructure. Global positioning systems and different vehicular ad-hoc network infrastructures are also immensely crucial for smart infrastructure. Besides, smart grid technology (Maier, 2016) is implemented for efficient energy consumption. This shall provide citizens a better QoL. 发展城市基础设施对城市发展至关重要。智能建筑是对智能城市基础设施的改进。智能建筑具有高效的能源消耗和环境保护功能。建筑物可以使用太阳能。在这种基础设施中使用各种传感器和 loT 技术,以提高性能。智慧城市的基础设施建设还包括智能交通系统。无人驾驶和无障碍交通是智慧城市基础设施的设想。全球定位系统和不同的车载 ad-hoc 网络基础设施对智能基础设施也至关重要。此外,智能电网技术(Maier,2016 年)的实施可实现高效的能源消耗。这将为市民提供更好的生活质量。
2.2.3 | Smart services 2.2.3 | 智能服务
Various social, financial, and municipal services are crucial requirements in smart city services. Health care service is one of the vital benefits of a smart city (Alfian et al., 2018). This service includes a patient record management system, intelligent appointment system, data storage, and sharing among the related organizations. loT and sensor devices can be used for patient data collection. Remote healthcare services can be facilitated for the persons who need attention. Moreover, healthcare data can be analysed for disease detection and medication. Financial services like banking, insurance is also very crucial for citizens (Arora, 2018). City administrators should be able to dispatch essential services whenever anyone needs it. Online banking is already a growing sector. Smart insurance services can also be implemented for facilitating a state-of-the-art service to the citizens. Besides, education is one of the crucial demands that need to be fulfilled by the administrator. For this reason, efficient and smart education is also a vital requirement for smart cities. The learners need to be able to learn and use their knowledge in real-world scenarios for sustainability. 各种社会、金融和市政服务是智慧城市服务的关键要求。医疗保健服务是智慧城市的重要优势之一(Alfian et al.)这项服务包括病历管理系统、智能预约系统、数据存储以及相关机构之间的共享。可以为需要关注的人提供远程医疗服务。此外,还可对医疗保健数据进行分析,用于疾病检测和药物治疗。银行、保险等金融服务对市民来说也非常重要(Arora,2018)。城市管理者应能在任何人需要时随时提供基本服务。网上银行已经是一个不断增长的行业。还可以实施智能保险服务,为市民提供最先进的服务。此外,教育也是管理者需要满足的重要需求之一。因此,高效和智能的教育也是智慧城市的重要要求。学习者需要能够在现实世界的场景中学习和使用知识,以实现可持续发展。
2.2.4 | Security and privacy 2.2.4 | 安全与隐私
Modern urbanization is widely dependent on sensors and loT devices. These devices are used in various infrastructures. Data collected from different devices is analysed for better strategic management. Administrative decisions and procedures can be improved significantly using data analysis. A security breach in any of the infrastructure can potentially jeopardize the whole system. People of smart cities are always monitored for social security purposes. As smart cities thrive on collecting and processing citizens’ personal, locational, and sensitive information, any breach 现代城市化广泛依赖于传感器和 loT 设备。这些设备用于各种基础设施。对从不同设备收集到的数据进行分析,可以更好地进行战略管理。通过数据分析,可以大大改进行政决策和程序。任何基础设施的安全漏洞都有可能危及整个系统。出于社会安全目的,智慧城市的人们始终受到监控。由于智慧城市以收集和处理市民的个人、位置和敏感信息为生,因此任何安全漏洞都会对整个系统造成危害。
of privacy is threatening individuals and society. Wearable devices and health monitoring equipment collect patient’s personal and physical information such as location, heartbeat, and other health-related data. For both cases, the data is personal and should not be an open or public view. Breach of privacy can leave people vulnerable to severe attacks (Haque et al., 2021). So, proper privacy and security measures for a person’s digital identity and footprint are a much-needed requirement for a smart city (Eckhoff & Wagner, 2018). 隐私正在威胁着个人和社会。可穿戴设备和健康监测设备收集病人的个人和身体信息,如位置、心跳和其他健康相关数据。在这两种情况下,数据都属于个人隐私,不应被公开或公之于众。侵犯隐私会使人们容易受到严重攻击(Haque et al.)因此,对个人数字身份和足迹采取适当的隐私和安全措施是智慧城市亟需的要求(Eckhoff & Wagner,2018)。
2.2.5 | QoL and sustainable environment 2.2.5 | QoL 和可持续环境
All technology provides a quality environment for living a healthy life. The government is service-based. Smart governance can be beneficial for increasing the QoL. Administrative procedures and decisions should be automated and transparent to the people. Coherent correlation among other smart city infrastructures components shall create harmony, and citizens will enjoy standard benefits. Smart cities must be sustainable and environmentally friendly. Rapid urbanization, the rising number of industries, and diminishing greenery quicken climate change. Therefore, creating the scope of living a greener lifestyle is mandatory. The usage of renewable, shareable energy can help smart cities to reduce carbon footprints. Proper waste management to reduce pollution and biodegradable materials is crucial for a cleaner and greener environment (Xie et al., 2019). 所有技术都为健康生活提供了优质环境。政府以服务为本。智能治理有利于提高生活质量。行政程序和决策应实现自动化,并对人民透明。其他智慧城市基础设施之间的连贯关联将创造和谐,市民将享受到标准福利。智慧城市必须是可持续的、环保的。快速的城市化进程、不断增加的工业数量以及不断减少的绿化面积都会加速气候变化。因此,必须创造更加绿色的生活方式。使用可再生、可共享的能源可以帮助智慧城市减少碳足迹。妥善管理废物以减少污染和可生物降解的材料,对于创造更清洁、更绿色的环境至关重要(Xie et al.)
2.3 | Smart city architecture 2.3 | 智慧城市架构
Smart cities are a relatively new idea of urbanization. Though several aspects and features of the smart city are implemented, a holistic implementation of a smart city is yet to be implemented. Researchers and scientists are trying to bring forth a real-life architectural pattern of a smart city. Defining a definitive architectural model is essential for any kind of technology. Without a proper design, the technology will not have any standard to follow, and there is a significantly less chance to evolve. A smart city is highly dependent on data since all decision-making is done after a proper analysis of the collected data from various infrastructure. Considering the proposed works and approaches, four layers have been identified. A brief description of the smart city architectural layers is described as follows. 智慧城市是一个相对较新的城市化理念。虽然智慧城市的几个方面和特征已经实现,但智慧城市的整体实施仍有待实现。研究人员和科学家们正试图提出一种现实生活中的智慧城市建筑模式。对于任何一种技术来说,确定一个明确的建筑模式都是至关重要的。没有适当的设计,技术就没有任何标准可循,发展的机会就会大大减少。智慧城市高度依赖数据,因为所有决策都是在对从各种基础设施收集到的数据进行适当分析后做出的。考虑到所提出的工作和方法,我们确定了四个层次。智慧城市建筑层的简要说明如下。
2.3.1 | Sensing layer 2.3.1 感知层
Most of the decision-making process is dependent on efficient data analysis. For this reason, proper data collection is a very crucial task. On the other hand, data collection from various infrastructures is a very daunting task. Smart city infrastructure comprises various elements such as sensor networks, loT devices, and so on. Sensors collect data from different types of instalments. loT enabled devices and applications are very crucial for healthcare, medical, intelligent transportation, and so on. So, sensors, including loT devices used in various appliances, are significant data collection sources. Some of the sensors that are used to collect data are RFID, Infrared Sensor, Temperature Sensor, Bluetooth, humidity sensors, cameras, and so on. Sensors collect data with different matrices (Madaan et al., 2020; Sethi et al., 2020). Since data collection helps with decision making and automation, increased data collection vectors shall enhance a genuinely smart city. 大部分决策过程都依赖于高效的数据分析。因此,适当的数据收集是一项非常关键的任务。另一方面,从各种基础设施收集数据是一项非常艰巨的任务。智能城市基础设施由传感器网络、loT 设备等各种元素组成。传感器从不同类型的设备中收集数据。支持 loT 的设备和应用在医疗保健、医疗、智能交通等领域非常重要。因此,传感器,包括各种设备中使用的 loT 设备,都是重要的数据收集源。用于收集数据的传感器包括 RFID、红外传感器、温度传感器、蓝牙、湿度传感器、摄像头等。传感器收集的数据具有不同的矩阵(Madaan 等人,2020 年;Sethi 等人,2020 年)。由于数据收集有助于决策和自动化,因此增加数据收集载体将增强真正的智慧城市。
2.3.2 | Transmission layer 2.3.2 | 传输层
In the previous layer, a network of connected devices collects data. After the data collection, it needs to be sent to the destination. Besides, the connected devices also need to communicate with others. Communication among the devices helps make decision making, fault detection, remote maintenance, and so on, too. For example, a wireless sensor network can facilitate remote maintenance in a few instances. The communication technology used for data processing (send/receive) belongs to the transmission layer. Communication technology can be divided into two primary modes. One is short-range communication, suitable for various low powered sensor networks (Lee & Hyoseok, 2021). Long-range communication happens among typical smart devices such as mobile devices and different wired and smart wireless devices. 4G/LTE is the recent addition of cellular networks with wider bandwidth and faster transmission rate. WiFi is a prevalent and widely used wireless local area network. As the need for communication has increased, the sensing layer’s device specification and types have also increased. 在上一层,连接设备的网络收集数据。数据收集完成后,需要将其发送到目的地。此外,连接的设备还需要与其他设备进行通信。设备之间的通信也有助于决策、故障检测和远程维护等。例如,在一些情况下,无线传感器网络可以促进远程维护。用于数据处理(发送/接收)的通信技术属于传输层。通信技术可分为两种主要模式。一种是短程通信,适用于各种低功率传感器网络(Lee & Hyoseok, 2021)。长距离通信发生在典型的智能设备之间,如移动设备以及不同的有线和智能无线设备。4G/LTE 是最近新增的蜂窝网络,具有更宽的带宽和更快的传输速率。WiFi 是一种普遍且广泛使用的无线局域网。随着通信需求的增加,传感层的设备规格和类型也随之增加。
2.3.3 | Data management layer 2.3.3 | 数据管理层
This layer’s functions include data processing and management. Data analysis is one of the most important attributes as well as functionalities of sustainable smart cities. Various infrastructure produces data. Citizens also generate large amounts of data every day. Confidentiality, integrity, 这一层的功能包括数据处理和管理。数据分析是可持续智慧城市最重要的属性和功能之一。各种基础设施都会产生数据。市民每天也会产生大量数据。保密性、完整性、
TABLE 2 Smart city layers and their features 表 2 智慧城市层级及其特征
Attributes 属性
Sensing layer 传感层
Transmission layer 传输层
Data management layer 数据管理层
Application layer 应用层
Functions 功能
Collecting data; Interaction with environment 收集数据;与环境互动
连接设备之间的通信;数据传输;故障检测;远程维护;
Communication among connected devices;
Data Transmission;
Fault detection;
Remote maintenance;
Communication among connected devices;
Data Transmission;
Fault detection;
Remote maintenance;| Communication among connected devices; |
| :--- |
| Data Transmission; |
| Fault detection; |
| Remote maintenance; |
Sensing layer;
Data Management Layer| Sensing layer; |
| :--- |
| Data Management Layer |
Transmission layer; Application Layer 传输层;应用层
Data Management Layer 数据管理层
Technology 技术
Temperature Sensors, humidity sensors, RFID, Bluetooth etc. 温度传感器、湿度传感器、RFID、蓝牙等。
4G/LTE, WiFi, WiMaX, other short and Wide Range Communication 4G/LTE、WiFi、WiMaX、其他短距离和宽范围通信
Data Processing, Analysis technologies, Decisionmaking algorithms 数据处理、分析技术、决策算法
Application Development, Smart Grid, Healthcare Monitoring, Home automation etc. 应用开发、智能电网、医疗监控、家庭自动化等。
Attributes Sensing layer Transmission layer Data management layer Application layer
Functions Collecting data; Interaction with environment "Communication among connected devices;
Data Transmission;
Fault detection;
Remote maintenance;" "Data processing;
Management;
Protecting Confidentiality,
Availability, Authenticity, Integrity" Providing uninterrupted services to the user; Interacting with the application user; Data Visualization
Devices Various sensors, Other loT Devices, Transmission Devices "Storage Devices;
Data processing equipments" Smart devices, Smart distribution, monitoring, tracking devices.
Connected layers "Physical world;
Transmission Layer." "Sensing layer;
Data Management Layer" Transmission layer; Application Layer Data Management Layer
Technology Temperature Sensors, humidity sensors, RFID, Bluetooth etc. 4G/LTE, WiFi, WiMaX, other short and Wide Range Communication Data Processing, Analysis technologies, Decisionmaking algorithms Application Development, Smart Grid, Healthcare Monitoring, Home automation etc.| Attributes | Sensing layer | Transmission layer | Data management layer | Application layer |
| :---: | :---: | :---: | :---: | :---: |
| Functions | Collecting data; Interaction with environment | Communication among connected devices; <br> Data Transmission; <br> Fault detection; <br> Remote maintenance; | Data processing; <br> <br> Management; <br> Protecting Confidentiality, <br> Availability, Authenticity, Integrity | Providing uninterrupted services to the user; Interacting with the application user; Data Visualization |
| Devices | Various sensors, Other loT Devices, | Transmission Devices | Storage Devices; <br> Data processing equipments | Smart devices, Smart distribution, monitoring, tracking devices. |
| Connected layers | Physical world; <br> Transmission Layer. | Sensing layer; <br> Data Management Layer | Transmission layer; Application Layer | Data Management Layer |
| Technology | Temperature Sensors, humidity sensors, RFID, Bluetooth etc. | 4G/LTE, WiFi, WiMaX, other short and Wide Range Communication | Data Processing, Analysis technologies, Decisionmaking algorithms | Application Development, Smart Grid, Healthcare Monitoring, Home automation etc. |
availability, and authenticity are the basic properties of data that need to be ensured. Moreover, data from various sources need to be processed, such as cleansed, edited, and merged for future usage. As the amount of data is vast, data storage and processing raise a concern. Moreover, as time passes, infrastructure and services will increase. So, the data storage should be scalable also. In this case, data centers need to be built for data storage and backup (Lin et al., 2012). 可用性和真实性是需要确保的数据基本属性。此外,还需要对各种来源的数据进行处理,如清洗、编辑和合并,以便将来使用。由于数据量巨大,数据存储和处理引起了人们的关注。此外,随着时间的推移,基础设施和服务也会增加。因此,数据存储也应具有可扩展性。在这种情况下,需要为数据存储和备份建立数据中心(Lin 等人,2012 年)。
2.3.4 | Application layer 2.3.4 | 应用层
The residents of smart cities enjoy various benefits through this layer. Hence, this layer has immense importance as a service provider to the user. Data analysed from the previous layer is represented here as a decision. The people are not aware of the underlying working principle or algorithms used as the brain of a smart city; rather, they want the end result. This result comes in the form of smart healthcare services, smart energy, smart waste management, smart agriculture, smart education, and so on. Smart healthcare provides state of the art medical facilities, including healthcare data management, disease detection, 24/7 medical service, and so on. These facilities shall impact a person’s personal and professional life. Smart grid shall ensure load balancing, smart and uninterrupted electricity availability, efficient distribution technique around the city, automated electricity consumption statistics, bill generation, bill pay, and so on (Wenge et al., 2014). Table 2 summarizes various layers of smart city infrastructure and their distinct attributes. 智慧城市的居民可以通过这一层享受到各种好处。因此,作为用户的服务提供商,这一层的重要性不言而喻。上一层分析的数据在这里表现为决策。人们并不了解作为智慧城市大脑的基本工作原理或算法;相反,他们想要的是最终结果。这种结果的形式包括智能医疗服务、智能能源、智能废物管理、智能农业、智能教育等等。智慧医疗提供最先进的医疗设施,包括医疗数据管理、疾病检测、全天候医疗服务等。这些设施将影响人们的个人和职业生活。智能电网应确保负载平衡、智能和不间断的电力供应、城市周边的高效配电技术、自动用电统计、账单生成、账单支付等(Wenge 等人,2014 年)。表 2 概述了智慧城市基础设施的各个层面及其独特属性。
3 | APPLICATIONS OF SMART CITY 3 智慧城市的应用
A smart city comprises various applications. All the applications of smart cities are for the betterment of the QoL. The residents shall be able to enjoy the benefit of modern technology (Sookhak et al., 2019). Different applications of smart city are summarized in Table 3 and described in the subsections below: 智慧城市包括各种应用。智慧城市的所有应用都是为了提高生活质量。居民应能享受到现代技术带来的好处(Sookhak 等人,2019 年)。表 3 总结了智慧城市的不同应用,并在下文各小节中进行了描述:
3.1 | Smart transportation system 3.1 | 智能交通系统
There are various modes of transportation, such as air transportation, water transportation, and road transportation. Vehicular ad hoc networks are the newest addition to intelligent and autonomous transportation that facilitate inter-vehicular communication as well as vehicular internet connectivity. Vehicles are connected to each other and with the network infrastructure alongside the road. Rather than the conventional transportation system, vehicular connectivity facilitates real-time traffic analysis. This intelligent traffic system provides seamless connectivity. Traffic analysis helps congestion control, handling emergencies, detecting illegal activities on the road, and pinpoints the object of interest. Potential traffic analysis for airline industries enables smooth, safe, and flexible air travel. Various sensors collect weather data, analyse it, and send the air traffic controllers decision. The same data is used on onboard computers for intelligent decision making (Wang & Zhang, 2020). 交通方式多种多样,如航空运输、水路运输和公路运输。车载特设网络是智能和自主交通的最新成员,可促进车辆间通信和车辆互联网连接。车辆相互连接,并与路边的网络基础设施相连。与传统的交通系统相比,车辆连接有助于进行实时交通分析。这种智能交通系统可提供无缝连接。交通分析有助于控制拥堵、处理紧急情况、侦测道路上的非法活动并确定关注对象。航空业的潜在交通分析可实现平稳、安全和灵活的空中旅行。各种传感器收集天气数据并进行分析,然后向空中交通管制人员发送决策。同样的数据也被用于机载计算机的智能决策(Wang & Zhang, 2020)。
Transportation schemes of different mid-sized cities of the USA were compared according to the indicators mentioned above to find their difference. Giang et al. (2016) analysed a fog computing-based transportation technique. Smart transportation techniques include intelligent 根据上述指标对美国不同中等城市的交通方案进行了比较,以发现它们之间的差异。Giang 等人(2016)分析了一种基于雾计算的交通技术。智能交通技术包括智能
TABLE 3 Summary of various applications of smart city 表 3 智慧城市各种应用概述
Addressing limitations of cloud computing-based vehicular network infrastructure;
Vehicular network deployment using Fog computing;
Analysing the challenges involved in Fog computing-based architecture.
Addressing limitations of cloud computing-based vehicular network infrastructure;
Vehicular network deployment using Fog computing;
Analysing the challenges involved in Fog computing-based architecture.| Addressing limitations of cloud computing-based vehicular network infrastructure; |
| :--- |
| Vehicular network deployment using Fog computing; |
| Analysing the challenges involved in Fog computing-based architecture. |
Khazaei et al. (2016) Khazaei 等人(2016 年)
2016
用于城市区域交通模式识别的可靠、可扩展、自适应平台;拥堵控制、巡航控制;
A reliable, scalable, adaptive platform for traffic pattern recognition in the city area.;
Congestion control, cruise control;
A reliable, scalable, adaptive platform for traffic pattern recognition in the city area.;
Congestion control, cruise control;| A reliable, scalable, adaptive platform for traffic pattern recognition in the city area.; |
| :--- |
| Congestion control, cruise control; |
Shukla et al. (2016) 舒克拉等人(2016)
2016
用于交通优化的数据分析;交通模式、拥堵控制、预测等。
Data analysis for transportation optimization;
Traffic pattern, congestion control, prediction, etc.
Data analysis for transportation optimization;
Traffic pattern, congestion control, prediction, etc.| Data analysis for transportation optimization; |
| :--- |
| Traffic pattern, congestion control, prediction, etc. |
Kelley et al. (2019) 凯利等人(2019)
2018
Vehicular technology adaptation in accordance with the population; Smart city vehicular technology topology adoption in various cities. 根据人口数量调整车辆技术;在不同城市采用智能城市车辆技术拓扑结构。
Yan et al. (2020) Yan 等人(2020 年)
2019
Using machine learning for transportation efficiency in smart cities. 利用机器学习提高智慧城市的交通效率。
Boukerche and Coutinho (2019) Boukerche 和 Coutinho(2019 年)
2019
交通管制;人群管理;应对这两项任务的挑战和问题;
Traffic control;
Crowd management;
Addressing challenges and issues for both the tasks;
Traffic control;
Crowd management;
Addressing challenges and issues for both the tasks;| Traffic control; |
| :--- |
| Crowd management; |
| Addressing challenges and issues for both the tasks; |
Lin et al. (2019) 林等人(2019)
2019
安全智能交通;驾驶员位置跟踪;安全交通隐私保护系统。
Secure smart transportation;
Drivers location tracking;
Privacy-preserving system for secure transportation.
Secure smart transportation;
Drivers location tracking;
Privacy-preserving system for secure transportation.| Secure smart transportation; |
| :--- |
| Drivers location tracking; |
| Privacy-preserving system for secure transportation. |
Zantalis et al. (2019) 赞塔利斯等人(2019)
2020
Combination of ICT and loT for smart transportation framework design. 将信息和通信技术与智能交通框架设计相结合。
Smart Healthcare 智能医疗
Chui et al. (2017) Chui 等人(2017 年)
2016
Smart healthcare with monitoring, tracking using GPS/GSM; Patient-centric sensor-based healthcare architecture. 使用 GPS/GSM 进行监控和跟踪的智能医疗保健;以患者为中心的传感器式医疗保健架构。
Mahmoud et al. (2018) 马哈茂德等人(2018)
2017
Artificial intelligence-based approach for disease detection 基于人工智能的疾病检测方法
Chen et al. (2018) 陈等人(2018)
2018
Edge computing based approach for healthcare 基于边缘计算的医疗保健方法
Zhang et al. (2018) 张等人(2018)
2018
面向区块链的方法;医疗保健需求分析;基于 HL7 的架构设计;
Blockchain oriented approach;
Healthcare requirement analysis;
Architecture design based on HL7;
Blockchain oriented approach;
Healthcare requirement analysis;
Architecture design based on HL7;| Blockchain oriented approach; |
| :--- |
| Healthcare requirement analysis; |
| Architecture design based on HL7; |
Cellular technology-based approach for healthcare communication; Reliable and dedicated healthcare network for healthcare data integrity. 基于蜂窝技术的医疗保健通信方法;实现医疗保健数据完整性的可靠专用医疗保健网络。
Ismail et al. (2019) 伊斯梅尔等人(2019)
2019
隐私保护方法;为低流量生成的医疗保健通信网络提出了一个轻量级框架。
Privacy-preserving approach;
Proposed a lightweight framework for low traffic generated healthcare communication network.
Privacy-preserving approach;
Proposed a lightweight framework for low traffic generated healthcare communication network.| Privacy-preserving approach; |
| :--- |
| Proposed a lightweight framework for low traffic generated healthcare communication network. |
Tanwar et al. (2020) 坦瓦尔等人(2020 年)
2020
解决当前医疗保健的局限性;数据管理的拟议算法;效率分析以及智能医疗保健工具和框架;
Addressing current healthcare limitations;
Proposed algorithm for data management;
Efficiency analysis and smart healthcare tools and frameworks;
Addressing current healthcare limitations;
Proposed algorithm for data management;
Efficiency analysis and smart healthcare tools and frameworks;| Addressing current healthcare limitations; |
| :--- |
| Proposed algorithm for data management; |
| Efficiency analysis and smart healthcare tools and frameworks; |
Abou-Nassar et al. (2020) 阿布-纳萨尔等人(2020 年)
2020
Blockchain-based healthcare resource distribution across smart cities. 基于区块链的智慧城市医疗资源分配。
Tripathi et al. (2020) 特里帕蒂等人(2020 年)
2020
使用区块链的智能医疗保健;确保医疗保健框架的安全性和完整性;潜在问题和研究挑战;
Smart healthcare using blockchain;
Security and integrity ensuring healthcare framework;
Potential issues and research challenges;
Smart healthcare using blockchain;
Security and integrity ensuring healthcare framework;
Potential issues and research challenges;| Smart healthcare using blockchain; |
| :--- |
| Security and integrity ensuring healthcare framework; |
| Potential issues and research challenges; |
Ali et al. (2020) 阿里等人(2020 年)
2020
基于深度学习的疾病检测;从健康传感器和医疗数据中提取特征。
Disease detection based on deep learning;
Feature extraction from health sensor and medical data.
