这是用户在 2024-12-30 4:54 为 https://app.immersivetranslate.com/pdf-pro/ec6ba8a3-2f70-4022-a94c-5573ffa355da 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
图 7.7 提高退火温度对聚合酶链式反应保真度的影响。扩增的 DNA 是大肠杆菌 16 S rRNA 编码区的 1340 个碱基片段。车道 A , 37 C A , 37 C A,37^(@)C\mathrm{A}, 37^{\circ} \mathrm{C};车道 B , 45 C B , 45 C B,45^(@)C\mathrm{B}, 45^{\circ} \mathrm{C};车道 C , 55 C C , 55 C C,55^(@)C\mathrm{C}, 55^{\circ} \mathrm{C};车道 D, 60 C 60 C 60^(@)C60^{\circ} \mathrm{C};泳道 E,1 kb DNA 分子量标准(Bethesda Research Laboratories)。
图 7.7 提高退火温度对聚合酶链反应保真度的影响。扩增的 DNA 是大肠杆菌 16 S rRNA 编码区的 1340 碱基段。泳道 A , 37 C A , 37 C A,37^(@)C\mathrm{A}, 37^{\circ} \mathrm{C} ;泳道 B , 45 C B , 45 C B,45^(@)C\mathrm{B}, 45^{\circ} \mathrm{C} ;泳道 C , 55 C C , 55 C C,55^(@)C\mathrm{C}, 55^{\circ} \mathrm{C} ;泳道 D, 60 C 60 C 60^(@)C60^{\circ} \mathrm{C} ;泳道 E,1 千碱基 DNA 梯子(贝塞斯达研究实验室)。
三个因素对聚合酶链反应的特异性有很强的影响。它们是温度, Mg 2 + Mg 2 + Mg^(2+)\mathrm{Mg}^{2+}浓度和 Taq 聚合酶浓度。降低温度并增加 Mg 2 + Mg 2 + Mg^(2+)\mathrm{Mg}^{2+}两者都增加了含有错配碱基对的杂交体的稳定性,因此有助于形成非特异性 PCR 产物。
有三个因素对聚合酶链反应的特异性有很大影响。它们是温度、 Mg 2 + Mg 2 + Mg^(2+)\mathrm{Mg}^{2+} 浓度和 Taq 聚合酶浓度。降低温度和增加 Mg 2 + Mg 2 + Mg^(2+)\mathrm{Mg}^{2+} 都会增加含有错配碱基对的杂交体的稳定性,从而导致非特异性 PCR 产物的形成。
Taq 聚合酶在常用的退火温度下保持活性,可能通过快速扩展错配杂交体来促进非特异性扩增。
Taq 聚合酶在常用的退火温度下仍有活性,它可能会通过快速扩展不匹配的杂交而导致非特异性扩增。

温度对非特异性 PCR 产物形成的影响如图 7.7 所示。在这里,随着退火温度的升高,非特异性 PCR 产物的形成被消除。

图 7.7 展示了温度对非特异性 PCR 产物形成的影响。在这里,随着退火温度的升高,非特异性 PCR 产物的形成被消除。

(v) 克隆扩增的基因  (v)克隆扩增的基因

1. “强制”克隆技术  1."强制 "克隆技术

限制性酶切位点被设计成的扩增引物可用于将限制性核酸内切酶识别位点引入扩增基因的末端(Scharf et al., 1986)。Medlin 等人 (1988)
扩增引物中的限制性位点可用于在扩增基因的末端引入限制性内切酶识别位点(Scharf 等人,1986 年)。Medlin 等人(1988 年
使用这种方法从低等真核生物中克隆 18 个 S rRNA 基因。通常每个引物中都包含不同的限制性位点,这允许使用强制克隆程序。强制克隆具有明显的优势,即载体的多接头在两个不同的识别位点被切割后,不能在分子内反应中重新连接到自身身上。因此,高比例的转化体将包含可预测方向的克隆 PCR 产物。
限制性酶切位点被设计成的扩增引物可用于将限制性核酸内切酶识别位点引入扩增基因的末端(Scharf et al.,1986)。Medlin 等人(1988)使用这种方法从低等真核生物中克隆 18 个 S rRNA 基因。通常每个引物中都包含不同的限制性位点,这允许使用强制克隆程序。使用这种方法从低等真核生物中克隆 18 个 S rRNA 基因。通常每个引物中都包含不同的限制性位点,这允许使用强制克隆程序。强制克隆具有明显的优势,即载体的多接头在两个不同的识别位点被切割后,不能在分子内反应中重新连接到自身身上。因此,高比例的转化体将包含可预测方向的克隆 PCR 产物。

“强制克隆”技术的缺点是扩增的基因可能在内部限制性位点被切割。如果内部限制性位点离末端足够远,则从电泳凝胶上的迁移率变化或两个条带的出现中可以明显看出内部切割。如果多个条带很明显,则可以克隆每个条带以获得完整的基因。
"强制克隆 "技术的缺点是扩增的基因可能在内部限制性位点被切割。如果内部限制性位点离末端足够远,则从电泳凝胶上的迁移率变化或两个条带的出现中可以明显看出内部切割。如果多个条带很明显,则可以克隆每个条带以获得完整的基因。
强制克隆技术的第二个缺点是,位于 DNA 分子末端附近的限制性位点与限制性核酸内切酶的反应效率不如内部位点。例如,HpaII 和 MnoI 需要至少一个碱基位于 5 5 5^(')5^{\prime}裂解识别序列的结束 (Baumstark等人,1979)。
强制克隆技术的第二个缺点是,位于 DNA 分子末端附近的限制性位点与限制性核酸内切酶的反应效率不如内部位点。例如,HpaII 和 MnoI 需要至少一个碱基位于 5 5 5^(')5^{\prime} 末端的识别序列进行裂解(Baumstark 等人,1979 年)。
由于涉及的长度变化很小,因此不能使用迁移率偏移直接监测末端限制性位点消化的效率。然而,在这些情况下,连接测定可用于确定消化效率。在该检测中,消化的 PCR 产物与标准 DNA(例如噬菌体 lambda DNA)的相容限制性内切物混合,并使用 T4 DNA 连接酶连接。如果存在适当的粘性末端,则扩增的 DNA 分子将转化为异质大小的高分子量连接产物。否则,扩增产物的迁移率将不受连接的影响。
裂解识别序列的结束 (Baumstark 等人,1979)。由于涉及的长度变化很小,因此不能使用迁移率偏移直接监测末端限制性位点消化的效率。然而,在这些情况下,连接测定可用于确定消化效率。在该检测中,消化的 PCR 产物与标准 DNA(例如噬菌体 lambda DNA)的相容限制性内切物混合,并使用 T4 DNA 连接酶。如果存在适当的粘性末端,则扩增的 DNA 分子将转化为异质大小的高分子量连接产物。

避免内部限制性位点困难的一种方法是将“罕见”限制性位点掺入引物中。不幸的是,只有一种合适的酶 Not I 可用。这种方法尚未被证明是可行的,因为它与平末端连接相比没有优势,并且在消化 Not I 位点时遇到了困难(Tom Schmidt,个人通信)。
避免内部限制性位点困难的一种方法是将 "罕见 "限制性位点掺入引物中。不幸的是,只有一种合适的酶 Not I 可用。这种方法尚未被证明是可行的,因为它与平末端连接相比没有优势,并且在消化 Not I 位点时遇到了困难(Tom Schmidt,个人通信)。