Disease detection based on deep learning;
Feature extraction from health sensor and medical data.| Disease detection based on deep learning; |
| :--- |
| Feature extraction from health sensor and medical data. |
Smart Energy Management System 智能能源管理系统
Tan et al. (2016) Tan 等人(2016 年)
2016
Vehicle integration in smart grid and issues 智能电网中的车辆集成及问题
Zhou et al. (2016) 周等人(2016)
2016
Big Data Analytics for energy management 能源管理大数据分析
里韦拉和罗德里格斯-马丁内斯(2016 年)
Rivera and Rodriguez-
Martinez (2016)
Rivera and Rodriguez-
Martinez (2016)| Rivera and Rodriguez- |
| :--- |
| Martinez (2016) |
2016
Cloud service integration for smart grid management 智能电网管理的云服务集成
Olabi (2017) 奥拉比(2017)
2107
Energy Storage management and selection criteria 储能管理和选择标准
Mengelkamp et al. (2018) 门格尔坎普等人(2018 年)
2018
Decentralized local energy market using blockchain 使用区块链的去中心化本地能源市场
Marinakis et al. (2018) 马里纳基斯等人(2018 年)
2018
Using big data for intelligent grid management 利用大数据进行智能电网管理
Kim and Lim (2018) 金和林(2018)
2018
Efficient and intelligent energy management for smart buildings 智能楼宇的高效智能能源管理
Abate et al. (2019) 阿巴特等人(2019)
2019
IoT enabled algorithmic approach for energy consumption and management 启用物联网的能源消耗和管理算法方法
Gai et al. (2019) 盖等人 (2019)
2019
Smart grid security and privacy for stakeholder 智能电网安全和利益相关者的隐私
Smart city applications References Year Contributions
Smart Transportation Giang et al. (2016) 2016 "Addressing limitations of cloud computing-based vehicular network infrastructure;
Vehicular network deployment using Fog computing;
Analysing the challenges involved in Fog computing-based architecture."
Khazaei et al. (2016) 2016 "A reliable, scalable, adaptive platform for traffic pattern recognition in the city area.;
Congestion control, cruise control;"
Shukla et al. (2016) 2016 "Data analysis for transportation optimization;
Traffic pattern, congestion control, prediction, etc."
Kelley et al. (2019) 2018 Vehicular technology adaptation in accordance with the population; Smart city vehicular technology topology adoption in various cities.
Yan et al. (2020) 2019 Using machine learning for transportation efficiency in smart cities.
Boukerche and Coutinho (2019) 2019 "Traffic control;
Crowd management;
Addressing challenges and issues for both the tasks;"
Lin et al. (2019) 2019 "Secure smart transportation;
Drivers location tracking;
Privacy-preserving system for secure transportation."
Zantalis et al. (2019) 2020 Combination of ICT and loT for smart transportation framework design.
Smart Healthcare Chui et al. (2017) 2016 Smart healthcare with monitoring, tracking using GPS/GSM; Patient-centric sensor-based healthcare architecture.
Mahmoud et al. (2018) 2017 Artificial intelligence-based approach for disease detection
Chen et al. (2018) 2018 Edge computing based approach for healthcare
Zhang et al. (2018) 2018 "Blockchain oriented approach;
Healthcare requirement analysis;
Architecture design based on HL7;"
Oueida et al. (2018) 2018 Artificial intelligence-based disease detection.
Ahad et al. (2019) 2019 Cellular technology-based approach for healthcare communication; Reliable and dedicated healthcare network for healthcare data integrity.
Ismail et al. (2019) 2019 "Privacy-preserving approach;
Proposed a lightweight framework for low traffic generated healthcare communication network."
Tanwar et al. (2020) 2020 "Addressing current healthcare limitations;
Proposed algorithm for data management;
Efficiency analysis and smart healthcare tools and frameworks;"
Abou-Nassar et al. (2020) 2020 Blockchain-based healthcare resource distribution across smart cities.
Tripathi et al. (2020) 2020 "Smart healthcare using blockchain;
Security and integrity ensuring healthcare framework;
Potential issues and research challenges;"
Ali et al. (2020) 2020 "Disease detection based on deep learning;
Feature extraction from health sensor and medical data."
Smart Energy Management System Tan et al. (2016) 2016 Vehicle integration in smart grid and issues
Zhou et al. (2016) 2016 Big Data Analytics for energy management
"Rivera and Rodriguez-
Martinez (2016)" 2016 Cloud service integration for smart grid management
Olabi (2017) 2107 Energy Storage management and selection criteria
Mengelkamp et al. (2018) 2018 Decentralized local energy market using blockchain
Marinakis et al. (2018) 2018 Using big data for intelligent grid management
Kim and Lim (2018) 2018 Efficient and intelligent energy management for smart buildings
Abate et al. (2019) 2019 IoT enabled algorithmic approach for energy consumption and management
Gai et al. (2019) 2019 Smart grid security and privacy for stakeholder| Smart city applications | References | Year | Contributions |
| :---: | :---: | :---: | :---: |
| Smart Transportation | Giang et al. (2016) | 2016 | Addressing limitations of cloud computing-based vehicular network infrastructure; <br> Vehicular network deployment using Fog computing; <br> Analysing the challenges involved in Fog computing-based architecture. |
| | Khazaei et al. (2016) | 2016 | A reliable, scalable, adaptive platform for traffic pattern recognition in the city area.; <br> Congestion control, cruise control; |
| | Shukla et al. (2016) | 2016 | Data analysis for transportation optimization; <br> Traffic pattern, congestion control, prediction, etc. |
| | Kelley et al. (2019) | 2018 | Vehicular technology adaptation in accordance with the population; Smart city vehicular technology topology adoption in various cities. |
| | Yan et al. (2020) | 2019 | Using machine learning for transportation efficiency in smart cities. |
| | Boukerche and Coutinho (2019) | 2019 | Traffic control; <br> Crowd management; <br> Addressing challenges and issues for both the tasks; |
| | Lin et al. (2019) | 2019 | Secure smart transportation; <br> Drivers location tracking; <br> Privacy-preserving system for secure transportation. |
| | Zantalis et al. (2019) | 2020 | Combination of ICT and loT for smart transportation framework design. |
| Smart Healthcare | Chui et al. (2017) | 2016 | Smart healthcare with monitoring, tracking using GPS/GSM; Patient-centric sensor-based healthcare architecture. |
| | Mahmoud et al. (2018) | 2017 | Artificial intelligence-based approach for disease detection |
| | Chen et al. (2018) | 2018 | Edge computing based approach for healthcare |
| | Zhang et al. (2018) | 2018 | Blockchain oriented approach; <br> Healthcare requirement analysis; <br> Architecture design based on HL7; |
| | Oueida et al. (2018) | 2018 | Artificial intelligence-based disease detection. |
| | Ahad et al. (2019) | 2019 | Cellular technology-based approach for healthcare communication; Reliable and dedicated healthcare network for healthcare data integrity. |
| | Ismail et al. (2019) | 2019 | Privacy-preserving approach; <br> Proposed a lightweight framework for low traffic generated healthcare communication network. |
| | Tanwar et al. (2020) | 2020 | Addressing current healthcare limitations; <br> Proposed algorithm for data management; <br> Efficiency analysis and smart healthcare tools and frameworks; |
| | Abou-Nassar et al. (2020) | 2020 | Blockchain-based healthcare resource distribution across smart cities. |
| | Tripathi et al. (2020) | 2020 | Smart healthcare using blockchain; <br> Security and integrity ensuring healthcare framework; <br> Potential issues and research challenges; |
| | Ali et al. (2020) | 2020 | Disease detection based on deep learning; <br> Feature extraction from health sensor and medical data. |
| Smart Energy Management System | Tan et al. (2016) | 2016 | Vehicle integration in smart grid and issues |
| | Zhou et al. (2016) | 2016 | Big Data Analytics for energy management |
| | Rivera and Rodriguez- <br> Martinez (2016) | 2016 | Cloud service integration for smart grid management |
| | Olabi (2017) | 2107 | Energy Storage management and selection criteria |
| | Mengelkamp et al. (2018) | 2018 | Decentralized local energy market using blockchain |
| | Marinakis et al. (2018) | 2018 | Using big data for intelligent grid management |
| | Kim and Lim (2018) | 2018 | Efficient and intelligent energy management for smart buildings |
| | Abate et al. (2019) | 2019 | IoT enabled algorithmic approach for energy consumption and management |
| | Gai et al. (2019) | 2019 | Smart grid security and privacy for stakeholder |
TABLE 3 (Continued) 表 3(续)
Smart city applications 智能城市应用
References 参考资料
Year 年份
Contributions 会费
Smart Home System 智能家居系统
Surantha and Wicaksono (2018) 苏兰塔和维卡索诺(2018 年)
2018
Improved security of smart home automation system 提高智能家居自动化系统的安全性
Liu et al. (Liu et al., 2016) Liu 等人(Liu 等人,2016 年)
2016
Detects and prevents smart home billing system 检测和预防智能家居计费系统
Khan et al. (2016) 汗等人(2016)
2016
loT Based approach for smart home energy utilization 基于 loT 的智能家居能源利用方法
Kang et al. (2017) 康等人(2017)
2017
Framework for improving integrity and access control 改进完整性和访问控制的框架
Malche and Maheshwary (2017) 马尔切和马赫什瓦里(2017 年)
2017
loT enabled smart home system for controlled automation 支持 loT 的智能家居系统,实现受控自动化
Naik and Patel (2018) 奈克和帕特尔(2018)
2018
Open-source framework for communication reliability and security 通信可靠性和安全性开源框架
Feng et al. (2017) 冯等人(2017)
2017
Intelligent and reliable smart home architecture for the improved living conditions. 智能可靠的智能家居架构,改善生活条件。
Al-Kuwari et al. (2018) Al-Kuwari 等人(2018 年)
2018
loT based smart home controlling and automation 基于 loT 的智能家居控制和自动化
Zhang, Qu, et al. (2019) Zhang, Qu, et al.
2019
Privacy oriented smart home architecture 注重隐私的智能家居架构
Gajewski et al. (2019) Gajewski 等人(2019 年)
2019
Possible cyberattack detection and countermeasure for smart home 智能家居可能受到的网络攻击检测与对策
Ferraris et al. (2020) 费拉里斯等人(2020 年)
2020
Privacy-preserving smart home trust model 保护隐私的智能家居信任模式
Guhr et al. (2020) Guhr 等人(2020 年)
2020
Smart home user health data security and privacy 智能家居用户健康数据安全与隐私
Smart city applications References Year Contributions
Smart Home System Surantha and Wicaksono (2018) 2018 Improved security of smart home automation system
Liu et al. (Liu et al., 2016) 2016 Detects and prevents smart home billing system
Khan et al. (2016) 2016 loT Based approach for smart home energy utilization
Kang et al. (2017) 2017 Framework for improving integrity and access control
Malche and Maheshwary (2017) 2017 loT enabled smart home system for controlled automation
Naik and Patel (2018) 2018 Open-source framework for communication reliability and security
Feng et al. (2017) 2017 Intelligent and reliable smart home architecture for the improved living conditions.
Al-Kuwari et al. (2018) 2018 loT based smart home controlling and automation
Zhang, Qu, et al. (2019) 2019 Privacy oriented smart home architecture
Gajewski et al. (2019) 2019 Possible cyberattack detection and countermeasure for smart home
Ferraris et al. (2020) 2020 Privacy-preserving smart home trust model
Guhr et al. (2020) 2020 Smart home user health data security and privacy| Smart city applications | References | Year | Contributions |
| :---: | :---: | :---: | :---: |
| Smart Home System | Surantha and Wicaksono (2018) | 2018 | Improved security of smart home automation system |
| | Liu et al. (Liu et al., 2016) | 2016 | Detects and prevents smart home billing system |
| | Khan et al. (2016) | 2016 | loT Based approach for smart home energy utilization |
| | Kang et al. (2017) | 2017 | Framework for improving integrity and access control |
| | Malche and Maheshwary (2017) | 2017 | loT enabled smart home system for controlled automation |
| | Naik and Patel (2018) | 2018 | Open-source framework for communication reliability and security |
| | Feng et al. (2017) | 2017 | Intelligent and reliable smart home architecture for the improved living conditions. |
| | Al-Kuwari et al. (2018) | 2018 | loT based smart home controlling and automation |
| | Zhang, Qu, et al. (2019) | 2019 | Privacy oriented smart home architecture |
| | Gajewski et al. (2019) | 2019 | Possible cyberattack detection and countermeasure for smart home |
| | Ferraris et al. (2020) | 2020 | Privacy-preserving smart home trust model |
| | Guhr et al. (2020) | 2020 | Smart home user health data security and privacy |
vehicular networks, smart traffic infrastructure, and so on. These methods pose a challenging scenario if applied to a fog computing environment. Giang et al. briefly describe this. Big data analytics can help leverage smart transportation problems. Data collected from transportation infrastructure can improve the shortcomings. Khazaei et al. (2016) described such an approach in Toronto, Canada. Shukla et al. 2016) proposed real-time analysis can leverage congestion control for smart transportation. Kelley et al. (2019) reviewed and analysed smart transportation schemes of various cities reviewed and analysed by Vehicular technology advancements, traffic systems, scope, and geographical scope. A smart city comprises IoT devices. These devices are connected via ICT and developed using various techniques. Yan et al. (2020) proposed a framework combining these techniques. This study also uses Chinese transportation for framework evaluation. Boukerche and Coutinho (2019) addressed traffic control and crowd management solutions unexplored in smart transportation infrastructure. In addition the authors mentioned various challenges, issues, and possible solutions to congestion control. Lin et al. 2019) designed a securing transportation infrastructure using drivers’ location data securing using a homomorphic approach. The authors proposed that the location collection technique reveals privacy issues; hence, the location is encrypted and stored in cloud services. The transportation system’s performance can be intensified using the data collected by various devices used in the system. A machine learning-based approach towards smarter and efficient transportation can be a crucial addition to smart city infrastructures. Zantalis et al. (2019) combined all the studies related to this technique and presented a concise and solution-oriented analysis. 车辆网络、智能交通基础设施等。如果将这些方法应用到雾计算环境中,则会对场景构成挑战。Giang 等人对此进行了简要介绍。大数据分析有助于解决智能交通问题。从交通基础设施中收集的数据可以改善不足之处。Khazaei 等人(2016 年)在加拿大多伦多描述了这种方法。Shukla 等人(2016)提出,实时分析可以利用拥堵控制实现智能交通。Kelley 等人(2019)回顾并分析了各个城市的智能交通方案,并按照车辆技术进步、交通系统、范围和地理范围进行了回顾和分析。智慧城市由物联网设备组成。这些设备通过信息和通信技术连接,并利用各种技术进行开发。Yan 等人(2020 年)提出了一个结合这些技术的框架。该研究还利用中国交通进行框架评估。Boukerche 和 Coutinho(2019)探讨了智能交通基础设施中尚未探索的交通控制和人群管理解决方案。此外,作者还提到了拥堵控制的各种挑战、问题和可能的解决方案。Lin 等人(2019)设计了一种使用同态方法确保驾驶员位置数据安全的交通基础设施。作者提出,位置收集技术会暴露隐私问题;因此,位置会被加密并存储在云服务中。利用系统中使用的各种设备收集的数据,可以提高交通系统的性能。基于机器学习的智能高效交通方法可以成为智能城市基础设施的重要补充。Zantalis 等人 (2019) 综合了与这一技术相关的所有研究,提出了简明扼要、以解决方案为导向的分析。
3.2 | Smart healthcare system 3.2 | 智能医疗系统
Healthcare is a basic human need. Sensor enabled loT devices are useful to measure a patient’s condition. Sensors can measure patients’ heart rate, blood pressure, oxygen saturation level, and so on. Patients’ historical data can help an efficient diagnosis. Sensors and paging devices can be used to detect doctors’ and nurses’ location that can help with emergency medical team dispatch. Smart medical and healthcare technologies will produce a significant amount of data. Medical data is very sensitive and need an enhanced data security and privacy. For this reason, organization data privacy, protection, and security policy can be implemented (ljaz et al., 2018). To leverage issues recently, several blockchain-based healthcare data management systems are proposed. Since blockchain technology is a growing idea for data security and privacy, it can be a suitable solution for this purpose (Salman et al., 2019). To protect the human capital of a smart city, healthcare systems need to be compatible with demand and supply. Healthcare technology has advanced recently within a few years. Adult healthcare is important, especially on a community basis. Tomita et al. (2010) proposed an integral approach of smart home and healthcare for elderly citizens of the community. This approach addresses the overall healthcare facilities for elderly people staying at home. Aziz et al. (Aziz et al., 2016) proposed a sensor-enabled approach for monitoring health conditions remotely. Wireless sensors will measure blood pressure, temperature, and send the data remotely. The concerned doctors and medical teams can then analyse the data for possible disease prevention. If the collected data passes the alarming level, the doctor will be notified instantly. Chui et al. (2017) analysed the healthcare researches in disease detection in their paper. The authors analysed the artificial intelligence-based approach for cardio and other disease detection that provides an essential insight into future research direction. Mahmoud et al. (Mahmoud et al., 2018) provided cloud and the loT related approach for healthcare systems. The authors analysed the possible issues of sensitive health care devices and their standards. They have successfully identified potential research opportunities for energy-efficient healthcare 医疗保健是人类的基本需求。支持传感器的 loT 设备可用于测量病人的状况。传感器可以测量病人的心率、血压、血氧饱和度等。病人的历史数据有助于有效诊断。传感器和寻呼设备可用于检测医生和护士的位置,从而有助于紧急医疗队的调度。智能医疗和保健技术将产生大量数据。医疗数据非常敏感,需要加强数据安全和隐私保护。为此,可以实施组织数据隐私、保护和安全政策(ljaz et al.)为了利用这些问题,最近提出了几种基于区块链的医疗数据管理系统。由于区块链技术在数据安全和隐私方面的想法越来越多,因此它可以成为一个合适的解决方案(Salman 等人,2019)。为了保护智慧城市的人力资本,医疗保健系统需要与需求和供给相匹配。最近几年,医疗保健技术取得了长足进步。成人医疗保健非常重要,尤其是在社区基础上。Tomita 等人(2010 年)提出了一种针对社区老年公民的智能家居和医疗保健综合方法。这种方法解决了居家老人的整体医疗保健设施问题。Aziz 等人(Aziz et al., 2016)提出了一种远程监测健康状况的传感器方法。无线传感器将测量血压和体温,并远程发送数据。然后,相关医生和医疗团队可以对数据进行分析,以预防可能发生的疾病。如果收集到的数据超过警戒线,医生就会立即得到通知。Chui 等人 (2017)在论文中分析了疾病检测方面的医疗保健研究。作者分析了基于人工智能的心脏病和其他疾病检测方法,为未来的研究方向提供了重要启示。马哈茂德等人(Mahmoud et al., 2018)为医疗保健系统提供了云和 loT 相关方法。作者分析了敏感医疗设备可能存在的问题及其标准。他们成功地确定了节能医疗保健的潜在研究机会
infrastructure. Similarly, Chen et al. (2018) proposed an edge computing-based approach. The authors have found out that, edge computing approach for the healthcare system facilitates flexibility and optimization of the user experience and resource utilization. 基础设施。同样,Chen 等人(2018 年)提出了一种基于边缘计算的方法。作者发现,医疗系统的边缘计算方法有助于灵活优化用户体验和资源利用。
The electronic health record management system is the newest addition to the modern healthcare system. As this record contains patients’ data and sensitive health information, better security is a crucial need. Zhang et al. (2018) provide a very efficient approach for securing healthcare data using blockchain technology. The authors of both papers emphasized addressing the current challenges for securing health data. These two pieces of the literature indicated some potential research direction for the healthcare system development. Oueida et al. (2018) proposed a model that uses stakeholder satisfaction of healthcare facilities. Artificial intelligence is used for disease detection. Ahad et al. (2019) examined the recent advancement of healthcare data communication. The authors emphasized the 5G approach for reliable, integral, dedicated communication techniques in healthcare data exchange among various applications, users, and medical personnel. Ismail et al. (2019) proposed reliable, secure, privacy-preserving, minimal network traffic enabled healthcare framework based on blockchain technology. The authors also analysed robust transactions in communication over the network, which increases the throughput. The framework is a very lightweight framework that reduces overhead resource consumption and addresses blockchain-based healthcare technology’s current issues. Tanwar et al. (2020) proposed a similar approach. The authors propose a blockchain-based approach to healthcare system optimization. Performance analysis of healthcare framework integration in various blockchain platforms, process management, healthcare record management system, and improving the overall latency is discussed and analysed by the authors. Similarly, Abou-Nassar et al. (2020) proposed another blockchain-based model for reliable and sustainable healthcare infrastructure. This model uses a private blockchain for application purposes. Tripathi et al. (2020) discussed similar approach. Ali et al. (2020) provided an in-depth learning approach for accurate disease detection and monitoring systems. The proposed model is efficient in feature extraction from the healthcare-related sensor and medical data and analysing those for better prediction. 电子健康记录管理系统是现代医疗保健系统的最新成员。由于该记录包含患者的数据和敏感的健康信息,因此需要更好的安全性。Zhang 等人(2018 年)提供了一种利用区块链技术保护医疗数据安全的非常有效的方法。两篇论文的作者都强调要解决目前医疗数据安全所面临的挑战。这两篇文献为医疗系统的发展指明了一些潜在的研究方向。Oueida 等人(2018)提出了一种利用医疗机构利益相关者满意度的模型。人工智能用于疾病检测。Ahad 等人(2019)研究了医疗保健数据通信的最新进展。作者强调了在各种应用、用户和医务人员之间进行医疗保健数据交换时采用可靠、完整、专用通信技术的 5G 方法。Ismail 等人(2019)提出了基于区块链技术的可靠、安全、保护隐私、最小网络流量的医疗保健框架。作者还分析了网络通信中的稳健交易,从而提高了吞吐量。该框架是一个非常轻量级的框架,减少了开销资源消耗,解决了基于区块链的医疗保健技术目前存在的问题。Tanwar 等人(2020 年)提出了一种类似的方法。作者提出了一种基于区块链的医疗保健系统优化方法。作者讨论并分析了各种区块链平台、流程管理、医疗记录管理系统中医疗保健框架集成的性能分析,以及改善整体延迟的问题。同样,Abou-Nassar 等人也对区块链医疗系统的性能进行了分析。 (2020 年)提出了另一种基于区块链的可靠和可持续医疗基础设施模式。该模式将私人区块链用于应用目的。Tripathi 等人(2020 年)讨论了类似的方法。Ali 等人(2020 年)为准确的疾病检测和监控系统提供了一种深度学习方法。所提出的模型能有效地从与医疗保健相关的传感器和医疗数据中提取特征,并对这些特征进行分析,从而做出更好的预测。
3.3 | Smart power and energy management system 3.3 | 智能电力和能源管理系统
Energy powers up the buildings, home, industry, hospitals, schools, colleges, and other institutions. Hence, efficient power management systems are essential for a sustainable smart city. Renewable and nonrenewable energy sources are the two types of energy source types. Nonrenewable energy sources need to be used efficiently at present so that it can be preserved for the future (Han et al., 2014). 能源为建筑、家庭、工业、医院、学校、学院和其他机构提供动力。因此,高效的电力管理系统对于可持续发展的智慧城市至关重要。可再生能源和不可再生能源是两种类型的能源。目前需要有效利用不可再生能源,以便为未来保留能源(Han 等人,2014 年)。
A smart city promotes an echo-friendly, greener, and sustainable environment. The electric vehicle can be integrated into the smart grid so that. Tan et al. (2016) described the framework for vehicle integration in the smart grid, possible issues, and future research directions. Zhou et al. (2016) proposed the usage of big data collected from smart grids for better energy management, distribution, governance, and production. The smart grid can be sustainable and secure if the analysis is done constructively. Rivera and Rodriguez-Martinez (2016) provided a cloud-based approach to smart grid analytics and grid management. The authors also proposed service level agreements for this purpose. Olabi (2017) described various energy storage systems. Storage technique classification and storage selection criteria are described briefly and concisely. Mengelkamp et al. (2018) adopted a decentralized approach to address smart energy. The authors focused on local energy markets. This approach uses blockchain technology and a decentralized market concept. Marinakis et al. (2018) proposed a framework that is based on big data for energy sector management. This big data-oriented intelligent grid management approach facilitates useful visualization for various stakeholders of a smart city. A smart energy management approach can be intensified using reinforcement learning algorithms. Kim and Lim (2018) proposed an intelligent energy management framework for smart buildings. This approach can provide an optimized approach in case of energy use and costefficiency based on learning algorithms. Abate et al. (2019) provided an loT enabled approach for smart grid technology through smart metering. This loT enabled smart meter uses an algorithmic approach for electricity consumption monitoring, reliable and accurate communication. Security and privacy of the smart grid are very crucial. Gai et al. (2019) proposed an approach for securing the smart grid. The authors proposed approach aims at stakeholder’s privacy and smart grid security. 智能城市促进了环境的友好、绿色和可持续发展。电动汽车可以集成到智能电网中。Tan 等人(2016)介绍了智能电网中的车辆集成框架、可能存在的问题以及未来的研究方向。Zhou 等人(2016)提出利用从智能电网收集到的大数据来改善能源管理、分配、治理和生产。如果能以建设性的方式进行分析,智能电网就能实现可持续发展和安全。Rivera 和 Rodriguez-Martinez(2016 年)为智能电网分析和电网管理提供了一种基于云的方法。作者还为此提出了服务水平协议。Olabi(2017)介绍了各种储能系统。简明扼要地介绍了储能技术分类和储能选择标准。Mengelkamp 等人(2018 年)采用了一种分散式方法来解决智能能源问题。作者重点关注本地能源市场。这种方法采用了区块链技术和去中心化市场概念。Marinakis 等人(2018 年)提出了一种基于大数据的能源部门管理框架。这种以大数据为导向的智能电网管理方法为智能城市的各利益相关方提供了有用的可视化便利。使用强化学习算法可以加强智能能源管理方法。Kim 和 Lim(2018 年)提出了一种智能建筑的智能能源管理框架。这种方法可以基于学习算法,在能源使用和成本效益方面提供优化方法。Abate 等人(2019)通过智能计量为智能电网技术提供了一种支持 loT 的方法。 这种支持 loT 的智能电表采用算法方法进行用电监测,通信可靠、准确。智能电网的安全和隐私至关重要。Gai 等人(2019 年)提出了一种确保智能电网安全的方法。作者提出的方法旨在保护利益相关者的隐私和智能电网的安全。
Connectivity is the backbone of any infrastructure today. The same goes for smart cities. The connectivity helps people to access services and data from anywhere in the world. WiFi is also one of the most affordable wireless network installations. Wired connectivity using broadband and optical fibre connection exists for more reliable and dedicated connections. Wireless sensor networks (WSNs) are one of the most widely used connectivity for loT based networks (Bhushan & Sahoo, 2018; Bhushan & Sahoo, 2020). Sensors devices are used in various infrastructures of smart cities. WSN is used in weather stations, waste management, industry, home automation, and so on. Another important network is the vehicular ad-hoc network. This infrastructure is used in intelligent traffic systems. Satellite communication is used in smart cities for reliable communication for various satellite TV channels, Military communication, Weather status update, and emergency communication. All of this infrastructure is connected to build interconnects of network devices. All the devices help the residents of the city to enjoy different types of application services. 连通性是当今任何基础设施的支柱。智慧城市也是如此。连接性有助于人们从世界任何地方访问服务和数据。WiFi 也是最经济实惠的无线网络装置之一。使用宽带和光纤连接的有线连接可提供更可靠的专用连接。无线传感器网络(WSN)是基于 loT 的网络中使用最广泛的连接方式之一(Bhushan & Sahoo,2018;Bhushan & Sahoo,2020)。传感器设备被用于智慧城市的各种基础设施中。WSN 被用于气象站、废物管理、工业、家庭自动化等领域。另一个重要网络是车载 ad-hoc 网络。这种基础设施用于智能交通系统。卫星通信用于智能城市,为各种卫星电视频道、军事通信、天气状况更新和应急通信提供可靠的通信。所有这些基础设施都与网络设备的互联相连。所有设备都能帮助城市居民享受不同类型的应用服务。
The connected infrastructure has storage architecture in the cloud as well as local storage devices. Cloud services have become very popular and useful nowadays. The services can be provisioned within the shortest possible time and easy to use. There is no need for extra infrastructure to be installed for this purpose (Mollah et al., 2017). Network infrastructure has to act smartly by load balancing, automatic network metering, malicious traffic detection, threat analysis, network backup provisioning, remote maintenance and emergency decision making, and so on. An intelligent intrusion detection system can be implemented for any network threat detection (Vinayakumar et al., 2019). 互联基础设施既有云存储架构,也有本地存储设备。如今,云服务已变得非常流行和有用。这些服务可以在最短的时间内提供,而且易于使用。为此无需安装额外的基础设施(Mollah et al.)网络基础设施必须通过负载均衡、自动网络计量、恶意流量检测、威胁分析、网络备份供应、远程维护和应急决策等方式智能行动。智能入侵检测系统可用于任何网络威胁检测(Vinayakumar et al.)
3.5 | Smart home 3.5 | 智能家居
Smart home (Wilson et al., 2017) is modern infrastructure in the modern world. A smart home is based on sensors, loT devices, GPS, alarm systems, dedicated network connections, and so on. Solar energy is integrated into smart homes now. The citizens need to feel safe while staying at their home also. For this reason, a constant monitoring and emergency system needs to be installed. Emergency systems shall include quick, reliable, 24/7 communication with hospitals and police stations. So that emergency healthcare and emergency services are ensured (Bakar et al., 2016; Makhadmeh et al., 2019). As a smart home is connected to the internet like any other infrastructure, the data produced by this infrastructure needs to be stored and processed in a secure and trustworthy environment. A smart home is a crucial part of ensuring the QoL for the residents. For this reason, this infrastructure needs to be improved with time according to user demand. 智能家居(Wilson 等人,2017 年)是现代世界的现代化基础设施。智能家居以传感器、loT 设备、全球定位系统、报警系统、专用网络连接等为基础。现在,太阳能已融入智能家居。市民在家中也需要安全感。因此,需要安装一个持续监控和应急系统。应急系统应包括与医院和警察局之间快速、可靠、全天候的通信。这样才能确保紧急医疗保健和应急服务(Bakar 等人,2016 年;Makhadmeh 等人,2019 年)。由于智能家居与其他基础设施一样与互联网相连,因此该基础设施产生的数据需要在安全、可信的环境中存储和处理。智能家居是确保居民生活质量的重要组成部分。因此,需要根据用户需求不断改进这一基础设施。
Surantha and Wicaksono (2018) proposed improving the smart system’s security system and automatic system. The proposed method approach uses movement detection using PIR sensors and later uses raspberry pi for capturing the image to detect the object. Liu et al. (2016) proposed a security system related to cybersecurity. This approach detects cyber-attacks associated with the increment of pricing of the smart homes. The attacker illicitly increases the smart home bill of other persons whereas significantly decreases his own bill. Khan et al. (2016) described an energy utilization approach for smart homes. This loT based approach uses Zigbee networking for communicating among the devices and controls the energy usage inside the smart home. The authors proposed an intelligent system for controlling energy consumption, which is not affected by any external entity. Kang et al. (2017) proposed smart home security related advanced framework. This security framework enhances security, integrity, and access control of smart homes’ smart devices. Malche and Maheshwary (2017) proposed an loT enabled smart home system that emphasizes control and automation. Naik and Patel (2018) provided a similar loT based approach but an open-source framework. This open-source increases the communication reliability and security features of smart homes. Feng et al. (2017) proposed an interactive, intelligent, reliable, and user-friendly smart home architecture that specifically aims to develop the living environment. Al-Kuwari et al. (2018) proposed loT based smart home controlling, monitoring, and automation approaches using sensors. Securing a smart home is crucial for the smart city and providing user data privacy. Zhang, Qu, et al. (2019) provided a privacy-oriented secure framework for smart homes. This proposed approach uses a fog computing-based approach smart home model. Gajewski et al. (2019) provided an architecture for smart home cyber-attack detection and possible countermeasure. Similarly, Ferraris et al. (2020) described a privacy-preserving approach to build trust models. The authors briefly described the threat models for smart home, potential unauthorized access control management issues, and feasible solutions. Guhr et al. (2020) described smart home user data security, privacy issues related to healthcare. The authors discuss the possible behavioural, psychological concerns related to smart home data security, device security and addresses the problems with proper recommendations. Surantha 和 Wicaksono(2018 年)建议改进智能系统的安全系统和自动系统。所提出的方法使用 PIR 传感器进行运动检测,之后使用树莓派(raspberry pi)捕捉图像来检测物体。Liu 等人(2016 年)提出了一种与网络安全相关的安全系统。该方法可检测与智能家居价格上涨相关的网络攻击。攻击者非法增加他人的智能家居账单,同时大幅减少自己的账单。Khan 等人(2016 年)介绍了一种智能家居能源利用方法。这种基于 loT 的方法使用 Zigbee 网络进行设备间通信,并控制智能家居内的能源使用。作者提出了一种控制能源消耗的智能系统,该系统不受任何外部实体的影响。Kang 等人(2017)提出了智能家居安全相关的高级框架。该安全框架增强了智能家居智能设备的安全性、完整性和访问控制。Malche 和 Maheshwary(2017)提出了一种支持 loT 的智能家居系统,强调控制和自动化。Naik 和 Patel(2018 年)提供了一种类似的基于 loT 的方法,但却是一种开源框架。这种开源增加了智能家居的通信可靠性和安全功能。Feng 等人(2017)提出了一种交互式、智能、可靠、用户友好的智能家居架构,专门用于开发居住环境。Al-Kuwari 等人(2018)利用传感器提出了基于 loT 的智能家居控制、监测和自动化方法。确保智能家居的安全对于智慧城市和提供用户数据隐私至关重要。Zhang, Qu, et al. (2019) 为智能家居提供了一个面向隐私的安全框架。该方法采用了基于雾计算的智能家居模型。Gajewski 等人(2019 年)提供了一种智能家居网络攻击检测和可能对策的架构。同样,Ferraris 等人(2020 年)介绍了一种建立信任模型的隐私保护方法。作者简要介绍了智能家居的威胁模型、潜在的非授权访问控制管理问题以及可行的解决方案。Guhr 等人(2020 年)介绍了智能家居用户数据安全、与医疗保健相关的隐私问题。作者讨论了与智能家居数据安全、设备安全相关的可能的行为和心理问题,并提出了适当的建议来解决这些问题。
4 | SMART CITY EXAMPLES AROUND THE GLOBE 4 全球智慧城市范例
Barcelona, Amsterdam, New York, London, Paris, Singapore, Toronto, Japan, Hong Kong, Berlin, Reykjavik are cities that stand out according to Forbes Magazine (IESE Business School, 2020; Top 10 Smart Cities in the World, 2020). In 2012, being one of the first European cities, Barcelona started embracing loT technologies to evolve into a smart city. Being the Mobile World Capital, the city mainly focuses on improving its transport sector. Barcelona first launched its energy-saving LED-based street lighting system in 2012. The sensors incorporated within the lighting system enable measurement of traffic density, weather, climate conditions, sound and air pollution levels in the environment, pedestrian activity, and so on. (Wilson, 2019). In 2016, the pedestrian-friendly Superblocks urban plan was first implemented in Barcelona in the Poblenou neighbourhood. This low-cost urban concept aims to reduce air pollution and noise pollution caused by vehicles and waiting times for buses by restricting traffic and providing streets to be used entirely by pedestrians and cyclists. It also ensures that pedestrians do not have to rely on traffic lights and drastically reduces the risk of pedestrian-vehicle related accidents (Law & Lynch, 2019). 据《福布斯》杂志报道,巴塞罗那、阿姆斯特丹、纽约、伦敦、巴黎、新加坡、多伦多、日本、香港、柏林、雷克雅未克等城市脱颖而出(IESE 商学院,2020 年;全球十大智能城市,2020 年)。2012 年,作为最早的欧洲城市之一,巴塞罗那开始采用 loT 技术,向智能城市发展。作为 "世界移动通信之都",巴塞罗那主要关注交通领域的改善。2012 年,巴塞罗那首次推出了基于 LED 的节能街道照明系统。照明系统中的传感器可以测量交通密度、天气、气候条件、环境中的声音和空气污染水平、行人活动等。(威尔逊,2019 年)。2016 年,巴塞罗那首次在 Poblenou 社区实施了行人友好型超级街区城市规划。这一低成本的城市概念旨在通过限制交通和提供完全由行人和骑自行车者使用的街道,减少车辆造成的空气污染和噪音污染以及公交车的等候时间。它还确保行人不必依赖交通信号灯,并大大降低了行人与车辆相关事故的风险(Law & Lynch, 2019)。
Recognized as the “Smart Nation,” Singapore first declared its smart city initiative in November 2014 and is currently one of the topmost examples in the globe. Singapore has recently started the National Digital Identity, NDI initiative for its citizens and businesses, which can verify a user’s identity online for secure online transactions. Apart from monitoring environmental factors, smart street lights sensors can also collect acoustic data such as screaming during an accident. The wide distribution of sensor networks all over the city allows the government to monitor almost everything, even people smoking in restricted zones or throwing trash out of their buildings. Nowadays, most Singapore residents have adopted e-payments or digital payments, which include payment through QR codes and other mobile applications. After Singapore being the first 作为公认的 "智慧国家",新加坡于 2014 年 11 月首次宣布其智慧城市倡议,目前已成为全球最重要的范例之一。新加坡最近启动了针对其公民和企业的国家数字身份(NDI)计划,该计划可以在线验证用户身份,以实现安全的在线交易。除了监测环境因素,智能路灯传感器还可以收集声音数据,如事故发生时的尖叫声。遍布全城的传感器网络使政府能够监控几乎所有情况,甚至是人们在禁区吸烟或向楼外扔垃圾的情况。如今,大多数新加坡居民已经采用电子支付或数字支付,包括通过二维码和其他移动应用程序进行支付。在新加坡成为第一个
TABLE 4 Top 5 smart cities according to IESCE cities motion index 表 4 根据 IESCE 城市运动指数排名前五的智慧城市
Smart city 智能城市
Technologies used 使用的技术
New York City (Angelidou, 2017) 《纽约市》(安吉利杜,2017 年)
- Automated Meter Reading (AMR) to track water consumption.
- Solar powered trash bins to measure trash levels
- Energy efficient smart lighting to reduce GHG emissions and costs.
- Web-based software from HunchLab uses historical crime data to predict future crimes.
- Air quality monitoring
- Automated Meter Reading (AMR) to track water consumption.
- Solar powered trash bins to measure trash levels
- Energy efficient smart lighting to reduce GHG emissions and costs.
- Web-based software from HunchLab uses historical crime data to predict future crimes.
- Air quality monitoring| - Automated Meter Reading (AMR) to track water consumption. |
| :--- |
| - Solar powered trash bins to measure trash levels |
| - Energy efficient smart lighting to reduce GHG emissions and costs. |
| - Web-based software from HunchLab uses historical crime data to predict future crimes. |
| - Air quality monitoring |
London (Willems et al., 2017) 伦敦(Willems 等人,2017 年)
- Street lamp posts equipped with air quality sensors, surveillance systems, electric vehicle charge points, public Wi-Fi
- Self-driving Heathrow pods
- London data store to make data accessible to all.
- Street lamp posts equipped with air quality sensors, surveillance systems, electric vehicle charge points, public Wi-Fi
- Self-driving Heathrow pods
- London data store to make data accessible to all.| - Street lamp posts equipped with air quality sensors, surveillance systems, electric vehicle charge points, public Wi-Fi |
| :--- |
| - Self-driving Heathrow pods |
| - London data store to make data accessible to all. |
Paris (Kylili & Fokaides, 2015) 巴黎 (Kylili & Fokaides, 2015)
- Halle Pajol solar power station - an industrial building equipped with solar panels.
- E-bike renting schemes.
- IoT enabled park benches.
- Halle Pajol solar power station - an industrial building equipped with solar panels.
- E-bike renting schemes.| - IoT enabled park benches. |
| :--- |
| - Halle Pajol solar power station - an industrial building equipped with solar panels. |
| - E-bike renting schemes. |
Tokyo (Clarisse PHAM, 2015) 东京(Clarisse PHAM,2015 年)
- Energy Management Systems in homes (HEMS), buildings (BEMS), and factories (FEMS)
- Tokyo Rinkai disaster prevention park that uses smart technologies to help citizens survive during natural disasters
- Smart Grids to limit energy wastage
- Energy Management Systems in homes (HEMS), buildings (BEMS), and factories (FEMS)
- Tokyo Rinkai disaster prevention park that uses smart technologies to help citizens survive during natural disasters| - Smart Grids to limit energy wastage |
| :--- |
| - Energy Management Systems in homes (HEMS), buildings (BEMS), and factories (FEMS) |
| - Tokyo Rinkai disaster prevention park that uses smart technologies to help citizens survive during natural disasters |
Reykjavik (Sigurbórsdóttir et al., n.d.) 雷克雅未克(Sigurbórsdóttir et al.)
- 公共交通应用程序 Straetó,用于运营城市公交车。- ON Power - 雷克雅未克能源公司,利用地热能发电。- 雷克雅未克光纤网络提供 100% 光纤到户连接。- Better Reykjavik 网站允许市民与政府分享意见。
- Public transportation app, Straetó for operating city buses.
- ON Power - Reykjavik Energy Company that uses geothermal energy to produce electricity.
- Reykjavik Fibre Network offers 100% Fibre to The Home, FTTH connectivity.
- The Better Reykjavik website allows citizens to share their opinions with the government.
- Public transportation app, Straetó for operating city buses.
- ON Power - Reykjavik Energy Company that uses geothermal energy to produce electricity.
- Reykjavik Fibre Network offers 100% Fibre to The Home, FTTH connectivity.
- The Better Reykjavik website allows citizens to share their opinions with the government.| - Public transportation app, Straetó for operating city buses. |
| :--- |
| - ON Power - Reykjavik Energy Company that uses geothermal energy to produce electricity. |
| - Reykjavik Fibre Network offers 100% Fibre to The Home, FTTH connectivity. |
| - The Better Reykjavik website allows citizens to share their opinions with the government. |
Smart city Technologies used
New York City (Angelidou, 2017) "- Automated Meter Reading (AMR) to track water consumption.
- Solar powered trash bins to measure trash levels
- Energy efficient smart lighting to reduce GHG emissions and costs.
- Web-based software from HunchLab uses historical crime data to predict future crimes.
- Air quality monitoring"
London (Willems et al., 2017) "- Street lamp posts equipped with air quality sensors, surveillance systems, electric vehicle charge points, public Wi-Fi
- Self-driving Heathrow pods
- London data store to make data accessible to all."
Paris (Kylili & Fokaides, 2015) "- IoT enabled park benches.
- Halle Pajol solar power station - an industrial building equipped with solar panels.
- E-bike renting schemes."
Tokyo (Clarisse PHAM, 2015) "- Smart Grids to limit energy wastage
- Energy Management Systems in homes (HEMS), buildings (BEMS), and factories (FEMS)
- Tokyo Rinkai disaster prevention park that uses smart technologies to help citizens survive during natural disasters"
Reykjavik (Sigurbórsdóttir et al., n.d.) "- Public transportation app, Straetó for operating city buses.
- ON Power - Reykjavik Energy Company that uses geothermal energy to produce electricity.
- Reykjavik Fibre Network offers 100% Fibre to The Home, FTTH connectivity.
- The Better Reykjavik website allows citizens to share their opinions with the government."| Smart city | Technologies used |
| :---: | :---: |
| New York City (Angelidou, 2017) | - Automated Meter Reading (AMR) to track water consumption. <br> - Solar powered trash bins to measure trash levels <br> - Energy efficient smart lighting to reduce GHG emissions and costs. <br> - Web-based software from HunchLab uses historical crime data to predict future crimes. <br> - Air quality monitoring |
| London (Willems et al., 2017) | - Street lamp posts equipped with air quality sensors, surveillance systems, electric vehicle charge points, public Wi-Fi <br> - Self-driving Heathrow pods <br> - London data store to make data accessible to all. |
| Paris (Kylili & Fokaides, 2015) | - IoT enabled park benches. <br> - Halle Pajol solar power station - an industrial building equipped with solar panels. <br> - E-bike renting schemes. |
| Tokyo (Clarisse PHAM, 2015) | - Smart Grids to limit energy wastage <br> - Energy Management Systems in homes (HEMS), buildings (BEMS), and factories (FEMS) <br> - Tokyo Rinkai disaster prevention park that uses smart technologies to help citizens survive during natural disasters |
| Reykjavik (Sigurbórsdóttir et al., n.d.) | - Public transportation app, Straetó for operating city buses. <br> - ON Power - Reykjavik Energy Company that uses geothermal energy to produce electricity. <br> - Reykjavik Fibre Network offers 100% Fibre to The Home, FTTH connectivity. <br> - The Better Reykjavik website allows citizens to share their opinions with the government. |
city in the world to introduce autonomous vehicles, the Singapore government plans to launch self-driving buses, instal energy-saving street lights on almost all public roads, and incorporate solar PV panels on top of the roof surfaces of around 6000 buildings all by the year 2022 (Smith, 2017). Also being ranked among the top 10 smart cities according to IESCE Cities in Motion Index, and considered as the 3rd best city in terms of technology, Amsterdam listed first among European cities (Amsterdam’s Smart City: Ambitious Goals, Collaborative Innovation, 2020). As a part of the Amsterdam Smart City (ASC) circular city project, waste materials are reused to generate electricity and Carbon dioxide. Smart grids are used to convert carbon dioxide into energy. In transportation, though bicycles are widely used, there has been a rise in the use of Electric Vehicles, EV in Amsterdam city that allow energy exchange between the grids and vehicles. In the energy sector, a smart grid is used to generate energy from renewable energy sources, which can be stored or shared when required. Also, LED street lightings can conserve around 80%80 \% of energy while saving 130 billion euro. Table 4 presents some smart cities around the world and their features. 作为世界上引入自动驾驶汽车的城市之一,新加坡政府计划在 2022 年之前推出自动驾驶公交车,在几乎所有公共道路上安装节能路灯,并在约 6000 栋建筑的屋顶表面安装太阳能光伏板(Smith,2017 年)。此外,根据 IESCE 城市运动指数,阿姆斯特丹被评为十大智能城市之一,并被认为是技术方面第三好的城市,在欧洲城市中名列第一(《阿姆斯特丹的智能城市:雄心勃勃的目标,协同创新,2020 年》)。作为阿姆斯特丹智慧城市(ASC)循环城市项目的一部分,废料被重新利用来发电和产生二氧化碳。智能电网用于将二氧化碳转化为能源。在交通方面,虽然自行车被广泛使用,但在阿姆斯特丹市,电动汽车的使用也在增加,电动汽车可以在电网和车辆之间进行能量交换。在能源领域,智能电网用于利用可再生能源发电,并在需要时进行储存或共享。此外,LED 路灯可节约约 80%80 \% 能源,同时节省 1300 亿欧元。表 4 介绍了世界各地的一些智能城市及其特点。
5 | SECURITY AND PRIVACY ISSUES 5 安全和隐私问题
These are the two crucial dimensions of any digital infrastructure. The smart city is a new addition to the sustainable digital society. Potential privacy and security concerns need to be discussed for its improvement. In this section of the paper, various paradigms of security and privacy issues, including the recommended solutions, are discussed (Cui et al., 2018). 这是任何数字基础设施的两个重要方面。智慧城市是可持续数字社会的新成员。需要讨论潜在的隐私和安全问题,以便对其进行改进。本文这一部分将讨论安全和隐私问题的各种范例,包括建议的解决方案(Cui et al.)
5.1 | Security attributes of smart city 5.1 智慧城市的安全属性
The smart city makes life easier by increasing the privileges of people’s daily life. Smart healthcare, smart education, proper security, intelligent transportation systems, and so on, are the core smart city implementation applications. As people are connected in a distributed network, each person is dependent on each other. This kind of connectivity needs a robust system. The concept of a smart city puts forward a new era of human life. But it has also presented different types of crucial issues as presented in Table 5 . The shortcomings in understanding the security and privacy measures will eventually be the reason behind the rise of hazardous events in the whole system. So, we have to know and understand the smart city’s security challenges for implementing a proper and secure smart city (Gharaibeh, Salahuddin, et al., 2017; Verma et al., 2019). 智慧城市提高了人们日常生活的便利性,让生活变得更加轻松。智能医疗、智能教育、适当的安防、智能交通系统等等,都是智慧城市的核心实施应用。由于人们在分布式网络中相互连接,每个人都相互依赖。这种连接需要一个强大的系统。智慧城市的概念提出了人类生活的新时代。但它也带来了不同类型的关键问题,如表 5 所示。对安全和隐私措施认识的不足最终将成为整个系统中危险事件增加的原因。因此,我们必须了解和理解智慧城市的安全挑战,以实施适当和安全的智慧城市(Gharaibeh、Salahuddin 等人,2017 年;Verma 等人,2019 年)。
5.1.1 | Security in communication 5.1.1 通信安全
In a smart city, people are connected to a network. Smart cities’ core intention is to share the data among the users, and the users collect the data and analyse the data for other privileges. So, it is crucial to establish security. Encryption is a beneficial and widely used technique for securing 在智慧城市中,人们与网络相连。智慧城市的核心意图是在用户之间共享数据,用户收集数据并对数据进行分析,以获得其他特权。因此,建立安全性至关重要。加密是一种有效且广泛使用的安全技术。
the communication system. On the other hand, an loT based crypto-manager device management system can be used for ensuring secure communication (Nguyen et al., 2015). While a user gets into the network, loT devices automatically detect the user device and authenticate it to ensure the secure communication process (Rathore et al., 2018). 通信系统。另一方面,基于 loT 的加密管理器设备管理系统可用于确保通信安全(Nguyen 等人,2015 年)。当用户进入网络时,loT 设备会自动检测用户设备并进行身份验证,以确保通信过程的安全性(Rathore et al.)