2. 平末端克隆技术  2.平末端克隆技术

平末端连接程序是目前克隆 PCR 反应产物最实用的方法。平淡的双链 DNA 分子 5 5 5^(')5^{\prime}磷酸盐和 3' 羟基可以通过 T4 DNA 连接酶连接。该反应不如“粘性末端”连接有效,可能是因为底物的非共价氢键使“粘性末端”反应基本上是一级的。
平淡的双链 DNA 分子 5 5 5^(')5^{\prime} 磷酸盐和 3' 羟基可以通过 T4 DNA 连接酶连接。该反应不如 "粘性末端 "连接有效,可能是因为底物的非共价氢键使 "粘性末端 "反应基本上是一级的。
酶促反应生成的双链分子通常具有 5' 磷酸基和 3' 羟基。合成的 DNA 分子缺乏 5' 磷酸盐,尽管这些磷酸盐可以在使用噬菌体 T4 多核苷酸激酶合成后添加。由于 3 3 3^(')3^{\prime}羟基不能连接到 5 5 5^(')5^{\prime}hydroxyl,只有 3 3 3^(')3^{\prime}合成 DNA 的末端是连接反应的合适底物。
酶促反应生成的双链分子一般都有 5'磷酸和 3'羟基。合成的 DNA 分子缺乏 5'磷酸,不过可以在合成后使用噬菌体 T4 多核苷酸激酶添加这些磷酸。由于 3 3 3^(')3^{\prime} 羟基不能与 5 5 5^(')5^{\prime} 羟基连接,因此只有合成 DNA 的 3 3 3^(')3^{\prime} 端适合作为连接反应的底物。
聚合酶链反应生成的 DNA 分子具有合成的
5 5 5^(')5^{\prime}Termini, 缺乏 5 5 5^(')5^{\prime}磷酸盐。因此,如果连接到平末端载体中,它们会在每条链上产生带有单个缺口的环状分子。幸运的是,这些有缺口的分子可以有效地转化细菌。
聚合酶链反应产生的 DNA 分子具有合成的 5 5 5^(')5^{\prime} 端部,缺乏 5 5 5^(')5^{\prime} 磷酸。因此,如果将它们连接到钝末端载体中,就会产生每条链上都有一个缺口的环状分子。幸运的是,这些有缺口的分子可以有效地转化细菌。
许多方案要求在进行平末端连接之前将亲配对 PCR 片段作为初始步骤。这是不必要的,并且会使 PCR 片段与自身连接,形成环状和聚体。
许多方案都要求在进行钝端连接之前先将 PCR 片段连接起来。但这是不必要的,这样会使 PCR 片段与自身连接,形成圆环和连接体。

酶促去除也很常见
5 5 5^(')5^{\prime}磷酸盐,这将防止载体在分子内反应中循环化。通常使用细菌碱性磷酸酶或小牛肠磷酸酶进行此反应。虽然这种处理消除了分子内反应,但它的缺点是它需要合成插入物的亲缘关系。
酶法去除载体末端的 5 5 5^(')5^{\prime} 磷酸盐也很常见,这将防止载体在分子内反应中环化。这种反应通常使用细菌碱性磷酸酶或小牛肠磷酸酶。虽然这种处理方法可以消除分子内反应,但它的缺点是需要对合成插入物进行基因转化。
无需修饰即可将 PCR 片段直接连接到载体中要简单得多。在该反应中,载体和插入片段的比率和浓度都很重要。如果浓度太低,则线性化载体将被连接到没有插入片段的环状质粒中。
通常使用细菌碱性磷酸酶或小牛肠磷酸酶进行此反应。虽然这种处理消除了分子内反应,但它的缺点是它需要合成插入物的亲缘关系。无需修饰即可将 pcr 片段直接连接到载体中要简单得多。在该反应中,载体和插入片段的比率和浓度都很重要。

使用不含钠的连接缓冲液也很重要,它显着抑制 T4 连接酶的平末端连接活性。
使用不含钠的连接缓冲液也很重要,因为钠会严重抑制 T4 连接酶的钝端连接活性。
由于平末端连接不如粘性末端连接有效,因此感受态细胞的转化效率是一个重要因素。必须小心确保尽可能高的转换效率
使用不含钠的连接缓冲液也很重要,它显着抑制 T4 连接酶的平末端连接活性。由于平末端连接不如粘性末端连接有效,因此感受态细胞的转化效率是一个重要因素。必须小心确保尽可能高的转化效率