A computer virus, threats, or other malware are self-executable programs that damage computer systems. Every system needs an operating system or a kernel to control the system. While installing an operating system via bootable devices, it is crucial to check whether the device is free from malware or pre-boot malware. Pre-boot malware is more dangerous as it is executable even if no operating system has been installed. Moreover, sometimes it is tough to detect pre-boot malware. For this reason, secure booting is one of the most critical requirements. Ultra-low-power hash function consumption is vital to implement for loT devices (Andrea et al., 2015). 计算机病毒、威胁或其他恶意软件是破坏计算机系统的可自动执行程序。每个系统都需要一个操作系统或内核来控制系统。在通过可启动设备安装操作系统时,检查设备是否没有恶意软件或预启动恶意软件至关重要。预启动恶意软件更加危险,因为即使没有安装操作系统,它也是可执行的。此外,有时很难检测到预启动恶意软件。因此,安全启动是最关键的要求之一。超低功耗哈希函数消耗对于实现 loT 设备至关重要(Andrea 等人,2015 年)。
5.1.3 | Supervisory security 5.1.3 | 监督安全
The building block of smart cities is loT devices. They are organized systematically to build a concrete environment that can provide necessary features to the citizens. If they are not appropriately monitored, cyber-attacks like fake sensor data or injection of erroneous data may harm the whole system. Moreover, analysis of malicious behaviour and attacks must be performed properly to generate an automated response. In order to do this analysis and generate a response, the system must have certain scalability to let the loT device process a large amount of data. A system can work in an elimination and response strategy to eradicate this type of suspicious behaviour. The system must nullify, temporarily separate or withdraw the affected sections of the loT device. Along with other monitoring strategies, organizations performing different operations in a smart 智慧城市的基石是 loT 设备。它们被系统地组织起来,以构建一个具体的环境,为市民提供必要的功能。如果不对它们进行适当监控,伪造传感器数据或注入错误数据等网络攻击可能会损害整个系统。此外,必须对恶意行为和攻击进行适当的分析,以生成自动响应。为了进行分析并做出响应,系统必须具备一定的可扩展性,以便让 loT 设备处理大量数据。系统可以采用消除和响应策略来消除这类可疑行为。系统必须使 loT 设备受影响的部分失效、暂时分离或撤销。除了其他监控策略外,在智能网络中执行不同操作的组织还可以采取以下措施
TABLE 5 Summarized form of security attributes 表 5 安全属性汇总表
- Encryption is a beneficial and widely used technique,
- loT based crypto-manager device management system
- IoT devices automatically detect and authenticate
- Share the data among the users
- Collect the data and analyse the data,
- Encryption is a beneficial and widely used technique,
- loT based crypto-manager device management system
- IoT devices automatically detect and authenticate| - Share the data among the users |
| :--- |
| - Collect the data and analyse the data, |
| - Encryption is a beneficial and widely used technique, |
| - loT based crypto-manager device management system |
| - IoT devices automatically detect and authenticate |
- Computer virus or other malware damage computer systems,
- Operating system or a kernel to control the system.
- Crucial to check whether the device is free from malware or pre-boot malware.
- Pre-boot malware affects even if no operating system has been installed.
- Ultra-low-power hash function consumption is vital
- Computer virus or other malware damage computer systems,
- Operating system or a kernel to control the system.
- Crucial to check whether the device is free from malware or pre-boot malware.
- Pre-boot malware affects even if no operating system has been installed.
- Ultra-low-power hash function consumption is vital| - Computer virus or other malware damage computer systems, |
| :--- |
| - Operating system or a kernel to control the system. |
| - Crucial to check whether the device is free from malware or pre-boot malware. |
| - Pre-boot malware affects even if no operating system has been installed. |
| - Ultra-low-power hash function consumption is vital |
- devices are organized systematically to build a concrete environment,
- fake sensor data or injection of erroneous data may harm the whole system,
- analysis and generate a response, the system must have certain scalability,
- elimination and response strategy to eradicate suspicious behaviour.
- must nullify, temporarily separate or withdraw the affected sections,
- should always monitor suspicious activity, behaviour, or any other system-threatening action
- devices are organized systematically to build a concrete environment,
- fake sensor data or injection of erroneous data may harm the whole system,
- analysis and generate a response, the system must have certain scalability,
- elimination and response strategy to eradicate suspicious behaviour.
- must nullify, temporarily separate or withdraw the affected sections,
- should always monitor suspicious activity, behaviour, or any other system-threatening action| - devices are organized systematically to build a concrete environment, |
| :--- |
| - fake sensor data or injection of erroneous data may harm the whole system, |
| - analysis and generate a response, the system must have certain scalability, |
| - elimination and response strategy to eradicate suspicious behaviour. |
| - must nullify, temporarily separate or withdraw the affected sections, |
| - should always monitor suspicious activity, behaviour, or any other system-threatening action |
- loT devices need to maintain a lifecycle enhancement,
- lifecycle management needs to be done at different design stages,
- developers must investigate the code, critical issues, and other component,
- reduces communication latencies and traffic preventing system failure
- loT devices need to maintain a lifecycle enhancement,
- lifecycle management needs to be done at different design stages,
- developers must investigate the code, critical issues, and other component,
- reduces communication latencies and traffic preventing system failure| - loT devices need to maintain a lifecycle enhancement, |
| :--- |
| - lifecycle management needs to be done at different design stages, |
| - developers must investigate the code, critical issues, and other component, |
| - reduces communication latencies and traffic preventing system failure |
- regular updates are essential to defeating vulnerable attacks
- authenticating the update patches is a significant
- patches are generated and transmitted by their service providers and operators
- Companies need patch compliance policies, proper testing
- regular updates are essential to defeating vulnerable attacks
- authenticating the update patches is a significant
- patches are generated and transmitted by their service providers and operators
- Companies need patch compliance policies, proper testing| - regular updates are essential to defeating vulnerable attacks |
| :--- |
| - authenticating the update patches is a significant |
| - patches are generated and transmitted by their service providers and operators |
| - Companies need patch compliance policies, proper testing |
Access Management and Information Security 访问管理和信息安全
- loT devices generate and transmit data continually,
- system must be powerful enough to identify users,
- authenticate activity, and control data use
- secure communication is essential precondition for authentication
- resist downtime, unexpected changes, and tampering
- ensuring data privacy, access control, and authentication protocol
- loT devices generate and transmit data continually,
- system must be powerful enough to identify users,
- authenticate activity, and control data use
- secure communication is essential precondition for authentication
- resist downtime, unexpected changes, and tampering
- ensuring data privacy, access control, and authentication protocol| - loT devices generate and transmit data continually, |
| :--- |
| - system must be powerful enough to identify users, |
| - authenticate activity, and control data use |
| - secure communication is essential precondition for authentication |
| - resist downtime, unexpected changes, and tampering |
| - ensuring data privacy, access control, and authentication protocol |
Security attributes Features
Security in Communication "- Share the data among the users
- Collect the data and analyse the data,
- Encryption is a beneficial and widely used technique,
- loT based crypto-manager device management system
- IoT devices automatically detect and authenticate"
Bootable Device Security "- Computer virus or other malware damage computer systems,
- Operating system or a kernel to control the system.
- Crucial to check whether the device is free from malware or pre-boot malware.
- Pre-boot malware affects even if no operating system has been installed.
- Ultra-low-power hash function consumption is vital"
Supervisory Security "- devices are organized systematically to build a concrete environment,
- fake sensor data or injection of erroneous data may harm the whole system,
- analysis and generate a response, the system must have certain scalability,
- elimination and response strategy to eradicate suspicious behaviour.
- must nullify, temporarily separate or withdraw the affected sections,
- should always monitor suspicious activity, behaviour, or any other system-threatening action"
Comprehensive City Lifecycle Security "- loT devices need to maintain a lifecycle enhancement,
- lifecycle management needs to be done at different design stages,
- developers must investigate the code, critical issues, and other component,
- reduces communication latencies and traffic preventing system failure"
Updates and Patches "- regular updates are essential to defeating vulnerable attacks
- authenticating the update patches is a significant
- patches are generated and transmitted by their service providers and operators
- Companies need patch compliance policies, proper testing"
Access Management and Information Security "- loT devices generate and transmit data continually,
- system must be powerful enough to identify users,
- authenticate activity, and control data use
- secure communication is essential precondition for authentication
- resist downtime, unexpected changes, and tampering
- ensuring data privacy, access control, and authentication protocol"| Security attributes | Features |
| :---: | :---: |
| Security in Communication | - Share the data among the users <br> - Collect the data and analyse the data, <br> - Encryption is a beneficial and widely used technique, <br> - loT based crypto-manager device management system <br> - IoT devices automatically detect and authenticate |
| Bootable Device Security | - Computer virus or other malware damage computer systems, <br> - Operating system or a kernel to control the system. <br> - Crucial to check whether the device is free from malware or pre-boot malware. <br> - Pre-boot malware affects even if no operating system has been installed. <br> - Ultra-low-power hash function consumption is vital |
| Supervisory Security | - devices are organized systematically to build a concrete environment, <br> - fake sensor data or injection of erroneous data may harm the whole system, <br> - analysis and generate a response, the system must have certain scalability, <br> - elimination and response strategy to eradicate suspicious behaviour. <br> - must nullify, temporarily separate or withdraw the affected sections, <br> - should always monitor suspicious activity, behaviour, or any other system-threatening action |
| Comprehensive City Lifecycle Security | - loT devices need to maintain a lifecycle enhancement, <br> - lifecycle management needs to be done at different design stages, <br> - developers must investigate the code, critical issues, and other component, <br> - reduces communication latencies and traffic preventing system failure |
| Updates and Patches | - regular updates are essential to defeating vulnerable attacks <br> - authenticating the update patches is a significant <br> - patches are generated and transmitted by their service providers and operators <br> - Companies need patch compliance policies, proper testing |
| Access Management and Information Security | - loT devices generate and transmit data continually, <br> - system must be powerful enough to identify users, <br> - authenticate activity, and control data use <br> - secure communication is essential precondition for authentication <br> - resist downtime, unexpected changes, and tampering <br> - ensuring data privacy, access control, and authentication protocol |
city are also responsible for monitoring suspicious activity, the services’ stability, tracking abnormal behaviour, or any other system-threatening action with appropriate mechanisms. 城市还负责监控可疑活动、服务的稳定性、跟踪异常行为或其他任何威胁系统的行为,并建立适当的机制。
5.1.4 | Comprehensive city lifecycle security 5.1.4 | 城市生命周期综合安全
The core of a smart city is the citizens. To collect data and information from citizens for implementing a complete system, loT devices need to maintain a lifecycle enhancement. The lifecycle management of a system and application is a very complicated procedure as it needs to be done at different design stages. Moreover, the developers must investigate the code, critical issues, and other components related to the specific loT devices before connecting them to the system. Smart City Comprehensive Data Life Cycle (SCC-DLC) is proposed to manage the enormous data size (Hefnawy et al., 2016). This kind of approach also reduces communication latencies and traffic preventing system failure. Considering the process of data collection from various resources, storage, and data acquisition, it works fine to maintain and enhance the lifecycle of a system and application in a smart city. 智慧城市的核心是市民。为了从市民那里收集数据和信息以实施完整的系统,loT 设备需要保持生命周期的增强。系统和应用程序的生命周期管理是一个非常复杂的过程,因为它需要在不同的设计阶段完成。此外,在将特定 loT 设备连接到系统之前,开发人员必须调查与这些设备相关的代码、关键问题和其他组件。智能城市综合数据生命周期(SCC-DLC)被提出来管理庞大的数据量(Hefnawy 等人,2016 年)。这种方法还能减少通信延迟和流量,防止系统故障。考虑到从各种资源中收集数据、存储和获取数据的过程,它可以很好地维护和增强智慧城市中系统和应用的生命周期。
5.1.5 | Updates and patches 5.1.5 | 更新和补丁
Issues can arise as time passes. So regular updates are essential to defeating vulnerable attacks on security. Authenticating the update patches is a significant addition for loT devices. These established patches are generated and transmitted by their service providers and operators. Companies have to develop patch compliance policies, proper testing, and no performance compromise for the devices and bandwidth efficiency. There might be some challenges for updating the patches also. For instance, medical applications devices cannot endure antivirus as a security solution. 随着时间的推移,问题会不断出现。因此,定期更新是战胜安全漏洞攻击的关键。验证更新补丁是对 loT 设备的重要补充。这些既定补丁由服务提供商和运营商生成和传输。公司必须制定补丁合规政策,进行适当的测试,并且不影响设备的性能和带宽效率。更新补丁也可能面临一些挑战。例如,医疗应用设备不能使用杀毒软件作为安全解决方案。
5.1.6 | Access management and information security 5.1.6 | 访问管理和信息安全
loT devices in a smart city work in a way where they need to generate and transmit data continually. At the same time, this data is managed and controlled; the system must prevent unauthorized access. The system is a smart city that must be powerful enough to identify users, authenticate activity, and control data use. Legal citizens’ access to data building secure communication is the essential precondition for the authentication process. It will ensure a smart city environment to resist downtime, unexpected changes, and tampering. For a concrete communication system and ensuring data privacy, access control, and authentication protocol like Role-Based Access Control (RBAC) (Sandhu et al., 1996), Identity Based Encryption (IBE) (Shamir, 1985), and Attribute-Based Encryption (ABE) (Goyal et al., 2006) are proposed. 智慧城市中的 loT 设备需要不断生成和传输数据。同时,这些数据需要管理和控制;系统必须防止未经授权的访问。智能城市的系统必须足够强大,能够识别用户、验证活动和控制数据使用。合法公民访问数据、建立安全通信是认证过程的基本前提。它将确保智慧城市环境能够抵御停机、意外变更和篡改。为建立具体的通信系统并确保数据隐私,提出了访问控制和身份验证协议,如基于角色的访问控制(RBAC)(Sandhu 等人,1996 年)、基于身份的加密(IBE)(Shamir,1985 年)和基于属性的加密(ABE)(Goyal 等人,2006 年)。
5.2 | Leveraging security issues 5.2 | 利用安全问题
Smart cities bring convenience, flexibility, efficiency, and automation to our life. The implementation is still conceptual. The concept of a smart city is to make everything interconnected through a connecting medium. This connectivity surely needs a state-of-the-art infrastructural design to better security and privacy solutions. As smart cities are heterogeneous devices, security threats are also diverse. For this reason, all types of attack vectors can be considered as potential security threats for a smart city. Confidentiality, authenticity, availability, and integrity are major concerns of smart city data security. Confidential information is very much crucial for user data. This protects the data from being leaked to unwanted parties. The integrity of data means the correct and non-modified data. If the data is modified or damaged while transmitting and storing, it might produce the wrong results. This false result will produce incorrect decisions. This section details some specific security and privacy issues for smart cities and potential solutions where available. 智慧城市为我们的生活带来了便捷、灵活、高效和自动化。其实施仍处于概念阶段。智慧城市的概念是通过连接媒介使万物互联。这种连接肯定需要最先进的基础设施设计,以提供更好的安全和隐私解决方案。由于智慧城市是异构设备,安全威胁也是多种多样的。因此,所有类型的攻击载体都可被视为智慧城市的潜在安全威胁。保密性、真实性、可用性和完整性是智慧城市数据安全的主要关注点。机密信息对用户数据至关重要。这可以保护数据不被泄露给不需要的人。数据的完整性是指数据的正确性和非修改性。如果数据在传输和存储过程中被修改或损坏,可能会产生错误的结果。这种错误结果将产生错误的决策。本节将详细介绍智慧城市的一些具体安全和隐私问题,以及可能的解决方案。
5.2.1 | Cyber attacks 5.2.1 | 网络攻击
Data needs to be available always for all the data subjects. The availability of data is a major concern in the case of data processing and analysis. There can be various cyber security attacks on data. Besides, different type’s attacks can be used to (i) gain access to people’s confidential information, (ii) monitor user activities (iii) make the system unavailable to users. A smart city comprises various interconnected loT devices. As the smart city application vector increases, the amount of interconnected loT devices also increases. Someone with malicious intent could breach any of the devices and begin spreading malware across the entire network. This malware can be used to monitor the whole network, eavesdrop, and sniff important data from the network. Due to this attack, confidentiality, authenticity, and availability of the data can be compromised. For this reason, malware detection and mitigation techniques can be implemented as a solution to this type of threat (Dovom et al., 2019). 数据需要随时提供给所有数据主体。在数据处理和分析中,数据的可用性是一个主要问题。数据可能会受到各种网络安全攻击。此外,不同类型的攻击可用于:(i) 获取人们的机密信息;(ii) 监控用户活动;(iii) 使用户无法使用系统。智慧城市由各种互联的 loT 设备组成。随着智慧城市应用载体的增加,互联 loT 设备的数量也在增加。怀有恶意的人可能会侵入其中任何一个设备,并开始在整个网络中传播恶意软件。这种恶意软件可用于监控整个网络、窃听和嗅探网络中的重要数据。由于这种攻击,数据的保密性、真实性和可用性都会受到影响。因此,可以采用恶意软件检测和缓解技术来解决这类威胁(Dovom et al.)
An example of another cybersecurity attack is the Distributed Denial-of-Service (DDoS) attack. This is increasingly common nowadays. DDoS attacks could be used to bring down an essential part of the smart city system, for example, traffic lights and cameras in a smart transportation system. This type of attack will compromise the availability of devices and data in smart cities. Attack detection and mitigation tools can be used as a countermeasure of this attack. While designing a countermeasure, the nature and attribute of a smart city must be considered so that the solution can be implemented in a growing network and various types of devices. A possible solution is proposed that includes a novel framework using Software Defined Networking (SDN). It can detect a DDoS attack and differentiate it from a sudden increase in the number of legitimate users (Jahromi et al., 2020). 另一种网络安全攻击是分布式拒绝服务(DDoS)攻击。这种攻击如今越来越常见。DDoS 攻击可用于瘫痪智能城市系统的重要部分,例如智能交通系统中的交通信号灯和摄像头。这种攻击会影响智慧城市中设备和数据的可用性。可以使用攻击检测和缓解工具来应对这种攻击。在设计对策时,必须考虑到智能城市的性质和属性,这样才能在不断增长的网络和各种类型的设备中实施解决方案。本文提出了一个可行的解决方案,其中包括一个使用软件定义网络(SDN)的新型框架。它可以检测到 DDoS 攻击,并将其与合法用户数量的突然增加区分开来(Jahromi 等人,2020 年)。
In brute force attack, attackers try to hack the network using the password which is guessed by trying all the combinations of numbers or phrases. A strong cryptographic algorithm can prevent this brute force attack. Man-in-the-Middle attack can enter the network and capture the data transmitted while the devices or users have no idea about the middle entity. Besides in eavesdropping attack the invaders try to overhear the communication between the connected devices or users and reveal personal data Malicious code injection can hamper the smart city communication infrastructure. This event can cause damaged data production and transfer. Personal data leakage due to cyber-attack can increase identity theft. The citizens can be targeted for ransomware attack of phishing to gain access of a system illegitimately. Unauthorized access can hamper the cyber infrastructure in a catastrophic manner. If anyone can have unauthorized access, the intruder can infiltrate using Trojan horse and take control of other systems. The possible solution can be strengthening the infrastructural security and using state of the art technologies, that is, blockchain. In addition to that intelligent intrusion detection and prevention system can be used to detect and deploy countermeasures (Khanam et al., 2020). 在暴力破解攻击中,攻击者试图使用密码入侵网络,而密码是通过尝试所有数字或短语组合猜测出来的。强大的加密算法可以防止这种暴力攻击。中间人攻击可以进入网络并捕获传输的数据,而设备或用户对中间实体一无所知。此外,在窃听攻击中,入侵者试图窃听连接设备或用户之间的通信,并泄露个人数据。这一事件会导致数据生产和传输受损。网络攻击导致的个人数据泄露会加剧身份盗窃。市民可能成为勒索软件攻击和网络钓鱼的目标,从而非法访问系统。未经授权的访问会对网络基础设施造成灾难性的破坏。如果任何人都可以进行未经授权的访问,入侵者就可以使用木马程序进行渗透,并控制其他系统。可能的解决办法是加强基础设施安全,并使用最先进的技术,即区块链。此外,还可以使用智能入侵检测和防御系统来检测和部署应对措施(Khanam 等人,2020 年)。
5.2.2 | Devices and connectivity threat 5.2.2 | 设备和连接威胁
The smart city comprises smart devices, for example, smartphones, smart healthcare devices, and so on. These devices have the relatively smaller processing power and storage. For this reason, data processing at this end is very minimal. These smart loT devices use third-party applications and services for their operation, which often is the point of vulnerability. Besides, the nature of the devices poses various security threats irrespective of their current state of operation. For this reason, effective countermeasures have been proposed for these attacks (Goyal et al., 2020). It would be really difficult for an loT-based smart city to establish a cryptography method for secure end-to-end communication. One of the reasons for this is that the devices are all made by different manufacturers and thus held to various security standards. Furthermore, a lot of the devices will have very low computational power. To combat this issue, IEEE 802.15 .4 has been put forth (Kobo et al., 2017). 智慧城市包括智能设备,例如智能手机、智能医疗设备等。这些设备的处理能力和存储空间相对较小。因此,这一端的数据处理量非常小。这些智能 loT 设备使用第三方应用程序和服务进行操作,这往往是漏洞所在。此外,无论设备当前处于何种运行状态,其性质都会带来各种安全威胁。因此,针对这些攻击提出了有效的应对措施(Goyal 等人,2020 年)。对于基于 loT 的智慧城市来说,建立端到端安全通信的加密方法确实非常困难。其中一个原因是,这些设备都是由不同的制造商制造的,因此要遵守不同的安全标准。此外,许多设备的计算能力都很低。为解决这一问题,IEEE 802.15 .4 已被提出(Kobo et al.)
5.2.3 | Security issues in data collection and transmission 5.2.3 | 数据收集和传输的安全问题
Smart cities are largely dependent on data that is collected from various sensors and other loT devices. This vast amount of data needs an efficient and secure storage facility. To accommodate this increasingly large amount of data, and auto-tiering database facility is proposed to be used. This technology dynamically allocates data storing facilities according to the organization’s rules and regulations set by the administrator. Besides, dynamic storage location assignment poses vulnerabilities. For example, proper cyber security techniques are not integrated with it. On the other hand, data can face collusion threats. So that more than assigned or the storage providers can access permitted data. Data storage and transaction creates a database history. This history reveals useful information that can be harmful if it goes to the wrong hand. So, data protection and security mechanisms for this log data is also a crucial need (Parms, 2017). 智能城市在很大程度上依赖于从各种传感器和其他 loT 设备收集的数据。这些海量数据需要高效、安全的存储设备。为了容纳这些日益庞大的数据,建议使用自动分层数据库设施。该技术可根据管理员设定的组织规则和条例动态分配数据存储设备。此外,动态存储位置分配也存在漏洞。例如,没有与适当的网络安全技术相结合。另一方面,数据可能面临串通威胁。因此,不止指定的存储提供商可以访问允许的数据。数据存储和交易会创建数据库历史。这些历史记录揭示了有用的信息,如果落入坏人之手,则可能造成危害。因此,针对这些日志数据的数据保护和安全机制也是一个至关重要的需求(Parms,2017)。
Smart cities aim to provide state-of-the-art real-time facilities to the citizens. To facilitate this purpose, real-time data analysis is needed. As the data source is heterogeneous and huge, it is challenging to transmit new, authentic, complete real-time data. Sometimes due to spoofing attacks, the data can collude. The attacker can create multiple fake identities so that fake and unreliable data can be transferred to the processing unit. If such data is provided to the critical organs of a smart city that operates on real-time data, it will create a massive problem for the citizens as well as for the city infrastructure. For this reason, efficient attack mechanisms against this type of attack (sybil attack, spoofing, etc.) can be used for the smart city devices that collect data. 智能城市旨在为市民提供最先进的实时设施。为此,需要进行实时数据分析。由于数据源异构且庞大,传输新的、真实的、完整的实时数据具有挑战性。有时由于欺骗攻击,数据会相互串通。攻击者可以创建多个假身份,从而将虚假、不可靠的数据传输到处理单元。如果这些数据被提供给以实时数据为基础运行的智慧城市的重要机构,将给市民和城市基础设施带来巨大问题。因此,可以在收集数据的智能城市设备中使用有效的攻击机制来对付这类攻击(假冒攻击、欺骗等)。
5.2.4 | Physical attack on the infrastructure 5.2.4 | 对基础设施的物理攻击
Apart from data protection in the virtual world, physical infrastructure security is also crucial for security purposes. Wired and wireless sensors are used in infrastructures. Smart homes, smart buildings, smart transportation infrastructure, and so on, use sensors and other versatile loT devices. Sensors devices can be damaged easily if intruders can access physically. Moreover, in smart homes, smart buildings, loT devices can be fed with fake data to provide wrong results (Butun et al., 2020). Wired transmission lines can be tapped to sniff transmitted data. Intruders can 除了虚拟世界中的数据保护外,物理基础设施的安全也至关重要。有线和无线传感器被广泛应用于基础设施中。智能家居、智能建筑、智能交通基础设施等都使用传感器和其他多功能 loT 设备。如果入侵者可以实际进入,传感器设备就很容易损坏。此外,在智能家居、智能建筑中,loT 设备可能会被输入虚假数据,从而提供错误的结果(Butun 等人,2020 年)。有线传输线路可被窃听,以嗅探传输的数据。入侵者可以
inject malicious code into the sensors and reprogrammed it to operate and provide falsified data. For this reason, physical infrastructure security is a must for smart city security solution purposes. This will help to authenticate the verified source of data and data integrity in terms of unaffected devices (Bhushan & Sahoo, 2017). 在传感器中注入恶意代码,重新编程使其运行并提供伪造数据。因此,物理基础设施安全是智慧城市安全解决方案的必要条件。这将有助于验证经核实的数据来源和未受影响设备的数据完整性(Bhushan & Sahoo,2017)。
5.2.5 | Cloud related security issues 5.2.5 | 与云有关的安全问题
Cloud is introduced to the smart city due to the resource restriction for application hosting, storage, processing, and so on. These issues are already associated with loT enabled systems. Since loT is the basis of the smart city concept, it needs to be addressed. For leveraging the issue, the cloud has come into effect. Cloud computing (Somani et al., 2017) is a shared computing service in a virtual environment. It facilitates a variety of services to persons and enterprises. As cloud computing supports multi-tenancy, multiple users can use cloud services for different purposes. This raises potential issues of malware and malicious code injection in the system. This will hamper the shared data security. Malicious code injection can cause identity theft, unauthorized device or storage access, data sniffing using man in the middle attack. As users’ data and services are at risk, adequate security measures against this type of cloud security vulnerabilities need to be implemented (Baror & Venter, 2019). Several pieces of literature discuss various aspects of security solutions. Since smart cities comprise various technologies, their security solutions are also different methods and protocols. Some of the literature that discusses security solutions are given below in a tabular form. 由于应用程序托管、存储、处理等方面的资源限制,智慧城市引入了云技术。这些问题已经与支持 loT 的系统相关联。由于 loT 是智慧城市概念的基础,因此需要加以解决。为了解决这一问题,云计算应运而生。云计算(Somani 等人,2017 年)是虚拟环境中的共享计算服务。它为个人和企业提供各种服务。由于云计算支持多租户,多个用户可以为不同目的使用云服务。这就产生了在系统中注入恶意软件和恶意代码的潜在问题。这将妨碍共享数据的安全性。恶意代码注入会导致身份盗用、未经授权的设备或存储访问、使用中间人攻击进行数据嗅探。由于用户的数据和服务处于风险之中,因此需要针对这类云安全漏洞采取适当的安全措施(Baror & Venter,2019)。多篇文献讨论了安全解决方案的各个方面。由于智慧城市由各种技术组成,其安全解决方案也有不同的方法和协议。下文以表格形式列出了一些讨论安全解决方案的文献。
Apart from the studies mentioned above, there are some other notable recent researches in smart city security. Smart services, including power supply, proper water supply, communication services, and so on, are crucial for a smart city to run smoothly. Unauthorized access inside these services can potentially hamper the services and hamper the citizens’ QoL. Toh (2020) describe the importance of these services and how they can be vulnerable to attackers. Potential countermeasures mechanisms, including the use of firewalls, cryptography are also elaborated. Xu et al. (2019) talked about the DDoS attack strategy on smart cities’ data management services. DDoS attacks can exploit the availability of services and devices. Hence, a defence mechanism was proposed, which uses network traffic monitoring and classifying mechanisms. Blockchain is a solution factor for various security vulnerabilities. 除上述研究外,近期在智慧城市安全方面还有其他一些值得关注的研究。智能服务,包括电力供应、正常供水、通信服务等,对智能城市的顺利运行至关重要。对这些服务的未经授权的访问可能会妨碍服务并影响市民的生活质量。Toh (2020) 描述了这些服务的重要性,以及它们如何容易受到攻击者的攻击。还阐述了潜在的应对机制,包括使用防火墙和密码学。Xu 等人(2019)谈到了针对智慧城市数据管理服务的 DDoS 攻击策略。DDoS 攻击可以利用服务和设备的可用性。因此,他们提出了一种防御机制,即使用网络流量监控和分类机制。区块链是各种安全漏洞的解决因素。
5.3 | Privacy issues and solutions 5.3 隐私问题和解决方案
Privacy breach and protection is a long-standing topic in every aspect of technology. As smart city residents are continuously connected with the network infrastructure, it is imperative that the location can be tracked at every moment (Isaak & Hanna, 2018). Location information can reveal a person’s residents, office, frequent place of visit, friends place, and so on. Social networking sites have various features, including posting pictures, sharing locations, videos, and so on. Smart cities use surveillance cameras and various sensors to detect the activity of a person. This helps in the smart home, office, and industry activities for energy consumption purposes too. Moreover, every day, people upload videos of their moments in photos, videos, animations, and so on. These contents spread across the network in a minute. For this reason, privacy should be addressed in terms of monitoring activities, media sharing, and consent management techniques, too. Smart city privacy issues can be categorized according to the following attributes. 隐私泄露和保护是技术各方面长期存在的话题。由于智慧城市居民与网络基础设施持续连接,因此必须每时每刻都能追踪到位置信息(Isaak & Hanna, 2018)。位置信息可以显示一个人的住处、办公室、常去的地方、朋友的地方等等。社交网站有各种功能,包括发布图片、分享地点、视频等。智能城市利用监控摄像头和各种传感器来检测一个人的活动。这也有助于智能家居、办公室和工业活动的能源消耗。此外,人们每天都会上传照片、视频、动画等视频,记录自己的精彩瞬间。这些内容会在一分钟内传遍整个网络。因此,还应在监控活动、媒体共享和同意管理技术方面解决隐私问题。智慧城市的隐私问题可根据以下属性进行分类。
5.3.1 | Public data access management 5.3.1 | 公共数据访问管理
To provide better services fulfilling citizen’s requirements, data plays a vital role. Organizations like the government need to access this data for different needs, like ensuring national security. But open usage and access to other applications of third parties may lead to identifying users. The amount of data that is stored for smart city applications is enormous. So, it is challenging to handle all the data at once. Data may also be sometimes misleading due to randomization or generalization. Applications may conceal an individual’s data to use for their purpose. This also reduces privacy. To meet privacy concern, raw data should be hidden from users. This can be done using cryptographic protocols like homomorphic encryption. It allows the user to maintain anonymity from the application. There are some practical examples of this issue. Almere uses the StraatKubus platform that allows only employees of the municipality to access. Cities like Sydney, Chicago, and Hague also follow some approaches to mitigate this privacy concern (Sengupta et al., 2020). 为了提供更好的服务,满足公民的要求,数据发挥着至关重要的作用。政府等机构需要访问这些数据以满足不同的需求,例如确保国家安全。但开放使用和访问第三方的其他应用程序可能会导致用户身份被识别。智慧城市应用所存储的数据量非常庞大。因此,一次性处理所有数据具有挑战性。数据有时还可能因随机化或泛化而产生误导。应用程序可能会隐藏个人数据以用于自己的目的。这也会降低隐私性。为解决隐私问题,应向用户隐藏原始数据。这可以通过同态加密等加密协议来实现。它允许用户保持匿名性,而不被应用程序发现。在这个问题上有一些实际例子。阿尔梅勒使用 StraatKubus 平台,该平台只允许市政府员工访问。悉尼、芝加哥和海牙等城市也采用了一些方法来减轻对隐私的担忧(Sengupta et al.)
5.3.2 | Widespread communication 5.3.2 | 广泛传播
Smart cities are built upon the infrastructure of communication among various devices Every mobile device has a large number of sensors that can be used to monitor the user’s activity. Again, these sensors and other small mobile components are developed and controlled by different groups. Moreover, most of the applications in mobile devices are produced by third-parties. These applications often want to access more 智能城市建立在各种设备之间的通信基础设施之上 每个移动设备都有大量传感器,可用于监控用户的活动。同样,这些传感器和其他小型移动组件是由不同的团体开发和控制的。此外,移动设备中的大多数应用程序都是由第三方制作的。这些应用程序通常希望访问更多
information than needed. The best way to prevent privacy leakage is to ensure the wireless system is encrypted. WPA2 is such an encrypted wireless system. Moreover, there are SSL, or TLS approaches to secure mobile apps. There are also approaches like anonymous communication using Onion Routing like Tor (Dingledine et al., 2004), which are very important in health services sectors. But these tools are very problematic for users with no previous learning. Software that is already installed and configured can solve this problem. Still, there are possibilities for attacks like traffic correlation and timing attacks. Fingerprints, iris, retina, pulse rate, and so on, can be used for maintaining device privacy. Changing device identifiers frequently, randomizing, and inserting cover traffic can help protect websites and mobile devices. 信息。防止隐私泄露的最佳方法是确保无线系统经过加密。WPA2 就是这样一种加密的无线系统。此外,还有 SSL 或 TLS 方法来确保移动应用程序的安全。还有一些方法,如使用 Tor(Dingledine 等人,2004 年)等洋葱路由进行匿名通信,这在医疗服务领域非常重要。但这些工具对于没有学习过的用户来说很成问题。已经安装和配置好的软件可以解决这个问题。不过,仍有可能出现流量关联和定时攻击等攻击行为。指纹、虹膜、视网膜、脉搏等可用于维护设备隐私。频繁更改设备标识符、随机化和插入覆盖流量有助于保护网站和移动设备。
5.3.3 | Monitoring devices 5.3.3 | 监控设备
Personal data that are generated monitoring devices can be minimized using isolated sensors. Moreover, raw data can be ignored. Sensors can also use aggregated data like histogram, count, and so on, to imply the application’s purpose. K-anonymity can ensure location privacy using some attributes like location and Time of reading, Time, and area changes until k individual readings. An anonymous server can serve the purpose, but it must be trustable. Sensors will only look into location when the user permits to use the information. Otherwise, it is not possible to hide the location from public uses. In some, it is challenging to use k-anonymity for the devices not always able to connect. The tessellation approach can be followed to overcome this where the area’s size is pre-computed. K-anonymity is not trustable for location information. In those cases, I-diversity is followed where a certain area remains hidden containing at least I points of interest. Furthermore, collusion between data nodes can be restricted by splitting them into different nodes. Cities like Glasgow, Rio de Janeiro, Eindhoven, and so on, have developed smart cities’ features. Devices like CCTV, intelligent light, traffic light, parking facilities are maintained facing this kind of issue. Data aggregation to the municipality, third parties, is some approaches to mitigate the issues ( Wu&Hu,2016\mathrm{Wu} \& \mathrm{Hu}, 2016 ). 使用隔离传感器可以最大限度地减少监控设备产生的个人数据。此外,原始数据也可以忽略不计。传感器还可以使用直方图、计数等聚合数据来实现应用目的。K-anonymity 可以使用一些属性来确保位置隐私,如读数的位置和时间、时间以及 k 个读数之前的区域变化。匿名服务器可以实现这一目的,但必须值得信任。只有当用户允许使用信息时,传感器才会查看位置。否则,就不可能将位置信息隐藏起来不被公众使用。在某些情况下,由于设备并不总是能够连接,因此使用 k-anonymity 具有挑战性。为了解决这个问题,可以采用 "镶嵌 "方法,预先计算出区域的大小。K-anonymity 对于位置信息来说不可信。在这种情况下,可采用 I-多样性方法,即在一定区域内隐藏至少 I 个兴趣点。此外,还可以通过将数据节点分割成不同节点来限制数据节点之间的串通。格拉斯哥、里约热内卢、埃因霍温等城市都开发了智慧城市功能。闭路电视、智能灯、交通灯、停车设施等设备的维护都面临着此类问题。向市政当局、第三方汇集数据是缓解这些问题的一些方法( Wu&Hu,2016\mathrm{Wu} \& \mathrm{Hu}, 2016 )。
5.3.4 | Wearable devices 5.3.4 | 可穿戴设备
There are multiple wearable devices like a smartwatch, smart glass, and so on, embedded in a smart city network. They also face some privacy threats. The apps or programs that run into these devices may sometimes have flaws in their architecture and functions. They may set to reveal critical personal data. The communication channel and third-party servers are often vulnerable to hackers and disclose sensitive information. It is also prone to attacks like routing or man-in-the-middle attacks. Devices need to be permitted for offline operation. It needs to have the mechanism of local data processing. Moreover, storing a minimum amount of data can decrease privacy issues. Such as it can store only the minimum duration rather than the whole timestamp of an event. This will reduce the use of storage and increase efficient operation. Again, homomorphism encryption is a must for a service provider. It will restrict providers from reading personal data while processing. The main reason for this type of issue is resources. Firstly, sensors of the network need to be secured to prevent intrusion. The encryption key for the data encrypted must be stored in secured distributed storage that follows role-based access control (Ometov et al., 2020). 智慧城市网络中嵌入了多种可穿戴设备,如智能手表、智能玻璃等。它们也面临着一些隐私威胁。运行在这些设备中的应用程序或程序有时可能在架构和功能上存在缺陷。它们可能会泄露重要的个人数据。通信渠道和第三方服务器往往容易受到黑客攻击,泄露敏感信息。它还容易受到路由或中间人攻击等攻击。需要允许设备脱机运行。它需要有本地数据处理机制。此外,存储最少的数据可以减少隐私问题。例如,它可以只存储事件的最短持续时间,而不是整个时间戳。这将减少存储空间的使用,提高运行效率。同样,同态加密对于服务提供商来说也是必须的。它将限制服务提供商在处理过程中读取个人数据。造成这类问题的主要原因是资源。首先,需要确保网络传感器的安全,以防止入侵。加密数据的加密密钥必须存储在安全的分布式存储器中,并遵循基于角色的访问控制(Ometov 等人,2020 年)。
5.3.5 | Smart card 5.3.5 | 智能卡
A smart card is a technology that is used for several features of a smart city. For example, public transport, tracing, personalizing, advertising, and so on, have extensive use of smart cards. Splitting service and the transaction can be a possible solution. When user authentication is separated from service access, it will be hard to imply any relationship between user behaviour and transaction history. This process can be implemented by an anonymous smart card that does reveal any type of identifying information. Following attribute-based encryption, the user’s identity can be verified without revealing it. There are also ways to disclose a user’s identity even if the system can unlink services from a transaction. Only information about origin and destination is enough to reveal an individual’s identity. To solve this, we need to reduce the amount of data that the system will process. There should be a policy for which data will be stored and not (Wang et al., 2020). 智能卡是一种技术,可用于智能城市的多项功能。例如,公共交通、追踪、个性化、广告等都广泛使用了智能卡。将服务和交易分开是一种可行的解决方案。当用户认证与服务访问分离时,就很难暗示用户行为与交易历史之间存在任何关系。这一过程可以通过不透露任何身份信息的匿名智能卡来实现。通过基于属性的加密,可以在不泄露用户身份的情况下验证用户身份。即使系统可以解除服务与交易的联系,也有办法泄露用户身份。只有关于出发地和目的地的信息才足以泄露个人身份。要解决这个问题,我们需要减少系统处理的数据量。哪些数据需要存储,哪些数据不需要存储,应该有一个政策(Wang 等人,2020 年)。
5.3.6 | Transportation technology 5.3.6 | 运输技术
Another essential feature of the smart city is intelligent vehicles. Along with this, several transportations and traffic systems are also introduced. But they also have privacy issues. Vehicles need to share information like speed, direction, position, turn signals, identity, and so on, to avoid accidents. Other vehicles make their move based on this instruction, and a rule is imposed automatically in the traffic system. But this information transmitted to everyone is unencrypted. Anyone inside the range can access the information and learn all the status of other vehicles. This approach is revealing the identity openly. The metadata that any vehicle poses can be used to reveal its true identity. It also lets the attacker trace 智能城市的另一个重要特征是智能车辆。与此同时,还引入了一些交通和运输系统。但它们也存在隐私问题。车辆需要共享信息,如速度、方向、位置、转向灯、身份等,以避免事故。其他车辆根据这些指令行驶,而交通系统会自动实施一项规则。但这些传送给每个人的信息都是未加密的。范围内的任何人都可以获取信息,了解其他车辆的所有状态。这种方法就是公开暴露身份。任何车辆的元数据都可以用来揭示其真实身份。它还能让攻击者追踪
if it is in the transmission range. This malicious transport should be removed to ensure overall security. This is done by backward-privacy that refers to the cancellation of all the identifiers of that specific vehicle. It removes short-term identities for the future of that vehicle. Rather than transmitting the real identity, vehicles use a pseudonym. Moreover, to maximize privacy protection, all the vehicles need to change short-term identifiers together. Vehicles need to get in touch with many other services. The data generated from these services are enormous. The cryptographic approach is a must to ensure these data’s safety (Gai et al., 2019; Tan & Chung, 2020). 如果它在传输范围内。为确保整体安全性,应消除这种恶意传输。这可以通过 "后向保密 "来实现,"后向保密 "是指取消特定车辆的所有标识符。它消除了该车辆未来的短期身份。车辆不传输真实身份,而是使用假名。此外,为了最大限度地保护隐私,所有车辆需要一起更改短期标识符。车辆需要与许多其他服务取得联系。这些服务产生的数据量巨大。要确保这些数据的安全,必须采用加密方法(Gai 等人,2019 年;Tan & Chung,2020 年)。
6 | FUTURE RESEARCH DIRECTIONS 6 未来研究方向
The concept of smart city is still emerging. Though the developed countries were the ones to materialize the smart city idea, many developing countries are on the same floor also. The existing works bring hope to this smart city concept though extensive research is needed to spread adoption and application. Some of the notable future research directions are outlined as follows. 智慧城市的概念方兴未艾。尽管发达国家率先实现了智慧城市的理念,但许多发展中国家也在努力实现这一理念。现有的研究成果给智慧城市概念带来了希望,但要推广和应用这一概念,还需要进行广泛的研究。一些值得注意的未来研究方向概述如下。
6.1 | Blockchain for smart city 6.1 | 区块链在智慧城市中的应用
To solve privacy concerns, most of the smart cities have considered using blockchain technology as it is pseudonymous to some extent anonymous. Several blockchain-based systems have come forward. However, they are yet to have a successful model. Blockchain brings immutability, anonymity, and confidentiality. Some of the data security issues can be solved using blockchain. On the other hand, blockchain and smart contract enabled applications can also leverage automation issues. Smart city citizens need state of the art secure and trustable applications platforms. The spectrum of blockchain applications ranges from the financial sector, traffic management, risk management, healthcare, Internet of Things (IoT) to public and social services. It also can be used in digital assets, remittance and online payment, smart contracts, public services, hyper-ledger, insurance, supply chain management, reputation systems, and security services. Blockchain based healthcare system provides one of the most secure and trusted healthcare services. The citizens can share their health data secure and access them anytime. Identity management is needed for accessing different types of services of smart city. 为了解决隐私问题,大多数智慧城市都考虑使用区块链技术,因为它在某种程度上是匿名的。一些基于区块链的系统已经问世。不过,它们还没有成功的模式。区块链带来了不变性、匿名性和保密性。使用区块链可以解决一些数据安全问题。另一方面,启用区块链和智能合约的应用程序还可以利用自动化问题。智慧城市的市民需要最先进的安全、可信的应用平台。区块链的应用范围包括金融领域、交通管理、风险管理、医疗保健、物联网(IoT)以及公共和社会服务。它还可用于数字资产、汇款和在线支付、智能合约、公共服务、超级账本、保险、供应链管理、信誉系统和安全服务。基于区块链的医疗保健系统可提供最安全、最可信的医疗保健服务。公民可以安全地共享他们的健康数据,并随时访问这些数据。访问智慧城市不同类型的服务需要身份管理。
Blockchain based identity management can provide a secure and trustworthy environment for accessing those services. Agricultural process and supply chain management services can leverage blockchain based solutions for efficiency and security. Use of blockchain in agriculture can help the farmers and businessman check seed quality, monitor crops, and achieve traceability of product delivery lifecycle. The same can be achieved for other sectors of supply chain also. Use of blockchain in supply chain can promoted efficient payment, traceability and monitoring facility. The transaction is trusted so that transparency will increase among the stakeholders. Smart home is one of the foremost technology that enables good QoL, safety and security. In addition smart building infrastructures used for offices are crucial too. Using blockchain in these infrastructures can facilitate authentication, security, reliability and privacy. Educational institutions can use blockchain for student database management and certificate verification and so on. 基于区块链的身份管理可以为访问这些服务提供安全可信的环境。农业流程和供应链管理服务可以利用基于区块链的解决方案来提高效率和安全性。在农业领域使用区块链可以帮助农民和商人检查种子质量、监控作物并实现产品交付生命周期的可追溯性。供应链的其他部门也可以实现同样的目标。在供应链中使用区块链可以促进高效的支付、可追溯性和监控设施。交易是可信的,因此利益相关者之间的透明度会提高。智能家居是实现良好生活质量、安全和安保的最重要技术之一。此外,用于办公的智能建筑基础设施也至关重要。在这些基础设施中使用区块链可以促进身份验证、安全性、可靠性和隐私性。教育机构可以将区块链用于学生数据库管理和证书验证等。