  可能。
在某些情况下,平末端连接可能会失败,因为 PCR 产物不是平末端的。这个问题可以通过使用 DNA 聚合酶 I 的 Klenow 片段“抛光”末端来克服。这可以通过采取以下步骤轻松完成:(a) 扩增后,在沸水浴中加热 PCR 反应混合物 10 分钟(此步骤使 Taq 聚合酶失活);(b) 调整 Mg 2 + Mg 2 + Mg^(2+)\mathrm{Mg}^{2+}浓度至 10 mM;© 添加 2 单位的 Klenow 片段;(d) 在室温下孵育 30 分钟。
在某些情况下,平末端连接可能会失败,因为 PCR 产物不是平末端的。这个问题可以通过使用 DNA 聚合酶 I 的 Klenow 片段 "抛光 "末端来克服。这可以通过采取以下步骤轻松完成:(a)扩增后,在沸水浴中加热 PCR 反应混合物 10 分钟(此步骤使 Taq 聚合酶失活);(b)。扩增后,在沸水浴中加热 PCR 反应混合物 10 分钟(此步骤使 Taq 聚合酶失活);(b)调整 Mg 2 + Mg 2 + Mg^(2+)\mathrm{Mg}^{2+} .调整 Mg 2 + Mg 2 + Mg^(2+)\mathrm{Mg}^{2+} 浓度至 10 mM;© 添加 2 单位的 Klenow 片段;(d) 在室温下孵育 30 分钟在室温下孵育 30 分钟。

3. 平端结扎程序  3.平端结扎程序

(a) 剪切 1 μ g 1 μ g 1mug1 \mu \mathrm{~g}载体与合适的限制性内切酶(如 SmaI)形成平末端,它在 CCC 和 GGG 之间形成平末端。通过苯酚提取和从乙醇溶液中沉淀来纯化载体。重新挂起到 10 μ g / ml 10 μ g / ml ∼10 mug//ml\sim 10 \mu \mathrm{~g} / \mathrm{ml} H 2 O H 2 O H_(2)O\mathrm{H}_{2} \mathrm{O}. (b) 通过吸附到玻璃珠上或通过色谱柱方案(例如 Qiagen)纯化插入片段(PCR 片段)。这将去除扩增引物。通常不需要凝胶纯化。
.(b)通过吸附到玻璃珠上或通过色谱柱方案(例如 Qiagen)纯化插入片段(PCR 片段)。这将去除扩增引物。通常不需要凝胶纯化。

© 将 15 ng 载体和 250 ng PCR 反应产物干燥到底部
将 15 ng 载体和 250 ng PCR 反应产物干燥到底部
0.75 ml 0.75 ml 0.75-ml0.75-\mathrm{ml}微量离心管。 (d) 添加  微量离心管。添加 10 μ l 10 μ l 10 mul10 \mu \mathrm{l}的连接反应混合物。请勿混合。 (e) 孵育 6 小时至 10 月
的反应连接混合物。 请勿混合。孵育 6 小时至 10 月
17 C 17 C 17^(@)C17^{\circ} \mathrm{C}.
(a)剪切 1 μ g 1 μ g 1mug1 \mu \mathrm{~g} 载体与合适的限制性内切酶(如 SmaI)形成平末端,它在 CCC 和 GGG 之间形成平末端。通过苯酚提取和从乙醇溶液中沉淀来纯化载体。重新挂起到 10 μ g / ml 10 μ g / ml ∼10 mug//ml\sim 10 \mu \mathrm{~g} / \mathrm{ml} H 2 O H 2 O H_(2)O\mathrm{H}_{2} \mathrm{O} 0.75 ml 0.75 ml 0.75-ml0.75-\mathrm{ml} 微量离心管。 (d)添加 10 μ l 10 μ l 10 mul10 \mu \mathrm{l} 17 C 17 C 17^(@)C17^{\circ} \mathrm{C} .添加 10 μ l 10 μ l 10 mul10 \mu \mathrm{l} 17 C 17 C 17^(@)C17^{\circ} \mathrm{C} .
对于 PCR 扩增的小亚基 rDNA,该程序在噬菌体 M13 载体中每 25 个非重组(蓝色)产生约 1 个重组噬菌斑(白色)。

(vi) 扩增基因的直接测序  (vi)扩增基因的直接测序

聚合酶链反应产物可以直接测序,从而避免了基因克隆的步骤 (Gyllensten, 1989)。除了简单之外,这种方法还避免了因 Taq 聚合酶错误掺入核苷酸而导致的错误(参见 E(i) 部分)。可以避免错误掺入的核苷酸,因为它们仅存在于一小部分产物分子中,因此在测序凝胶上不可见。例如,在最坏的情况下 - 用一个 tem 板分子引发的反应在第一轮复制中引入的误差 - 该误差将仅存在于 25 % 25 % 25%25 \%的产品分子。因此,直接测序是唯一有效的方法,适用于罕见突变会混淆数据的解释。
聚合酶链反应产物可以直接测序,从而避免了基因克隆的步骤 (Gyllensten, 1989)。除了简单之外,这种方法还避免了因 Taq 聚合酶错误掺入核苷酸而导致的错误(参见 E(i)部分)。部分)。可以避免错误掺入的核苷酸,因为它们仅存在于一小部分产品分子中,因此在测序凝胶上不可见。例如,在最坏的情况下 - 用一个 tem 板分子引发的反应在第一轮复制中引入的误差 - 该误差将仅存在于 25 % 25 % 25%25 \% 的产品分子。因此,直接测序是唯一有效的方法,适用于罕见突变会混淆数据的解释。
尽管双链 PCR 产物可以作为直接测序的模板(Wrischnik等人,1987 年;Wong et al., 1987;Saiki等人,1988b),它们通常不会产生从双链质粒或单链DNA分子的测序中获得的那么多的可用序列信息(Engelke等人,1988;Gyllensten 和 Erlich,1988 年;Stoflet et al., 1988;Higuchi 和 Ochman,1989 年;Mitchell 和 Merrill,1989 年)。这显然是由于线性双链模板的快速再结合引起的,其中排除了测序引物。拓扑约束显然起到了减慢变性质粒 DNA 的重新结合的作用,因此使其比线性双链模板更容易测序。
尽管双链 PCR 产物可以作为直接测序的模板(Wrischnik 等人,1987 年;Wong et al.,1987 年;Saiki 等人,1988 年),它们通常不会产生从双链质粒或单链 DNA 分子的测序中获得的那么多的可用序列信息(Engelke 等人,1988 年;Gyllensten 和 Erlich,1988 年;Stoflet et al.拓扑约束显然起到了减慢变性质粒 DNA 的重新结合的作用,因此使其比线性双链模板更容易测序。
单链 DNA 产物可以使用“不对称引发”方法通过聚合酶链反应合成。在“不对称引物”中,其中一个寡核苷酸引物的浓度显著降低,结果是该引物在早期复制周期中耗尽。在仅存在一种引物的情况下,扩增将不再呈指数级进行。相反,单链副本将由过量提供的引物制成。
单链 DNA 产物可以使用 "不对称引发 "方法通过聚合酶链反应合成。在 "不对称引物 "中,其中一个寡核苷酸引物的浓度显著降低,结果是该引物在早期复制周期中耗尽。在仅存在一种引物的情况下,扩增将不再呈指数级进行。相反,单链副本将由过量提供的引物制成。
100:1 的引物比例通常提供良好的结果。重要的是限制性引物的浓度不能过高;否则,反应底物将在限制性引物耗尽之前耗尽,并且不会形成单链产物。反应开始时应存在约 0.5 pmole 的限制性引物。
对于长度超过约 1 kb 碱基的序列,不对称引物效率低下。引物可以构建以扩增和直接测序较长的基因,将其作为一系列较短的重叠片段进行测序。 Stoflet 及其同事 (1988) 描述了一种产生单链 DNA 的替代方法。他们将噬菌体启动子连接到一个 PCR 引物上,并通过转录扩增产物产生单链 RNA 拷贝。然后使用逆转录酶对 RNA 进行测序。这种方法虽然有效,但在扩增后涉及一个额外的酶促步骤。可能是因为它的复杂性,这种方法还没有得到广泛使用。
对于长度超过约 1 kb 碱基的序列,不对称引物效率低下。引物可以构建以扩增和直接测序较长的基因,将其作为一系列较短的重叠片段进行测序。 Stoflet 及其同事 (1988)描述了一种产生单链 dna 的替代方法。他们将噬菌体启动子连接到一个 pcr 引物上,并通过转录扩增产物产生单链 rna 拷贝。描述了一种产生单链 DNA 的替代方法。他们将噬菌体启动子连接到一个 PCR 引物上,并通过转录扩增产物产生单链 RNA 拷贝。然后使用逆转录酶对 RNA 进行测序。这种方法虽然有效,但在扩增后涉及一个额外的酶促步骤。可能是因为它的复杂性,这种方法还没有得到广泛使用。