Smart is connected using loT and other networking devices. Every citizen uses digital platforms hence connected to each other. It generates big data. This huge amount of data contains personal data also. For this reason, protecting the privacy of bigdata requires a robust cryptographic algorithm. Working on suitable cryptography mechanisms and algorithms needs more attention as well. Besides, blockchain can be used for big data to address big data security, confidentiality, and integrity in the future (Silva et al., 2018). 智能是利用 loT 和其他网络设备连接起来的。每个公民都使用数字平台,因此彼此相连。这就产生了大数据。这些海量数据还包含个人数据。因此,保护大数据的隐私需要强大的加密算法。研究合适的加密机制和算法也需要更多关注。此外,区块链可用于大数据,在未来解决大数据的安全性、保密性和完整性问题(Silva 等人,2018 年)。
6.2 | Cost management 6.2 成本管理
This is crucial for any sector; a smart city is no different. Increased operational cost and design cost can strengthen the development of a smart city. For development purposes, a city needs infrastructural development as well as improves the design perspective. On the other hand, budget optimization is crucial for maintaining the economic stability of the community. This area is a growing research concern for the organization considering the complexity of running the smart city’s diverse sectors and providing QoL, and protecting sustainability. Most of the smart city domains have been proposed to implement with the help of Blockchain. Some deep learning techniques can be sought after for predicting future costs required for a smart city. Targeted experiments can be carried out on the existing smart city test-beds. 这对任何行业都至关重要,智慧城市也不例外。运营成本和设计成本的增加可以加强智慧城市的发展。为实现发展目的,城市需要发展基础设施,并改善设计视角。另一方面,预算优化对于维持社区的经济稳定至关重要。考虑到智慧城市各部门运行的复杂性,以及提供 QoL 和保护可持续发展的问题,这一领域日益受到研究机构的关注。大多数智慧城市领域都建议借助区块链来实现。可以寻求一些深度学习技术来预测智慧城市未来所需的成本。可以在现有的智慧城市试验平台上开展有针对性的实验。
6.3 | Sustainable energy management 6.3 | 可持续能源管理
Energy is a growing concern for future cities. Renewable energy sources can be one of the most innovative and suitable solutions for protecting sustainability. This approach shall reduce environmental pollution and reduce the financial burden for energy management purposes. Some 能源是未来城市日益关注的问题。可再生能源是保护可持续发展的最创新、最合适的解决方案之一。这种方法可以减少环境污染,减轻能源管理的财政负担。部分内容
initiatives have been taken for energy efficiency in the smart grid with the help of Blockchain. Blockchain has many consensus mechanisms for handling this aspect. However, they lack scalability. A new consensus algorithm, Proof of Trust, claims to address the scalability issue but is still in its infancy (Zou et al., 2019). Other technologies like loT, CoT, edge computing, and so on, can be integrated with Blockchain to provide scalable and energy-efficient platforms. Research can also be done on the construction of smart energy that will be economically sustainable as well. 在区块链的帮助下,智能电网中的能源效率问题已经得到解决。区块链有许多处理这方面问题的共识机制。但是,它们缺乏可扩展性。一种新的共识算法 "信任证明 "声称可以解决可扩展性问题,但目前仍处于起步阶段(Zou et al.)其他技术,如 loT、CoT、边缘计算等,可以与区块链集成,提供可扩展的节能平台。此外,还可以对建设经济上可持续的智能能源进行研究。
6.4 | Data storage and processing 6.4 数据存储和处理
A smart city comprises various devices that accumulate a huge amount of data. Data needs storage and processing to make it useful decision making or prediction. Therefore, integrating Big Data analytics into smart cities has become a crucial goal (ljaz et al., 2020). Several studies have been conducted on incorporating a scalable data storage system but are mostly still in the research phase. They were mostly done using Blockchain, but the chain can become quite bulky, so it is impossible to integrate Blockchain into a system directly. Several works have been proposed using an off-chain data storing system and BigChainDB. Other technologies like Machine Learning, Tactile Internet, Cloud Computing, Image processing, and so on can also be used in smart cities to address data storage issues effectively (Chowdhary et al., 2020; Tamang et al., 2021). However, Cloud computing and fog computing can be a costly approach. 智慧城市由各种设备组成,这些设备会积累大量数据。数据需要存储和处理,以便做出有用的决策或预测。因此,将大数据分析融入智慧城市已成为一个至关重要的目标(ljaz 等人,2020 年)。已经开展了几项关于纳入可扩展数据存储系统的研究,但大多仍处于研究阶段。这些研究大多使用区块链,但区块链会变得相当庞大,因此不可能直接将区块链集成到系统中。已经有几项工作提出使用链外数据存储系统和 BigChainDB。其他技术如机器学习、触觉互联网、云计算、图像处理等也可用于智慧城市,以有效解决数据存储问题(Chowdhary 等人,2020;Tamang 等人,2021)。然而,云计算和雾计算可能是一种成本高昂的方法。
6.5 | Emergency services 6.5 | 应急服务
Constructing a smart emergency response or smart ambulance is yet to be done and could be a possible future direction. Telemedicine platforms could also use technology like Blockchain, loT, and other telecommunication infrastructures to improve their service. Smart transportation also has scope for improvement. Traffic signal management or traffic congestion management could use more research to create perfect smart traffic solutions. Most of the smart transportation work involved roadways. Airways or waterways can be considered as research areas. The smart ticket system is also an interesting topic and beneficial for the whole smart transportation industry. Image or video processing techniques, artificial intelligence, and Blockchain can be used to deploy a complete smart transport system that can use real-time analysis. Another growing research field in terms of smart cities is smart education. Much work has been done on this topic, but further studies can be helpful. Use of augmented reality, virtual reality as well as loT, Blockchain can create a better learning environment and further improve the outlook of smart cities. 构建智能应急响应或智能救护车的工作尚未完成,这可能是未来的一个方向。远程医疗平台也可以利用区块链、loT 和其他电信基础设施等技术来改善服务。智能交通也有改进的余地。交通信号管理或交通拥堵管理可以利用更多的研究来创建完美的智能交通解决方案。大多数智能交通工作都涉及公路。航空或水路也可作为研究领域。智能票务系统也是一个有趣的话题,对整个智能交通行业都有好处。图像或视频处理技术、人工智能和区块链可用于部署一个完整的智能交通系统,该系统可进行实时分析。智慧城市方面另一个不断发展的研究领域是智慧教育。在这方面已经做了很多工作,但进一步的研究可能会有所帮助。利用增强现实、虚拟现实以及 loT、区块链可以创造更好的学习环境,进一步改善智慧城市的面貌。
6.6 | Collaborative filtering 6.6 协同过滤
The collaborative filtering system is one of the best approaches out there for product recommendation systems. It can be very useful for designing an interactive environment that will help people in choosing the right item. If collaborative filtering is used in smart city environments, the citizens will be able to select their intended item very flexibly and quickly. In recent times, content-oriented recommendation systems have become very popular. There are some issues with the recommendation system for example needing too much information about the product itself including historical information regarding the product’s preferences. Analysing this huge amount of information and building a relationship between the user history and product information might be cumbersome. On the other hand, collaborative filtering needs only the preference information of the user rather than a vast amount of product information. The fundamental of collaborative filtering is to find neighbours with similar likes and interests. So this approach is more towards analysing the behaviours of users. 协同过滤系统是产品推荐系统的最佳方法之一。它对于设计互动环境,帮助人们选择正确的商品非常有用。如果在智慧城市环境中使用协同过滤,市民就能非常灵活、快速地选择他们想要的商品。近来,以内容为导向的推荐系统非常流行。但推荐系统也存在一些问题,例如需要太多有关产品本身的信息,包括有关产品偏好的历史信息。分析这些海量信息并在用户历史信息和产品信息之间建立联系可能会很麻烦。另一方面,协同过滤只需要用户的偏好信息,而不需要大量的产品信息。协同过滤的基本原理是找到具有相似喜好和兴趣的邻居。因此,这种方法更倾向于分析用户的行为。
For example, Alice is searching for a shirt. Bob and Marry have the same shopping preferences as Alice and they like H&M shirts. The system will find them having similar behaviour and it will suggest an H&M shirt to Alice. This is how collaborative filtering works. This type of recommendation will not need a vast amount of product related data. So the cumbersome process will be easier. Since smart city citizens are connected with each other through smart devices and networks, the recommendation systems can easily find persons having the same similarities and can help them effectively. In addition, the smart city environment will be more interactive and user-friendly. Collaborative filtering-based recommendation systems can significantly improve the quality of the citizen and further research in this sector can help improve the smart city environment (Zhang, Lee, et al., 2019). 例如,爱丽丝正在搜索一件衬衫。鲍勃和玛丽的购物偏好与爱丽丝相同,他们都喜欢 H&M 衬衫。系统会发现他们有相似的行为,并向爱丽丝推荐一件 H&M 衬衫。这就是协同过滤的工作原理。这种类型的推荐不需要大量的产品相关数据。因此,繁琐的过程将变得更加容易。由于智慧城市的市民通过智能设备和网络相互联系,推荐系统可以很容易地找到具有相同相似之处的人,并有效地帮助他们。此外,智慧城市环境将更具互动性和用户友好性。基于协作过滤的推荐系统可以显著提高市民的素质,在这一领域的进一步研究有助于改善智慧城市环境(Zhang、Lee 等人,2019)。
6.7 | Smart city security 6.7 | 智慧城市安全
Security is a grave concern for smart city. The citizens need to be secured against the cyber-attacks and attacks against the smart city infrastructure. Smart city needs to operate on huge loads of data and information. Hence, it builds upon a complicated infrastructure of digital technologies and networks. These technologies and networks form a widespread connection and it is very hard to make the whole system concrete. For this 安全是智慧城市的一个严重问题。需要确保市民免受网络攻击和针对智能城市基础设施的攻击。智能城市需要在大量数据和信息的基础上运行。因此,它建立在复杂的数字技术和网络基础设施之上。这些技术和网络形成了广泛的联系,很难将整个系统具体化。为此
reason proper security measures should be adopted. Various cryptographic technique for example homomorphic encryption can help protect the data integrity and analyse them. Blockchain can significantly increase the security aspects. Security attack detection and prevention technique is a must for smart city. Intelligent intrusion detection system can be added with the firewall for attack detection. Intrusion prevention system can add another feature to release countermeasures. Important data can be kept in usb drives with hardware security. Though absolute security is not possible, adopting different measures and spending time and technology on state-of-the researches can go long way. 因此,应采取适当的安全措施。同态加密等各种加密技术有助于保护数据完整性并对其进行分析。区块链可以大大提高安全性。智能城市必须采用安全攻击检测和预防技术。智能入侵检测系统可与防火墙一起用于攻击检测。入侵防御系统可增加另一项功能,以发布应对措施。重要数据可以保存在具有硬件安全性的 USB 驱动器中。虽然绝对安全是不可能的,但采取不同的措施,花费时间和技术进行最先进的研究,可以取得长足的进步。
7 | CONCLUSION 7 结论
Rapid urbanization and population growth affect sustainability. These emerging issues have given rise to the enticing concept of the smart city. The smart city concept encompasses the idea of sustainability and ICT. The idea can promote not only an admirable living quality but also ensure public safety and security. Effective and efficient coherence among various smart city components and architectural layers are crucial for the smart city to run effectively. Utilizing loT, cloud services, state-of-the-art communication devices, and technologies, revolutionizing industrial sectors, and good governance are essential for promoting sustainability inside smart urban society. In addition to these, appropriate security measures and privacy-preserving technology implementation can safeguard the citizens’ data security and privacy and physical safety of their assets. Scientists are trying to put forth their innovative ideas for making state of the art facilities and application integration with different services to decrease security and privacy risks. Integrating blockchain, introducing 24 h on-demand services, efficient supply chain, and cost management services can be integrated factors that can be added into smart city in the future. Moreover, increased production rate and infrastructure scalability are vital for protecting balance with population growth. To summarize, a smart city will facilitate the citizens with the modern amenities and services needed to increase the QoL and establish a sustainable urban environment. 快速城市化和人口增长影响了可持续性。这些新出现的问题催生了智能城市这一诱人的概念。智慧城市的概念包含了可持续性和信息与传播技术的理念。这一理念不仅能提升令人赞叹的生活质量,还能确保公共安全和安保。要使智慧城市有效运行,各种智慧城市组件和建筑层之间切实有效的一致性至关重要。利用 loT、云服务、最先进的通信设备和技术、工业部门的变革以及良好的治理,对于促进智慧城市社会的可持续发展至关重要。除此之外,适当的安全措施和隐私保护技术的实施也能保障市民的数据安全、隐私和资产的实体安全。科学家们正试图提出自己的创新想法,将最先进的设施和应用与不同的服务整合起来,以降低安全和隐私风险。整合区块链、引入 24 小时按需服务、高效供应链和成本管理服务都是未来智慧城市可以加入的综合因素。此外,提高生产率和基础设施的可扩展性对于保护人口增长的平衡也至关重要。总之,智慧城市将为市民提供所需的现代化设施和服务,以提高市民的生活质量,建立可持续发展的城市环境。
CONFLICT OF INTEREST 利益冲突
There is no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: 无利益冲突。作者声明,他们没有可能影响本文所报告工作的已知经济利益或个人关系。作者声明以下经济利益/个人关系可能被视为潜在的利益冲突:
DATA AVAILABILITY STATEMENT 数据可用性声明
Data sharing is not applicable to this article as no new data were created or analyzed in this study. 数据共享不适用于本文,因为本研究没有创建或分析新数据。
Abate, F., Carratù, M., Liguori, C., & Paciello, V. (2019). A low cost smart power meter for loT. Measurement, 136, 59-66. https://doi.org/10.1016/j. measurement.2018.12.069 Abate, F., Carratù, M., Liguori, C., & Paciello, V. (2019)。用于 loT 的低成本智能电表。测量》,136,59-66。https://doi.org/10.1016/j. measurement.2018.12.069。
Abou-Nassar, E. M., Iliyasu, A. M., El-Kafrawy, P. M., Song, O., Bashir, A. K., & El-Latif, A. A. (2020). DITrust chain: Towards Blockchain-based trust models for sustainable healthcare loT systems. IEEE Access, 8, 111223-111238. https://doi.org/10.1109/access.2020.2999468 Abou-Nassar, E. M., Iliyasu, A. M., El-Kafrawy, P. M., Song, O., Bashir, A. K., & El-Latif, A. A. (2020).DITrust chain:基于区块链的可持续医疗保健 loT 系统信任模型。IEEE Access, 8, 111223-111238. https://doi.org/10.1109/access.2020.2999468
Ahad, A., Tahir, M., & Yau, K. A. (2019). 5G-based smart healthcare network: Architecture, taxonomy, challenges and future research directions. IEEE Access, 7, 100747-100762. https://doi.org/10.1109/access.2019.2930628 Ahad, A., Tahir, M., & Yau, K. A. (2019).基于 5G 的智能医疗网络:架构、分类、挑战和未来研究方向。IEEE Access, 7, 100747-100762. https://doi.org/10.1109/access.2019.2930628
Alfian, G., Syafrudin, M., ljaz, M., Syaekhoni, M., Fitriyani, N., & Rhee, J. (2018). A personalized HEALTHCARE monitoring system for diabetic patients by UTILIZING Ble-based sensors and real-time data processing. Sensors, 18(7), 2183. https://doi.org/10.3390/s18072183 Alfian, G., Syafrudin, M., ljaz, M., Syaekhoni, M., Fitriyani, N., & Rhee, J. (2018).基于Ble的传感器和实时数据处理的糖尿病患者个性化医疗保健监测系统。Sensors, 18(7), 2183. https://doi.org/10.3390/s18072183
Ali, F., El-Sappagh, S., Islam, S. R., Kwak, D., Ali, A., Imran, M., & Kwak, K. (2020). A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Information Fusion, 63, 208-222. https://doi.org/10.1016/j.inffus.2020.06.008 Ali, F., El-Sappagh, S., Islam, S. R., Kwak, D., Ali, A., Imran, M., & Kwak, K. (2020).基于集合深度学习和特征融合的心脏病预测智能医疗监控系统。Information Fusion, 63, 208-222. https://doi.org/10.1016/j.inffus.2020.06.008
Al-Kuwari, M., Ramadan, A., Ismael, Y., Al-Sughair, L., Gastli, A., & Benammar, M… (2018). Smart-home automation using loT-based sensing and monitoring platform. 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), Doha, 1-6, https://doi.org/10.1109/CPE.2018.8372548. Al-Kuwari, M., Ramadan, A., Ismael, Y., Al-Sughair, L., Gastli, A., & Benammar, M... (2018).利用基于 loT 的传感和监控平台实现智能家居自动化。2018 IEEE 第 12 届兼容性、电力电子和电力工程国际会议(CPE-POWERENG 2018),多哈,1-6,https://doi.org/10.1109/CPE.2018.8372548.
Amsterdam’s Smart City: Ambitious Goals, Collaborative Innovation. (2020). https://mobility.here.com/learn/smart-city-initiatives/amsterdams-smart-city-ambitious-goals-collaborative-innovation 阿姆斯特丹的智慧城市:雄心勃勃的目标,协同创新。(2020). https://mobility.here.com/learn/smart-city-initiatives/amsterdams-smart-city-ambitious-goals-collaborative-innovation
Andrea, I., Chrysostomou, C., & Hadjichristofi, G. (2015). Internet of things: Security vulnerabilities and challenges. 2015 IEEE Symposium on Computers and Communication (ISCC). https://doi.org/10.1109/iscc.2015.7405513 Andrea, I., Chrysostomou, C., & Hadjichristofi, G. (2015)。物联网:安全漏洞与挑战。2015 IEEE 计算机与通信研讨会(ISCC)。https://doi.org/10.1109/iscc.2015.7405513
Angelidou, M. (2017). The role of smart city characteristics in the plans of fifteen cities. Journal of Urban Technology, 24(4), 3-28. https://doi.org/10.1080/ 10630732.2017.1348880 Angelidou, M. (2017).智慧城市特征在十五个城市规划中的作用。城市技术期刊》,24(4),3-28。https://doi.org/10.1080/ 10630732.2017.1348880
Arora, R. U. (2018). Financial sector development and smart cities: The Indian case. Sustainable Cities and Society, 42, 52-58. https://doi.org/10.1016/j.scs. 2018.06.013 Arora, R. U. (2018).金融业发展与智慧城市:印度案例。可持续城市与社会》,42, 52-58. https://doi.org/10.1016/j.scs.2018.06.013
Aziz, K., Tarapiah, S., Ismail, S. H., & Atalla, S. (2016). Smart real-time healthcare monitoring and tracking system using GSM/GPS technologies. 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC). https://doi.org/10.1109/icbdsc.2016.7460394 Aziz, K., Tarapiah, S., Ismail, S. H., & Atalla, S. (2016)。使用 GSM/GPS 技术的智能实时医疗监控和跟踪系统。2016 第三届 MEC 大数据与智慧城市国际会议(ICBDSC)。https://doi.org/10.1109/icbdsc.2016.7460394
Bakar, U. A. B. U. A., Ghayvat, H., Hasanm, S. F., & Mukhopadhyay, S. C. (2016). Activity and anomaly detection in smart home: A survey. In S. Mukhopadhyay (Ed.), Next generation sensors and systems. Smart sensors, measurement and instrumentation (Vol. 16). Springer. https://doi.org/10.1007/ 978-3-319-21671-3_9 Bakar, U. A. B. U. A., Ghayvat, H., Hasanm, S. F., & Mukhopadhyay, S. C. (2016)。智能家居中的活动和异常检测:调查。In S. Mukhopadhyay (Ed.), Next Generation sensors and systems.智能传感器、测量和仪器(第 16 卷)。https://doi.org/10.1007/ 978-3-319-21671-3_9
Baror, S. O., & Venter, H. (2019). A taxonomy for cybercrime attack in the public cloud. In International conference on cyber warfare and security (pp. 505-X). Academic Conferences International Limited. Baror, S. O., & Venter, H. (2019)。公共云中的网络攻击分类法。In International Conference on cyber warfare and security (pp. 505-X).国际学术会议有限公司。
Bhushan, B., Khamparia, A., Sagayam, K. M., Sharma, S. K., Ahad, M. A., & Debnath, N. C. (2020). Blockchain for smart cities: A review of architectures, integration trends and future research directions. Sustainable Cities and Society, 61, 102360. https://doi.org/10.1016/j.scs.2020.102360 Bhushan, B., Khamparia, A., Sagayam, K. M., Sharma, S. K., Ahad, M. A., & Debnath, N. C. (2020).区块链在智慧城市中的应用:架构、整合趋势和未来研究方向综述。Sustainable Cities and Society, 61, 102360. https://doi.org/10.1016/j.scs.2020.102360
Bhushan, B., & Sahoo, G. (2017). Recent advances in attacks, technical challenges, vulnerabilities and their countermeasures in wireless sensor networks. Wireless Personal Communications, 98(2), 2037-2077. https://doi.org/10.1007/s11277-017-4962-0 Bhushan, B., & Sahoo, G. (2017)。无线传感器网络中的攻击、技术挑战、漏洞及其应对措施的最新进展。无线个人通信》,98(2),2037-2077。https://doi.org/10.1007/s11277-017-4962-0。
Bhushan, B., & Sahoo, G. (2018). Routing protocols in wireless sensor networks. Computational Intelligence in Sensor Networks Studies in Computational Intelligence, 776, 215-248. https://doi.org/10.1007/978-3-662-57277-1_10 Bhushan, B., & Sahoo, G. (2018)。无线传感器网络中的路由协议。传感器网络中的计算智能 《计算智能研究》,776, 215-248. https://doi.org/10.1007/978-3-662-57277-1_10
Bhushan, B., & Sahoo, G. (2020). Requirements, protocols, and security challenges in wireless sensor networks: An industrial perspective. Handbook of Computer Networks and Cyber Security, 1, 683-713. https://doi.org/10.1007/978-3-030-22277-2_27 Bhushan, B., & Sahoo, G. (2020)。无线传感器网络的需求、协议和安全挑战:工业视角。计算机网络与网络安全手册》,1, 683-713. https://doi.org/10.1007/978-3-030-22277-2_27
Boukerche, A., & Coutinho, R. W. (2019). Crowd management: The overlooked component of smart transportation systems. IEEE Communications Magazine, 57(4), 48-53. https://doi.org/10.1109/mcom.2019.1800641 Boukerche, A., & Coutinho, R. W. (2019).人群管理:智能交通系统中被忽视的组成部分。IEEE Communications Magazine, 57(4), 48-53. https://doi.org/10.1109/mcom.2019.1800641
Butun, I., Osterberg, P., & Song, H. (2020). Security of the internet of things: Vulnerabilities, attacks, and countermeasures. IEEE Communications Surveys & Tutorials, 22(1), 616-644. https://doi.org/10.1109/comst.2019.2953364 Butun, I., Osterberg, P., & Song, H. (2020)。物联网的安全性:漏洞、攻击和对策。IEEE Communications Surveys & Tutorials, 22(1), 616-644. https://doi.org/10.1109/comst.2019.2953364
Chen, M., Li, W., Hao, Y., Qian, Y., & Humar, I. (2018). Edge cognitive computing based smart healthcare system. Future Generation Computer Systems, 86, 403-411. https://doi.org/10.1016/j.future.2018.03.054 Chen, M., Li, W., Hao, Y., Qian, Y., & Humar, I. (2018)。基于边缘认知计算的智能医疗系统。Future Generation Computer Systems, 86, 403-411. https://doi.org/10.1016/j.future.2018.03.054
Chen, Q., Wang, W., Wu, F., De, S., Wang, R., Zhang, B., & Huang, X. (2019). A survey on an emerging area: Deep learning for smart city data. IEEE Transactions on Emerging Topics in Computational Intelligence, 3(5), 392-410. https://doi.org/10.1109/TETCI.2019.2907718 Chen, Q., Wang, W., Wu, F., De, S., Wang, R., Zhang, B., & Huang, X. (2019).新兴领域调查:面向智慧城市数据的深度学习。IEEE Transactions on Emerging Topics in Computational Intelligence, 3(5), 392-410. https://doi.org/10.1109/TETCI.2019.2907718
Chowdhary, C. L., Patel, P. V., Kathrotia, K. J., Attique, M., Perumal, K., & ljaz, M. F. (2020). Analytical study of hybrid techniques for image encryption and decryption. Sensors, 20(18), 5162. https://doi.org/10.3390/s20185162 Chowdhary, C. L., Patel, P. V., Kathrotia, K. J., Attique, M., Perumal, K., & ljaz, M. F. (2020).图像加解密混合技术的分析研究。Sensors, 20(18), 5162. https://doi.org/10.3390/s20185162
Chui, K., Alhalabi, W., Pang, S., Pablos, P., Liu, R., & Zhao, M. (2017). Disease diagnosis in smart healthcare: Innovation, technologies and applications. Sustainability, 9(12), 2309. https://doi.org/10.3390/su9122309 Chui, K., Alhalabi, W., Pang, S., Pablos, P., Liu, R., & Zhao, M. (2017)。智能医疗中的疾病诊断:创新、技术与应用。可持续性》,9(12),2309。https://doi.org/10.3390/su9122309
Clarisse PHAM. (2015). Tokyo Smart City Development in Perspective of2020 Olympics, EU-Japan Centre for Industrial Cooperation, Technical Report, Tokyo. http://cdnsite.eu-japan.eu/sites/default/files/publications/docs/smart2020tokyo_final.pdf. Clarisse PHAM.(2015).2020年奥运会视角下的东京智慧城市发展》,欧盟-日本产业合作中心,技术报告,东京。http://cdnsite.eu-japan.eu/sites/default/files/publications/docs/smart2020tokyo_final.pdf.