Mitchell 和 Merrill (1989) 描述了一种通过亲和层析从 PCR 反应中生成单链 DNA 的技术。使用一种生物素连接的引物扩增 DNA。所得 PCR 产物可与链霉亲和素连接的琼脂糖结合;然而,在碱性变性条件下,只有从琼脂糖中洗脱从缺乏生物素部分的扩增引物合成的 DNA 链。链霉亲和素-生物素相互作用的可靠性表明,该技术最终可能会取代其他技术,成为从 PCR 反应中分离和制备单链 DNA 模板的首选方法。
Mitchell 和 Merrill (1989) 描述了一种通过亲和层析从 pcr 反应中生成单链 dna 的技术。描述了一种通过亲和层析从 pcr 反应中生成单链 dna 的技术。使用一种生物素连接的引物扩增 dna。所得 pcr 产物可与链霉亲和素连接的琼脂糖结合;然而,在碱性变性条件下,只有从琼脂糖中洗脱从缺乏生物素部分的扩引物合成的 dna 链。链霉亲和素-生物素相互作用的可靠性表明,该技术最终可能会取代其他技术,成为从 pcr 反应中分离和制备单链 dna 模板的首选方法。

(vii) 扩增基因的限制性分析  (vii) 扩增基因的限制性分析扩增基因的限制性分析

PCR 产物的限制性片段长度多态性 (RFLP) 提供了一种区分同源基因的快速方法。这种方法提供的信息比测序少得多,并且可应用于数据的系统发育分析类型存在限制,但该方法的相对速度使其适用于需要快速比较许多不同基因拷贝的场合。图 7.8 显示了使用 PCR 筛选从天然微生物种群中分离的 16 个 S rDNA 克隆的示例。在这种情况下,RFLP 用于对克隆进行排序和鉴定,以便可以通过测序进一步表征独特的克隆。
pcr 产物的限制性片段长度多态性 (rflp)提供了一种区分同源基因的快速方法。这种方法提供的信息比测序少得多,并且可应用于数据的系统发育分析类型存在限制,但该方法的相对速度使其适用于需要快速比较许多不同基因拷贝的场合。图 7.8 显示了使用 PCR 筛选从天然微生物种群中分离的 16 个 S rDNA 克隆的示例。在这种情况下,RFLP 用于对克隆进行排序和鉴定,以便可以通过测序进一步表征独特的克隆。
如果扩增的 DNA 主要来自单个基因,则 PCR 产物可以直接用限制性核酸内切酶消化。这种方法非常简单;扩增产物只是
图 7.8 使用限制性片段长度多态性对来自天然微浮游生物种群的克隆 16 个 S rRNA 基因进行排序和分析。从马尾藻海微浮游生物基因组 DNA 中扩增基因,并克隆到噬菌粒载体 Bluescript 中。A,1 千克碱基 DNA 分子量标准(Bethesda Research Laboratories);B-J,含有克隆质粒的限制性内切物 16 S 16 S 16 S16 SrRNA 基因。K,无插入片段的线性化质粒。重组质粒用限制性核酸内切酶 BamHI 和 PstI 消化,它们在克隆基因两侧的位点切割,偶尔在基因内切割。凝胶组成为 0.75 % 0.75 % 0.75%0.75 \%西肯姆, 0.75 % 0.75 % 0.75%0.75 \%NuSieve 琼脂糖。通过加入 0.1 体积的 2 M 乙酸钠和 2 体积的乙醇沉淀,并重悬于适合限制性内切酶消化的缓冲液中。
酶消化后,限制性片段可以在聚丙烯酰胺或琼脂糖凝胶上显示。