Cui, L., Xie, G., Qu, Y., Gao, L., & Yang, Y. (2018). Security and privacy in smart cities: Challenges and opportunities. IEEE Access, 6, 46134-46145. https:// doi.org/10.1109/ACCESS.2018.2853985 Cui, L., Xie, G., Qu, Y., Gao, L., & Yang, Y. (2018).智慧城市的安全与隐私:挑战与机遇。IEEE Access, 6, 46134-46145. https:// doi.org/10.1109/ACCESS.2018.2853985
Curzon, J., Almehmadi, A., & El-Khatib, K. (2019). A survey of privacy enhancing technologies for smart cities. Pervasive and Mobile Computing, 55, 76-95. https://doi.org/10.1016/j.pmcj.2019.03.001 Curzon, J., Almehmadi, A., & El-Khatib, K. (2019)。智慧城市隐私增强技术调查。Pervasive and Mobile Computing, 55, 76-95. https://doi.org/10.1016/j.pmcj.2019.03.001
Dingledine, R., Mathewson, N., & Syverson, P. (2004). Tor: The second-generation onion router. https://doi.org/10.21236/ada465464 Dingledine, R., Mathewson, N., & Syverson, P. (2004).Tor:第二代洋葱路由器。https://doi.org/10.21236/ada465464
Dovom, E. M., Azmoodeh, A., Dehghantanha, A., Newton, D. E., Parizi, R. M., & Karimipour, H. (2019). Fuzzy pattern tree for edge malware detection and categorization in loT. Journal of Systems Architecture, 97, 1-7. https://doi.org/10.1016/j.sysarc.2019.01.017 Dovom, E. M., Azmoodeh, A., Dehghantanha, A., Newton, D. E., Parizi, R. M., & Karimipour, H. (2019).用于 loT 中边缘恶意软件检测和分类的模糊模式树。Journal of Systems Architecture, 97, 1-7. https://doi.org/10.1016/j.sysarc.2019.01.017
Du, R., Santi, P., Xiao, M., Vasilakos, A. V., & Fischione, C. (2019). The sensable city: A Survey on the deployment and management for smart city monitoring. IEEE Communications Surveys & Tutorials, 21(2), 1533-1560. https://doi.org/10.1109/COMST.2018.2881008 Du, R., Santi, P., Xiao, M., Vasilakos, A. V., & Fischione, C. (2019)。可感知的城市:智慧城市监控部署与管理调查。IEEE Communications Surveys & Tutorials, 21(2), 1533-1560. https://doi.org/10.1109/COMST.2018.2881008
Eckhoff, D., & Wagner, I. (2018). Privacy in the smart city-Applications, technologies, challenges, and solutions. IEEE Communications Surveys & Tutorials, 20(1), 489-516. https://doi.org/10.1109/COMST.2017.2748998 Eckhoff, D., & Wagner, I. (2018)。智慧城市中的隐私保护--应用、技术、挑战和解决方案。IEEE Communications Surveys & Tutorials, 20(1), 489-516. https://doi.org/10.1109/COMST.2017.2748998
Elrawy, M. F., Awad, A. I., & Hamed, H. F. (2018). Intrusion detection systems for loT-based smart environments: A survey. Journal of Cloud Computing, 7(1), 1-20. https://doi.org/10.1186/s13677-018-0123-6 Elrawy, M. F., Awad, A. I., & Hamed, H. F. (2018).基于 loT 的智能环境入侵检测系统:A survey.云计算期刊》,7(1),1-20。https://doi.org/10.1186/s13677-018-0123-6。
Feng, S., Setoodeh, P., & Haykin, S. (2017). Smart home: Cognitive interactive people-centric internet of things. IEEE Communications Magazine, 55(2), 3439. https://doi.org/10.1109/MCOM.2017.1600682CM Feng, S., Setoodeh, P., & Haykin, S. (2017)。智能家居:以人为中心的认知交互式物联网。IEEE Communications Magazine, 55(2), 3439. https://doi.org/10.1109/MCOM.2017.1600682CM
Ferraris, D., Bastos, D., Fernandez-Gago, C., & El-Moussa, F. (2020). A trust model for popular smart home devices. International Journal of Information Security, 1-17. https://doi.org/10.1007/s10207-020-00519-2 Ferraris, D., Bastos, D., Fernandez-Gago, C., & El-Moussa, F. (2020)。流行智能家居设备的信任模型。国际信息安全期刊》,1-17。https://doi.org/10.1007/s10207-020-00519-2。
Gai, K., Wu, Y., Zhu, L., Qiu, M., & Shen, M. (2019). Privacy-preserving energy trading using consortium Blockchain in smart grid. in IEEE Transactions on Industrial Informatics, 15(6), 3548-3558. https://doi.org/10.1109/TII.2019.2893433 Gai, K., Wu, Y., Zhu, L., Qiu, M., & Shen, M. (2019)。智能电网中使用联盟区块链的隐私保护能源交易。《IEEE 工业信息学论文集》,15(6),3548-3558。https://doi.org/10.1109/TII.2019.2893433。
Gai, K., Wu, Y., Zhu, L., Xu, L., & Zhang, Y. (2019). Permissioned blockchain and edge computing EMPOWERED privacy-preserving smart grid networks. IEEE Internet of Things Journal, 6(5), 7992-8004. https://doi.org/10.1109/jiot.2019.2904303 Gai, K., Wu, Y., Zhu, L., Xu, L., & Zhang, Y. (2019)。许可区块链和边缘计算 EMPOWERED 保护隐私的智能电网网络。IEEE 物联网期刊,6(5),7992-8004。https://doi.org/10.1109/jiot.2019.2904303。
Gajewski, M., Batalla, J. M., Mastorakis, G., & Mavromoustakis, C. X. (2019). A distributed IDS architecture model for smart home systems. Cluster Computing, 22, 1739-1749. https://doi.org/10.1007/s10586-017-1105-z Gajewski, M., Batalla, J. M., Mastorakis, G., & Mavromoustakis, C. X. (2019)。智能家居系统的分布式 IDS 架构模型。Cluster Computing, 22, 1739-1749. https://doi.org/10.1007/s10586-017-1105-z
Ghandour, A. G., Elhoseny, M., & Hassanien, A. E. (2018). Blockchains for smart cities: A survey. Security in smart cities: Models, applications, and challenges lecture notes in intelligent transportation and infrastructure, 193-210. https://doi.org/10.1007/978-3-030-01560-2_9 Ghandour, A. G., Elhoseny, M., & Hassanien, A. E. (2018).用于智慧城市的区块链:调查。智慧城市的安全性:智能交通与基础设施讲座笔记》,193-210。https://doi.org/10.1007/978-3-030-01560-2_9。
Gharaibeh, A., Salahuddin, M. A., Hussini, S. J., Khreishah, A., Khalil, I., Guizani, M., & Al-Fuqaha, A. (2017). Smart cities: A survey on data management, security, and enabling technologies. IEEE Communications Surveys & Tutorials, 19(4), 2456-2501. https://doi.org/10.1109/comst.2017.2736886 Gharaibeh, A., Salahuddin, M. A., Hussini, S. J., Khreishah, A., Khalil, I., Guizani, M., & Al-Fuqaha, A. (2017).智慧城市:数据管理、安全和使能技术调查。IEEE Communications Surveys & Tutorials, 19(4), 2456-2501. https://doi.org/10.1109/comst.2017.2736886
Giang, N. K., Leung, V. C., & Lea, R. (2016). On developing smart transportation applications in fog computing paradigm. Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications - DIVANet '16. https://doi.org/10.1145/2989275.2989286 Giang, N. K., Leung, V. C., & Lea, R. (2016)。在雾计算范式中开发智能交通应用。第六届 ACM 智能车载网络及应用开发与分析研讨会论文集 - DIVANet '16. https://doi.org/10.1145/2989275.2989286
Goyal, S., Sharma, N., Kaushik, I., Bhushan, B., & Kumar, A. (2020). Blockchain as a lifesaver of IoT. Security and Trust Issues in Internet of Things, 1, 209237. https://doi.org/10.1201/9781003121664-10 Goyal, S., Sharma, N., Kaushik, I., Bhushan, B., & Kumar, A. (2020)。区块链是物联网的救星。Security and Trust Issues in Internet of Things, 1, 209237. https://doi.org/10.1201/9781003121664-10
Goyal, V., Pandey, O., Sahai, A., & Waters, B. (2006). Attribute-based encryption for fine-grained access control of encrypted data. Proceedings of the 13th ACM Conference on Computer and Communications Security - CCS '06. https://doi.org/10.1145/1180405.1180418 Goyal, V., Pandey, O., Sahai, A., & Waters, B. (2006)。基于属性的加密技术,用于加密数据的细粒度访问控制。第 13 届 ACM 计算机与通信安全会议论文集 - CCS '06. https://doi.org/10.1145/1180405.1180418
Guhr, N., Werth, O., Blacha, P. P. H., & Breitner, M. H. (2020). Privacy concerns in the smart home context. SN Applied Sciences, 2, 247. https://doi.org/10. 1007/s42452-020-2025-8 Guhr, N., Werth, O., Blacha, P. P. H., & Breitner, M. H. (2020)。智能家居背景下的隐私问题。SN Applied Sciences, 2, 247. https://doi.org/10.1007/s42452-020-2025-8
Han, J., Choi, C., Park, W., Lee, I., & Kim, S. (2014). Smart home energy management system including renewable energy based on ZigBee and PLC. IEEE Transactions on Consumer Electronics, 60(2), 198-202. https://doi.org/10.1109/TCE.2014.6851994 Han, J., Choi, C., Park, W., Lee, I., & Kim, S. (2014)。基于 ZigBee 和 PLC 的可再生能源智能家居能源管理系统。https://doi.org/10.1109/TCE.2014.6851994
Haque, A. B., Islam, A. K. M. N., Hyrynsalmi, S., Naqvi, B., & Smolander, K. (2021). GDPR compliant Blockchains-A systematic literature review. IEEE Access, 9, 50593-50606. https://doi.org/10.1109/ACCESS.2021.3069877 Haque, A. B., Islam, A. K. M. N., Hyrynsalmi, S., Naqvi, B., & Smolander, K. (2021)。符合 GDPR 的区块链--系统文献综述。IEEE Access, 9, 50593-50606. https://doi.org/10.1109/ACCESS.2021.3069877
Hefnawy, A., Bouras, A., & Cherifi, C. (2016). IoT for Smart City services. Proceedings of the International Conference on Internet of Things and Cloud Computing - ICC '16. https://doi.org/10.1145/2896387.2896440 Hefnawy, A., Bouras, A., & Cherifi, C. (2016)。物联网促进智慧城市服务。物联网和云计算国际会议论文集--ICC '16. https://doi.org/10.1145/2896387.2896440
IESE Business School. (2020). These are the 10 smartest cities in the world for 2020. Forbes, Jul. 08, 2020. https://www.forbes.com/sites/iese/2020/07/ 08/these-are-the-10-smartest-cities-in-the-world-for-2020/ IESE 商学院(2020 年)。2020 年全球十大最智能城市。福布斯》,2020 年 7 月 8 日。https://www.forbes.com/sites/iese/2020/07/ 08/these-are-the-10-smartest-cities-in-the-world-for-2020/
ljaz, M., Alfian, G., Syafrudin, M., & Rhee, J. (2018). Hybrid prediction model for type 2 diabetes and hypertension using DBSCAN-based outlier detection, synthetic minority over sampling technique (SMOTE), and random forest. Applied Sciences, 8(8), 1325. https://doi.org/10.3390/app8081325 ljaz, M., Alfian, G., Syafrudin, M., & Rhee, J. (2018)。使用基于 DBSCAN 的离群点检测、合成少数群体过度抽样技术(SMOTE)和随机森林的 2 型糖尿病和高血压混合预测模型。应用科学》,8(8),1325。https://doi.org/10.3390/app8081325
Ijaz, M. F., Attique, M., & Son, Y. (2020). Data-driven cervical cancer prediction model with outlier detection and over-sampling methods. Sensors, 20, 2809. https://doi.org/10.3390/s20102809 Ijaz, M. F., Attique, M., & Son, Y. (2020)。采用离群点检测和过度采样方法的数据驱动型宫颈癌预测模型。Sensors, 20, 2809. https://doi.org/10.3390/s20102809
Isaak, J., & Hanna, M. J. (2018). User data privacy: Facebook, Cambridge Analytica, and privacy protection. Computer, 51(8), 56-59. https://doi.org/10. 1109/mc.2018.3191268 Isaak, J., & Hanna, M. J. (2018)。用户数据隐私:Facebook, Cambridge Analytica, and privacy protection.Computer, 51(8), 56-59. https://doi.org/10.1109/mc.2018.3191268
Ismail, L., Materwala, H., & Zeadally, S. (2019). Lightweight blockchain for healthcare. IEEE Access, 7, 149935-149951. https://doi.org/10.1109/access. 2019.2947613 Ismail, L., Materwala, H., & Zeadally, S. (2019)。医疗保健领域的轻量级区块链。IEEE Access, 7, 149935-149951. https://doi.org/10.1109/access.2019.2947613
Jahromi, A. A., Kemmeugne, A., Kundur, D., & Haddadi, A. (2020). Cyber-physical attacks targeting communication-assisted protection schemes. IEEE Transactions on Power Systems, 35(1), 440-450. https://doi.org/10.1109/tpwrs.2019.2924441 Jahromi, A. A., Kemmeugne, A., Kundur, D., & Haddadi, A. (2020)。针对通信辅助保护方案的网络物理攻击。IEEE Transactions on Power Systems, 35(1), 440-450. https://doi.org/10.1109/tpwrs.2019.2924441
Kang, W. M., Moon, S. Y., & Park, J. H. (2017). An enhanced security framework for home appliances in smart home. Human-centric Computing and Information Sciences, 7, 6. https://doi.org/10.1186/s13673-017-0087-4 Kang, W. M., Moon, S. Y., & Park, J. H. (2017)。智能家居中家用电器的增强型安全框架。https://doi.org/10.1186/s13673-017-0087-4
Kelley, S. B., Lane, B. W., Stanley, B. W., Kane, K., Nielsen, E., & Strachan, S. (2019). Smart transportation for all? A typology of recent U.S. smart transportation projects in midsized cities. Annals of the American Association of Geographers, 110(2), 547-558. https://doi.org/10.1080/24694452.2019.1643702 Kelley, S. B., Lane, B. W., Stanley, B. W., Kane, K., Nielsen, E., & Strachan, S. (2019).全民智能交通?美国近期中型城市智能交通项目类型。美国地理学家协会年鉴》,110(2),547-558。https://doi.org/10.1080/24694452.2019.1643702。
Khan, M., Silva, B. N., & Han, K. (2016). Internet of things based energy aware smart home control system. IEEE Access, 4, 7556-7566. https://doi.org/10. 1109/ACCESS.2016.2621752 Khan, M., Silva, B. N., & Han, K. (2016)。基于物联网的能源感知智能家居控制系统。IEEE Access, 4, 7556-7566. https://doi.org/10.1109/ACCESS.2016.2621752
Khanam, S., Ahmedy, I. B., Idna Idris, M. Y., Jaward, M. H., & Sabri, A. Q. B. M. (2020). A survey of security challenges, attacks taxonomy and advanced countermeasures in the internet of things. IEEE Access, 8, 219709-219743. https://doi.org/10.1109/ACCESS.2020.3037359 Khanam, S., Ahmedy, I. B., Idna Idris, M. Y., Jaward, M. H., & Sabri, A. Q. B. M. (2020).物联网中的安全挑战、攻击分类和先进对策调查。IEEE Access, 8, 219709-219743. https://doi.org/10.1109/ACCESS.2020.3037359
Khazaei, H., Zareian, S., Veleda, R., & Litoiu, M. (2016). Sipresk: A big data analytic platform for smart transportation. Smart City 360^(@)360^{\circ} Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 419-430. https://doi.org/10.1007/978-3-319-33681-7_35 Khazaei, H., Zareian, S., Veleda, R., & Litoiu, M. (2016)。Sipresk:智能交通大数据分析平台。Smart City 360^(@)360^{\circ} Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 419-430. https://doi.org/10.1007/978-3-319-33681-7_35
Kim, S., & Lim, H. (2018). Reinforcement learning based energy management algorithm for smart energy buildings. Energies, 11(8), 2010. https://doi.org/10. 3390/en11082010 Kim, S., & Lim, H. (2018)。基于强化学习的智能能源建筑能源管理算法。Energies, 11(8), 2010. https://doi.org/10.3390/en11082010
Kirimtat, A., Krejcar, O., Kertesz, A., & Tasgetiren, M. F. (2020). Future trends and current state of Smart City concepts: A survey. IEEE Access, 8, 8644886467. https://doi.org/10.1109/ACCESS.2020.2992441 Kirimtat, A., Krejcar, O., Kertesz, A., & Tasgetiren, M. F. (2020).智慧城市概念的未来趋势和现状:A survey.IEEE Access, 8, 8644886467. https://doi.org/10.1109/ACCESS.2020.2992441
Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1872-1899. https://doi.org/10.1109/access.2017.2666200 Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017).软件定义无线传感器网络调查:挑战与设计要求。IEEE Access, 5, 1872-1899. https://doi.org/10.1109/access.2017.2666200
Kylili, A., & Fokaides, P. A. (2015). European smart cities: The role of zero energy buildings. Sustainable Cities and Society, 15, 86-95. https://doi.org/10. 1016/j.scs.2014.12.003 Kylili, A., & Fokaides, P. A. (2015)。欧洲智慧城市:零能耗建筑的作用。可持续城市与社会》,15, 86-95. https://doi.org/10.1016/j.scs.2014.12.003
Lau, B. P. L., Marakkalage, S. H., Zhou, Y., Hassan, N. U., Yuen, C., Zhang, M., & Tan, U. X. (2019). A survey of data fusion in smart city applications. Information Fusion, 52, 357-374. https://doi.org/10.1016/j.inffus.2019.05.004 Lau, B. P. L., Marakkalage, S. H., Zhou, Y., Hassan, N. U., Yuen, C., Zhang, M., & Tan, U. X. (2019).智慧城市应用中的数据融合研究。Information Fusion, 52, 357-374. https://doi.org/10.1016/j.inffus.2019.05.004
Laufs, J., Borrion, H., & Bradford, B. (2020). Security and the smart city: A systematic review. Sustainable Cities and Society, 55, 102023. https://doi.org/10. 1016/j.scs.2020.102023 Laufs, J., Borrion, H., & Bradford, B. (2020)。安全与智慧城市:系统综述。可持续城市与社会》,55,102023。https://doi.org/10.1016/j.scs.2020.102023
Law, K. H., & Lynch, J. P. (2019). Smart city: Technologies and challenges. IT Professional, 21(6), 46-51. https://doi.org/10.1109/MITP.2019.2935405 Law, K. H., & Lynch, J. P. (2019).智慧城市:技术与挑战。IT Professional, 21(6), 46-51. https://doi.org/10.1109/MITP.2019.2935405
Lee, B., & Hyoseok, Y. I… (2021). Low power wide area network. U.S. Patent Application No. 15/093,969. Lee, B., & Hyoseok, Y. I... (2021)。低功耗广域网。美国专利申请号 15/093,969。
Lin, J., Niu, J., Li, H., & Atiquzzaman, M. (2019). A secure and efficient location-based service scheme for smart transportation. Future Generation Computer Systems, 92, 694-704. https://doi.org/10.1016/j.future.2017.11.030 Lin, J., Niu, J., Li, H., & Atiquzzaman, M. (2019).智能交通的安全高效定位服务方案。Future Generation Computer Systems, 92, 694-704. https://doi.org/10.1016/j.future.2017.11.030
Lin, J., Zha, L., & Xu, Z. (2012). Consolidated cluster systems for data centers in the cloud age: A survey and analysis. Frontiers of Computer Science, 7(1), 119. https://doi.org/10.1007/s11704-012-2086-y Lin, J., Zha, L., & Xu, Z. (2012)。云时代数据中心的集成集群系统:调查与分析。计算机科学前沿》,7(1),119 https://doi.org/10.1007/s11704-012-2086-y
Y. Liu, S. Hu and T. Ho, Leveraging strategic detection techniques for smart home pricing cyberattacks, in IEEE Transactions on Dependable and Secure Computing, vol. 13, no. 2, pp. 220-235, 2016, https://doi.org/10.1109/TDSC.2015.2427841. Y. Liu, S. Hu and T. Ho, Leveraging strategic detection techniques for smart home pricing cyberattacks, in IEEE Transactions on Dependable and Secure Computing, vol. 13, no. 2, pp.
Madaan, G., Bhushan, B., & Kumar, R. (2020). Blockchain-based cyberthreat mitigation systems for smart vehicles and industrial automation. In Studies in big data multimedia technologies in the internet of things environment (pp. 13-32). Springer. https://doi.org/10.1007/978-981-15-7965-3_2 Madaan, G., Bhushan, B., & Kumar, R. (2020)。基于区块链的智能汽车和工业自动化网络威胁缓解系统。物联网环境下的大数据多媒体技术研究》(第 13-32 页)。Springer. https://doi.org/10.1007/978-981-15-7965-3_2
Mahmoud, M. M., Rodrigues, J. J., Ahmed, S. H., Shah, S. C., Al-Muhtadi, J. F., Korotaev, V. V., & Albuquerque, V. H. (2018). Enabling technologies on cloud of things for smart healthcare. IEEE Access, 6, 31950-31967. https://doi.org/10.1109/access.2018.2845399 Mahmoud, M. M., Rodrigues, J. J., Ahmed, S. H., Shah, S. C., Al-Muhtadi, J. F., Korotaev, V. V., & Albuquerque, V. H. (2018).面向智能医疗的物联网技术。IEEE Access, 6, 31950-31967. https://doi.org/10.1109/access.2018.2845399
Maier, S. (2016). Smart energy systems for smart city districts: Case study Reininghaus District. Energy, Sustainability and Society, 6(1), 1-20. https://doi. org/10.1186/s13705-016-0085-9 Maier, S. (2016).智能城市地区的智能能源系统:莱宁豪斯区案例研究。https://doi. org/10.1186/s13705-016-0085-9
Makhadmeh, S. N., Khader, A. T., Al-Betar, M. A., Naim, S., Abasi, A. K., & Alyasseri, Z. A. A. (2019). Optimization methods for power scheduling problems in smart home: Survey. Renewable and Sustainable Energy Reviews, 115, 109362. https://doi.org/10.1016/j.rser.2019.109362 Makhadmeh, S. N., Khader, A. T., Al-Betar, M. A., Naim, S., Abasi, A. K., & Alyasseri, Z. A. A. (2019).智能家居中电力调度问题的优化方法:Survey.Renewable and Sustainable Energy Reviews, 115, 109362. https://doi.org/10.1016/j.rser.2019.109362
Malche, T., & Maheshwary, P… 2017. Internet of Things (loT) for building smart home system. 2017 International Conference on I-SMAC (loT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, 65-70, https://doi.org/10.1109/I-SMAC.2017.8058258. Malche, T., & Maheshwary, P... 2017.用于构建智能家居系统的物联网(loT)。2017 I-SMAC(社交、移动、分析和云中的物联网)国际会议(I-SMAC),Palladam,65-70,https://doi.org/10.1109/I-SMAC.2017.8058258.
Marinakis, V., Doukas, H., Tsapelas, J., Mouzakitis, S., Sicilia, Á., Madrazo, L., & Sgouridis, S. (2018). From big data to smart energy services: An application for intelligent energy management. Future Generation Computer Systems., 110, 572-586. https://doi.org/10.1016/j.future.2018.04.062 Marinakis, V., Doukas, H., Tsapelas, J., Mouzakitis, S., Sicilia, Á., Madrazo, L., & Sgouridis, S. (2018)。从大数据到智能能源服务:智能能源管理应用。未来计算机系统》,110, 572-586. https://doi.org/10.1016/j.future.2018.04.062
Mengelkamp, E., Notheisen, B., Beer, C., Dauer, D., & Weinhardt, C. (2018). A blockchain-based smart grid: Towards sustainable local energy markets. Computer Science - Research and Development, 33, 207-214. https://doi.org/10.1007/s00450-017-0360-9 Mengelkamp, E., Notheisen, B., Beer, C., Dauer, D., & Weinhardt, C. (2018)。基于区块链的智能电网:迈向可持续的本地能源市场。Computer Science - Research and Development, 33, 207-214. https://doi.org/10.1007/s00450-017-0360-9
Mollah, M. B., Azad, M. A. K., & Vasilakos, A. (2017). Security and privacy challenges in mobile cloud computing: Survey and way ahead. Journal of Network and Computer Applications, 84, 38-54. https://doi.org/10.1016/j.jnca.2017.02.001 Mollah, M. B., Azad, M. A. K., & Vasilakos, A. (2017).移动云计算中的安全与隐私挑战:调查与未来之路。网络与计算机应用期刊》,84, 38-54. https://doi.org/10.1016/j.jnca.2017.02.001
Naik, K., & Patel, S. (2018). An open source smart home management system based on IOT. Wireless Network. https://doi.org/10.1007/s11276-018-1884-z Naik, K., & Patel, S. (2018)。基于物联网的开源智能家居管理系统。无线网络。https://doi.org/10.1007/s11276-018-1884-z
Nam, T., & Pardo, T. A. (2011). Conceptualizing smart city with dimensions of technology, people, and institutions. Proceedings of the 12th Annual International Digital Government Research Conference on Digital Government Innovation in Challenging Times - Dg.o '11. https://doi.org/10.1145/2037556. 203760 Nam, T., & Pardo, T. A. (2011)。以技术、人员和机构为维度的智慧城市概念化。第 12 届国际数字政府研究年会 "挑战时代的数字政府创新--Dg.o '11 "论文集。https://doi.org/10.1145/2037556.203760
Nguyen, K. T., Laurent, M., & Oualha, N. (2015). Survey on secure communication protocols for the internet of things. Ad Hoc Networks, 32 , 17-31. https://doi.org/10.1016/j.adhoc.2015.01.006 Nguyen, K. T., Laurent, M., & Oualha, N. (2015)。物联网安全通信协议调查。Ad Hoc Networks, 32 , 17-31. https://doi.org/10.1016/j.adhoc.2015.01.006
Olabi, A. G. (2017). Renewable energy and energy storage systems. Elsevier. https://doi.org/10.1016/j.energy.2017.07.054 Olabi, A. G. (2017).可再生能源与储能系统》。https://doi.org/10.1016/j.energy.2017.07.054
Ometov, A., Bardinova, Y., Afanasyeva, A., Masek, P., Zhidanov, K., Vanurin, S., Sayfullin, M., Shubina, V., Komarov, M., & Bezzateev, S. (2020). An overview on blockchain for smartphones: State-of-the-art, consensus, implementation, challenges and future trends. IEEE Access, 8, 103994-104015. https:// doi.org/10.1109/access.2020.2998951 Ometov, A., Bardinova, Y., Afanasyeva, A., Masek, P., Zhidanov, K., Vanurin, S., Sayfullin, M., Shubina, V., Komarov, M., & Bezzateev, S. (2020).智能手机区块链概述:智能手机区块链概述:最新技术、共识、实施、挑战和未来趋势。IEEE Access, 8, 103994-104015. https:// doi.org/10.1109/access.2020.2998951
Ota, K., Kumrai, T., Dong, M., Kishigami, J., & Guo, M. (2017). Smart infrastructure design for smart cities. IT Professional, 19, 1. https://doi.org/10.1109/ mitp.2017.265110715 Ota, K., Kumrai, T., Dong, M., Kishigami, J., & Guo, M. (2017)。智慧城市的智能基础设施设计。IT Professional, 19, 1. https://doi.org/10.1109/ mitp.2017.265110715
Oueida, S., Aloqaily, M., & lonescu, S. (2018). A smart healthcare reward model for resource allocation in smart city. Multimedia Tools and Applications, 78 (17), 24573-24594. https://doi.org/10.1007/s11042-018-6647-4 Oueida, S., Aloqaily, M., & lonescu, S. (2018)。用于智慧城市资源分配的智能医疗奖励模型。多媒体工具与应用》,78(17),24573-24594。https://doi.org/10.1007/s11042-018-6647-4。
Parms, J. (2017). More info, more problems: Privacy and security issues in the age of big data. https://www.business.com/articles/privacy-and-security-issues-in-the-age-of-big-data/. Parms, J. (2017).更多信息,更多问题:大数据时代的隐私与安全问题》,https://www.business.com/articles/privacy-and-security-issues-in-the-age-of-big-data/.
Rathore, M. M., Paul, A., Ahmad, A., Chilamkurti, N., Hong, W., & Seo, H. (2018). Real-time secure communication for Smart City in high-speed big data environment. Future Generation Computer Systems, 83, 638-652. https://doi.org/10.1016/j.future.2017.08.006 Rathore, M. M., Paul, A., Ahmad, A., Chilamkurti, N., Hong, W., & Seo, H. (2018)。高速大数据环境下智慧城市的实时安全通信。Future Generation Computer Systems, 83, 638-652. https://doi.org/10.1016/j.future.2017.08.006
Ridhawi, I. A., Otoum, S., Aloqaily, M., Jararweh, Y., & Baker, T. (2020). Providing secure and reliable communication for next generation networks in smart cities. Sustainable Cities and Society, 56, 102080. https://doi.org/10.1016/j.scs.2020.102080 Ridhawi, I. A., Otoum, S., Aloqaily, M., Jararweh, Y., & Baker, T. (2020)。为智慧城市的下一代网络提供安全可靠的通信。Sustainable Cities and Society, 56, 102080. https://doi.org/10.1016/j.scs.2020.102080
Rivera, W., & Rodriguez-Martinez, M… (2016). Towards cloud services in smart power grid. 2016 IEEE innovative smart grid technologies - Asia (ISGT-Asia), Melbourne, VIC, 570-573, https://doi.org/10.1109/ISGT-Asia.2016.7796447. Rivera, W., & Rodriguez-Martinez, M... (2016)。智能电网中的云服务。2016 IEEE 创新智能电网技术-亚洲(ISGT-Asia),维多利亚州墨尔本,570-573,https://doi.org/10.1109/ISGT-Asia.2016.7796447.
Salman, T., Zolanvari, M., Erbad, A., Jain, R., & Samaka, M. (2019). Security services using Blockchains: A state of the art survey. IEEE Communications Surveys & Tutorials, 21(1), 858-880. https://doi.org/10.1109/comst.2018.2863956 Salman, T., Zolanvari, M., Erbad, A., Jain, R., & Samaka, M. (2019).使用区块链的安全服务:A state of the art survey.IEEE Communications Surveys & Tutorials, 21(1), 858-880. https://doi.org/10.1109/comst.2018.2863956
Sánchez-Corcuera, R., Nuñez-Marcos, A., Sesma-Solance, J., Bilbao-Jayo, A., Mulero, R., Zulaika, U., Azkune, G., & Almeida, A. (2019). Smart cities survey: Technologies, application domains and challenges for the cities of the future. International Journal of Distributed Sensor Networks, 15(6), 1550147719853984. https://doi.org/10.1177/1550147719853984 Sánchez-Corcuera, R., Nuñez-Marcos, A., Sesma-Solance, J., Bilbao-Jayo, A., Mulero, R., Zulaika, U., Azkune, G., & Almeida, A. (2019)。智慧城市调查:未来城市的技术、应用领域和挑战。分布式传感器网络国际期刊》,15(6),1550147719853984。https://doi.org/10.1177/1550147719853984。
Sandhu, R., Coyne, E. J., Feinstein, H. L., & Youman, C. E. (1996). Role-based access control models. IEEE Computer, 29, 38-47. https://doi.org/10.1109/2. 485845 Sandhu, R., Coyne, E. J., Feinstein, H. L., & Youman, C. E. (1996).基于角色的访问控制模型。IEEE Computer, 29, 38-47. https://doi.org/10.1109/2.485845
Sengupta, J., Ruj, S., & Bit, S. D. (2020). A comprehensive survey on attacks, security issues and Blockchain solutions for loT and IloT. Journal of Network and Computer Applications, 149, 102481. https://doi.org/10.1016/j.jnca.2019.102481 Sengupta, J., Ruj, S., & Bit, S. D. (2020)。针对 loT 和 IloT 的攻击、安全问题和区块链解决方案的综合调查。网络与计算机应用期刊》,149,102481。https://doi.org/10.1016/j.jnca.2019.102481。
Sethi, R., Bhushan, B., Sharma, N., Kumar, R., & Kaushik, I. (2020). Applicability of industrial loT in diversified sectors: Evolution, applications and challenges. In Studies in big data multimedia technologies in the internet of things environment (pp. 45-67). Springer. https://doi.org/10.1007/978-981-15-7965-3_4 Sethi, R., Bhushan, B., Sharma, N., Kumar, R., & Kaushik, I. (2020).工业物联网在多元化领域的适用性:演变、应用与挑战。物联网环境下的大数据多媒体技术研究》(第 45-67 页)。Springer. https://doi.org/10.1007/978-981-15-7965-3_4
Shahidehpour, M., Li, Z., & Ganji, M. (2018). Smart cities for a sustainable urbanization: Illuminating the need for establishing smart urban infrastructures. IEEE Electrification Magazine, 6(2), 16-33. https://doi.org/10.1109/mele.2018.2816840 Shahidehpour, M., Li, Z., & Ganji, M. (2018)。智能城市促进可持续城市化:阐明建立智能城市基础设施的必要性。IEEE Electrification Magazine, 6(2), 16-33. https://doi.org/10.1109/mele.2018.2816840
Shamir, A. (1985). Identity-based cryptosystem based on the discrete logarithm problem. Proc. CRYPTO’84, 47-53). Shamir, A. (1985).基于离散对数问题的基于身份的密码系统。Proc.crypto'84,47-53)。
Shen, M., Tang, X., Zhu, L., Du, X., & Guizani, M. (2019). Privacy-preserving support vector machine training over Blockchain-based encrypted loT data in smart cities. IEEE Internet of Things Journal, 6(5), 7702-7712. https://doi.org/10.1109/jiot.2019.2901840 Shen, M., Tang, X., Zhu, L., Du, X., & Guizani, M. (2019).智慧城市中基于区块链加密物联网数据的隐私保护支持向量机训练。IEEE 物联网期刊,6(5),7702-7712。https://doi.org/10.1109/jiot.2019.2901840。
Shukla, S., Balachandran, K., & Sumitha, V. S… (2016). A framework for smart transportation using big data. 2016 International Conference on ICT in Business Industry & Government (ICTBIG), Indore. 1-3, https://doi.org/10.1109/ICTBIG.2016.7892720. Shukla, S., Balachandran, K., & Sumitha, V. S... (2016).使用大数据的智能交通框架。2016 商业、工业与政府信息通信技术国际会议(ICTBIG),印多尔。1-3, https://doi.org/10.1109/ICTBIG.2016.7892720.
Sigurbórsdóttir, S., Gunnarsson, O., & Helgason, M. (n.d.). Making Reykjavík a bit greener: City to power its public transit buses with electricity. https:// icelandmag.is/article/making-reykjavik-a-bit-greener-city-power-its-public-transit-buses-electricity Sigurbórsdóttir, S., Gunnarsson, O., & Helgason, M. (n.d.).让雷克雅未克更环保:https:// icelandmag.is/article/making-reykjavik-a-bit-greener-city-power-its-public-transit-buses-electricity.
Silva, B. N., Khan, M., & Han, K. (2018). Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustainable Cities and Society, 38, 697-713. https://doi.org/10.1016/j.scs.2018.01.053 Silva, B. N., Khan, M., & Han, K. (2018)。迈向可持续的智慧城市:智慧城市的趋势、架构、组件和开放挑战综述。可持续城市与社会》,38, 697-713. https://doi.org/10.1016/j.scs.2018.01.053
Smith, L… (2017). Amsterdam smart city: A world leader in smart city development. https://hub.beesmart.city/city-portraits/smart-city-portrait-amsterdam Smith, L... (2017).阿姆斯特丹智慧城市:智慧城市发展的世界领导者。https://hub.beesmart.city/city-portraits/smart-city-portrait-amsterdam
Somani, G., Gaur, M. S., Sanghi, D., Conti, M., & Buyya, R. (2017). DDoS attacks in cloud computing: Issues, taxonomy, and future directions. Computer Communications, 107, 30-48. https://doi.org/10.1016/j.comcom.2017.03.010 Somani, G., Gaur, M. S., Sanghi, D., Conti, M., & Buyya, R. (2017)。云计算中的 DDoS 攻击:问题、分类和未来方向。Computer Communications, 107, 30-48. https://doi.org/10.1016/j.comcom.2017.03.010
Sookhak, M., Tang, H., He, Y., & Yu, F. R. (2019). Security and privacy of smart cities: A survey, research issues and challenges. IEEE Communications Surveys & Tutorials, 21(2), 1718-1743. https://doi.org/10.1109/comst.2018.2867288 Sookhak, M., Tang, H., He, Y., & Yu, F. R. (2019).智慧城市的安全与隐私:调查、研究问题与挑战。IEEE Communications Surveys & Tutorials, 21(2), 1718-1743. https://doi.org/10.1109/comst.2018.2867288
Surantha, N., & Wicaksono, W. R. (2018). Design of smart home security system using object recognition and PIR sensor. Procedia computer science, 135, 465-472. https://doi.org/10.1016/j.procs.2018.08.198 Surantha, N., & Wicaksono, W. R. (2018)。使用物体识别和 PIR 传感器设计智能家居安防系统。https://doi.org/10.1016/j.procs.2018.08.198
Tamang, J., Dieu Nkapkop, J. D., Ijaz, M. F., Prasad, P. K., Tsafack, N., Saha, A., Kengne, J., & Son, Y. (2021). Dynamical properties of ion-acoustic waves in space plasma and its application to image encryption. IEEE Access, 9, 18762-18782. https://doi.org/10.1109/ACCESS.2021.3054250 Tamang, J., Dieu Nkapkop, J. D., Ijaz, M. F., Prasad, P. K., Tsafack, N., Saha, A., Kengne, J., & Son, Y. (2021)。空间等离子体中离子声波的动态特性及其在图像加密中的应用。IEEE Access, 9, 18762-18782. https://doi.org/10.1109/ACCESS.2021.3054250
Tan, H., & Chung, I. (2020). Secure authentication and key management with blockchain in vanets. IEEE Access, 8, 2482-2498. https://doi.org/10.1109/ access.2019.2962387 Tan, H., & Chung, I. (2020)。网络中的区块链安全认证和密钥管理。IEEE Access, 8, 2482-2498. https://doi.org/10.1109/ access.2019.2962387
Tan, K. M., Ramachandaramurthy, V. K., & Yong, J. Y. (2016). Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renewable and Sustainable Energy Reviews, 53, 720-732. https://doi.org/10.1016/j.rser.2015.09.012 Tan, K. M., Ramachandaramurthy, V. K., & Yong, J. Y. (2016)。智能电网中的电动汽车集成:车联网技术与优化技术综述。可再生与可持续能源评论》,53,720-732。https://doi.org/10.1016/j.rser.2015.09.012。
Tanwar, S., Parekh, K., & Evans, R. (2020). Blockchain-based electronic healthcare record system for healthcare 4.0 applications. Journal of Information Security and Applications, 50, 102407. https://doi.org/10.1016/j.jisa.2019.102407 Tanwar, S., Parekh, K., & Evans, R. (2020)。基于区块链的医疗保健 4.0 应用电子医疗记录系统。信息安全与应用期刊》,50,102407。https://doi.org/10.1016/j.jisa.2019.102407。
Toh, C. K. (2020). Security for smart cities. IET Smart Cities, 2(2), 95-104. https://doi.org/10.1049/iet-smc.2020.0001 Toh, C. K. (2020).智慧城市的安全性。IET Smart Cities, 2(2), 95-104. https://doi.org/10.1049/iet-smc.2020.0001
Tomita, R. M., Russ, S. L., Sridhar, R., & Naughton, M. B. J. (2010). Smart home with healthcare technologies for community-dwelling older adults. Smart Home Systems. 1, 139-158. https://doi.org/10.5772/8411 Tomita, R. M., Russ, S. L., Sridhar, R., & Naughton, M. B. J. (2010)。为社区居住的老年人提供医疗保健技术的智能家居。智能家居系统。1, 139-158. https://doi.org/10.5772/8411
Top 10 Smart Cities in the World. (2020). https://www.technologymagazine.com/big-data/top-10-smart-cities-world 全球十大智慧城市。(2020). https://www.technologymagazine.com/big-data/top-10-smart-cities-world
Tripathi, G., Ahad, M. A., & Paiva, S. (2020). S2HS- A blockchain based approach for smart healthcare system. Healthcare, 8(1), 100391. https://doi.org/10. 1016/j.hjdsi.2019.100391 Tripathi, G., Ahad, M. A., & Paiva, S. (2020)。S2HS--基于区块链的智能医疗系统。https://doi.org/10.1016/j.hjdsi.2019.100391
Verma, A., Khanna, A., Agrawal, A., Darwish, A., & Hassanien, A. E. (2019). Security and privacy in Smart City applications and services: Opportunities and challenges. Advanced Sciences and Technologies for Security Applications Cybersecurity and Secure Information Systems, 1, 1-15. https://doi.org/10.1007/ 978-3-030-16837-7_1 Verma, A., Khanna, A., Agrawal, A., Darwish, A., & Hassanien, A. E. (2019).智慧城市应用和服务中的安全与隐私:机遇与挑战。网络安全与安全信息系统的先进科学与技术应用》,1, 1-15. https://doi.org/10.1007/ 978-3-030-16837-7_1
Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-Nemrat, A., & Venkatraman, S. (2019). Deep learning approach for intelligent intrusion detection system. IEEE Access, 7, 41525-41550. https://doi.org/10.1109/ACCESS.2019.2895334 Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-Nemrat, A., & Venkatraman, S. (2019)。智能入侵检测系统的深度学习方法。IEEE Access, 7, 41525-41550. https://doi.org/10.1109/ACCESS.2019.2895334
Wang, D., & Zhang, X. (2020). Secure data sharing and customized services for intelligent transportation based on a consortium blockchain. IEEE Access, 8, 56045-56059. https://doi.org/10.1109/access.2020.2981945 Wang, D., & Zhang, X. (2020)。基于联盟区块链的智能交通安全数据共享与定制服务。IEEE Access, 8, 56045-56059. https://doi.org/10.1109/access.2020.2981945
Wang, J., Wu, L., Choo, K. R., & He, D. (2020). Blockchain-based anonymous authentication with key management for smart grid edge computing infrastructure. IEEE Transactions on Industrial Informatics, 16(3), 1984-1992. https://doi.org/10.1109/tii.2019.2936278 Wang, J., Wu, L., Choo, K. R., & He, D. (2020)。基于区块链的匿名身份验证与智能电网边缘计算基础设施的密钥管理。IEEE Transactions on Industrial Informatics, 16(3), 1984-1992. https://doi.org/10.1109/tii.2019.2936278
Wenge, R., Zhang, X., Dave, C., Chao, L., & Hao, S. (2014). Smart city architecture: A technology guide for implementation and design challenges. China Communications, 11(3), 56-69. https://doi.org/10.1109/CC.2014.6825259 Wenge, R., Zhang, X., Dave, C., Chao, L., & Hao, S. (2014)。智慧城市架构:实施技术指南与设计挑战。中国通信》,11(3),56-69。https://doi.org/10.1109/CC.2014.6825259。
Willems, J., Van den Bergh, J., & Viaene, S. (2017). Smart City projects and citizen participation: The case of London. In R. Andeßner, D. Greiling, & R. Vogel (Eds.), Public sector management in a globalized world NPO-management. Springer Gabler. https://doi.org/10.1007/978-3-658-16112-5_12 Willems, J., Van den Bergh, J., & Viaene, S. (2017)。智慧城市项目与公民参与:伦敦案例。In R. Andeßner,D. Greiling,& R. Vogel (Eds.),Public sector management in a globalized world NPO-management。Springer Gabler. https://doi.org/10.1007/978-3-658-16112-5_12
Wilson, C., Hargreaves, T., & Hauxwell-Baldwin, R. (2017). Benefits and risks of smart home technologies. Energy Policy, 103, 72-83. https://doi.org/10. 1016/j.enpol.2016.12.047 Wilson, C., Hargreaves, T., & Hauxwell-Baldwin, R. (2017)。智能家居技术的益处与风险。能源政策》,103,72-83。https://doi.org/10.1016/j.enpol.2016.12.047
Wilson, P. (2019). State of smart cities in UK and beyond. IET Smart Cities, 1(1), 19-22. https://doi.org/10.1049/iet-smc.2019.0024 Wilson, P. (2019).英国及其他地区的智慧城市状况。IET Smart Cities, 1(1), 19-22. https://doi.org/10.1049/iet-smc.2019.0024
Wu, H., & Hu, Y. (2016). Location privacy with randomness consistency. Proceedings on Privacy Enhancing Technologies, 2016(4), 62-82. https://doi.org/10. 1515/popets-2016-0029 Wu, H., & Hu, Y. (2016)。具有随机一致性的位置隐私。隐私增强技术论文集》,2016(4),62-82。https://doi.org/10.1515/popets-2016-0029
Wu, L., Yue, X., Jin, A., & Yen, D. C. (2016). Smart supply chain management: A review and implications for future research. The International Journal of Logistics Management, 27(2), 395-417. https://doi.org/10.1108/ijlm-02-2014-0035 Wu, L., Yue, X., Jin, A., & Yen, D. C. (2016).智能供应链管理:综述及对未来研究的启示。国际物流管理杂志》,27(2),395-417。https://doi.org/10.1108/ijlm-02-2014-0035。
Xie, J., Tang, H., Huang, T., Yu, F. R., Xie, R., Liu, J., & Liu, Y. (2019). A survey of blockchain technology applied to smart cities: Research issues and challenges. IEEE Communications Surveys & Tutorials, 21(3), 2794-2830. https://doi.org/10.1109/comst.2019.2899617 Xie, J., Tang, H., Huang, T., Yu, F. R., Xie, R., Liu, J., & Liu, Y. (2019).区块链技术应用于智慧城市的调查:A survey of blockchain technology applied to smart cities: Research issues and challenges.IEEE Communications Surveys & Tutorials, 21(3), 2794-2830. https://doi.org/10.1109/comst.2019.2899617
Xu, C., Lin, H., Wu, Y., Guo, X., & Lin, W. (2019). An SDNFV-based DDoS defense Technology for Smart Cities. IEEE Access, 7, 137856-137874. https:// doi.org/10.1109/access.2019.2943146 Xu, C., Lin, H., Wu, Y., Guo, X., & Lin, W. (2019).基于 SDNFV 的智慧城市 DDoS 防御技术。IEEE Access, 7, 137856-137874. https:// doi.org/10.1109/access.2019.2943146
Yan, J., Liu, J., & Tseng, F. (2020). An evaluation system based on the self-organizing system framework of smart cities: A case study of smart transportation systems in China. Technological Forecasting and Social Change, 153, 119371. https://doi.org/10.1016/j.techfore.2018.07.009 Yan, J., Liu, J., & Tseng, F. (2020).基于智慧城市自组织系统框架的评价体系:中国智能交通系统案例研究。技术预测与社会变革》,153, 119371。https://doi.org/10.1016/j.techfore.2018.07.009。
Zantalis, F., Koulouras, G., Karabetsos, S., & Kandris, D. (2019). A review of machine learning and loT in smart transportation. Future Internet, 11(4), 94. https://doi.org/10.3390/fi11040094 Zantalis, F., Koulouras, G., Karabetsos, S., & Kandris, D. (2019).智能交通中的机器学习和 loT 回顾。Future Internet, 11(4), 94. https://doi.org/10.3390/fi11040094
Zhang, F., Lee, V. E., Jin, R., Garg, S., Choo, K. R., Maasberg, M., Dong, L., & Cheng, C. (2019). Privacy-aware smart city: A case study in collaborative filtering recommender systems. Journal of Parallel and Distributed Computing, 127, 145-159. https://doi.org/10.1016/j.jpdc.2017.12.015 Zhang, F., Lee, V. E., Jin, R., Garg, S., Choo, K. R., Maasberg, M., Dong, L., & Cheng, C. (2019).隐私感知智慧城市:协同过滤推荐系统案例研究。Journal of Parallel and Distributed Computing, 127, 145-159. https://doi.org/10.1016/j.jpdc.2017.12.015
Zhang, H., Babar, M., Tariq, M. U., Jan, M. A., Menon, V. G., & Li, X. (2020). SafeCity: Toward safe and secured data management design for loT-enabled Smart City planning. IEEE Access, 8, 145256-145267. https://doi.org/10.1109/access.2020.3014622 Zhang, H., Babar, M., Tariq, M. U., Jan, M. A., Menon, V. G., & Li, X. (2020).安全城市:面向支持 loT 的智能城市规划的安全可靠的数据管理设计。IEEE Access, 8, 145256-145267. https://doi.org/10.1109/access.2020.3014622
Zhang, P., White, J., Schmidt, D. C., Lenz, G., & Rosenbloom, S. T. (2018). FHIRChain: Applying blockchain to securely and Scalably share clinical data. Computational and Structural Biotechnology Journal, 16, 267-278. https://doi.org/10.1016/j.csbj.2018.07.004 Zhang, P., White, J., Schmidt, D. C., Lenz, G., & Rosenbloom, S. T. (2018)。FHIRChain:应用区块链安全、可扩展地共享临床数据。计算与结构生物技术期刊》,16,267-278。https://doi.org/10.1016/j.csbj.2018.07.004。
Zhang, X., Sun, P., Xu, J., Wang, X., Yu, J., Zhao, Z., & Dong, Y. (2020). Blockchain-based safety management system for the grain supply chain. IEEE Access, 8, 36398-36410. https://doi.org/10.1109/access.2020.2975415 Zhang, X., Sun, P., Xu, J., Wang, X., Yu, J., Zhao, Z., & Dong, Y. (2020).基于区块链的粮食供应链安全管理系统。IEEE Access, 8, 36398-36410. https://doi.org/10.1109/access.2020.2975415
Zhang, Y., Qu, Y., Gao, L., Luan, T. H., Zheng, X., Chen, S., & Xiang, Y. (2019). APDP: Attack-proof personalized differential privacy model for a smart home. IEEE Access, 7, 166593-166605. https://doi.org/10.1109/ACCESS.2019.2953133 Zhang, Y., Qu, Y., Gao, L., Luan, T. H., Zheng, X., Chen, S., & Xiang, Y. (2019).APDP:智能家居的防攻击个性化差异隐私模型。IEEE Access, 7, 166593-166605. https://doi.org/10.1109/ACCESS.2019.2953133
Zheng, W., & Walsh, P. P. (2019). Economic growth, urbanization and energy consumption - A provincial level analysis of China. Energy Economics, 80, 153-162. https://doi.org/10.1016/j.eneco.2019.01.004 Zheng, W., & Walsh, P. P. (2019).经济增长、城市化与能源消耗--中国省级分析》。能源经济学》,80, 153-162. https://doi.org/10.1016/j.eneco.2019.01.004
Zhou, K., Fu, C., & Yang, S. (2016). Big data driven smart energy management: From big data to big insights. Renewable and Sustainable Energy Reviews, 56, 215-225. https://doi.org/10.1016/j.rser.2015.11.050 Zhou, K., Fu, C., & Yang, S. (2016)。大数据驱动的智能能源管理:从大数据到大洞察。可再生与可持续能源评论》,56,215-225。https://doi.org/10.1016/j.rser.2015.11.050。
Zou, J., Ye, B., Qu, L., Wang, Y., Orgun, M. A., & Li, L. (2019). A proof-of-trust consensus protocol for enhancing accountability in crowdsourcing services. IEEE Transactions on Services Computing, 12(3), 429-445. https://doi.org/10.1109/tsc.2018.2823705 Zou, J., Ye, B., Qu, L., Wang, Y., Orgun, M. A., & Li, L. (2019).增强众包服务问责制的信任证明共识协议。IEEE Transactions on Services Computing, 12(3), 429-445. https://doi.org/10.1109/tsc.2018.2823705
AUTHOR BIOGRAPHIES 作者传记
A. K. M Bahalul Haque, Software Engineering, LENS, LUT University, Lappeenranta, 53850, Finland A.K. M Bahalul Haque,软件工程,LENS,LUT 大学,拉彭兰塔,53850,芬兰
Bharat Bhushan, Department of Computer Science and Engineering, School of Engineering and Technology, Sharda University, India 印度沙尔达大学工程技术学院计算机科学与工程系巴拉特-布尚
Gaurav Dhiman, Department of Computer Science and Engineering, Government Bikram College of Commerce, Punjab, India Gaurav Dhiman,印度旁遮普省政府比克拉姆商学院计算机科学与工程系
How to cite this article: Haque, A. K. M. B., Bhushan, B., & Dhiman, G. (2022). Conceptualizing smart city applications: Requirements, architecture, security issues, and emerging trends. Expert Systems, 39(5), e12753. https://doi.org/10.1111/exsy.12753 如何引用本文:Haque, A. K. M. B., Bhushan, B., & Dhiman, G. (2022).智慧城市应用概念化:需求、架构、安全问题和新兴趋势。Expert Systems, 39(5), e12753. https://doi.org/10.1111/exsy.12753
Correction added on 5 July 2021, after first online publication: Affiliation for the 3rd author has been corrected in this version. 更正于 2021 年 7 月 5 日首次在线发表后添加:第三作者的工作单位已在本版本中更正。