(viii) PCR 作为定量检测  (viii) 作为定量检测PCR 作为定量检测

很容易设想 PCR 可能用作环境或临床样本中特定基因的检测的应用。在需要定性信息的情况下(换句话说,基因是否存在),PCR 提供了一种非常灵敏的方法。然而,使 PCR 非常敏感的相同属性可能会给定量检测的开发带来问题。如下所述,这个问题可以通过在 PCR 反应中加入内标来规避(Gilliland等人,1990 年;Wang 和 Mark,1990 年)。
很容易设想 PCR 可能用作环境或临床样本中特定基因的检测的应用。在需要定性信息的情况下(换句话说,基因是否存在),PCR 提供了一种非常灵敏的方法。然而,使 PCR 非常敏感的相同属性可能会给定量检测的开发带来问题。如下所述,这个问题可以通过在 PCR 反应中加入内标来规避(Gilliland 等人,1990 年;Wang 和 Mark,1990 年)。

为了说明这一点,假设使用 PCR 来尝试定量确定一系列环境样本中 NIF 基因的相对数量。假设所有反应条件(包括模板浓度)都保持不变,NIF 基因 PCR 产物的量是否反映了原始样品中 NIF 基因的量?在实践中,任何影响
为了说明这一点,假设使用 pcr 来尝试定量确定一系列环境样本中 nif 基因的相对数量。假设所有反应条件(包括模板浓度)都保持不变,nif 基因 pcr 产物的量是否反映了原始样品中 nif 基因的量? 在实践中,任何影响
I I II,由于方程 (1),延伸反应的效率将使结果无法解释。例如,对于 30 轮扩增,导致 I 降低 5% 的抑制剂将导致 79 % 79 % 79%79 \%降低 N N NN、产品的数量。这些问题可以通过在 PCR 反应中加入内标来克服。理想情况下,标准品是与扩增引物的结合位点匹配的模板 DNA,但其中间序列与靶标的序列不同。然后可以使用扩增的靶产物与扩增的对照模板产物的比率来比较样品中靶基因的相对丰度(Choi等人,1989;Wang 和 Mark,1990 年)。
这些问题可以通过在 PCR 反应中加入内标来克服。理想情况下,标准品是与扩增引物的结合位点匹配的模板 DNA,但其中间序列与靶标的序列不同。然后可以使用扩增的靶产物与扩增的对照模板产物的比率来比较样品中靶基因的相对丰度(Choi 等人,1989;Wang 和 Mark,1990 年)。

之间的非线性关系
I I II N N NN还会影响引物与混合样品中相关模板可能存在差异结合的应用。其影响可以是积极的,也可以是消极的,具体取决于实验策略,如以下示例所示。假设 PCR 用于从混合细菌种群中扩增真细菌的 16 个 S rRNA 基因,以便为微生物群落的不可培养成员提供遗传标记。混合样品中不同种类的引物靶结构域的微小变化会产生什么影响?答案是,给定 16S rRNA PCR 产物的相对丰度几乎肯定不会定量反映混合样品中物种的实际丰度。通过以低严格性进行杂交,可以最大限度地减少这种偏差的影响。偏差并不妨碍使用扩增进行样本之间的相对比较或分离遗传标记。关于这些限制,应该注意的是,其他克隆方法(例如 shotgun 克隆方法)也可能使克隆表示产生偏差,但也具有进一步的缺点,例如连接反应的要求,以及方案的总体费用和复杂性。
其影响可以是积极的,也可以是消极的,具体取决于实验策略,如以下示例所示。假设 PCR 用于从混合细菌种群中扩增真细菌的 16 个 S rRNA 基因,以便为微生物群落的不可培养成员提供遗传标记。混合样品中不同种类的引物靶结构域的微小变化会产生什么影响? 答案是,给定 16S rRNA PCR 产物的相对丰度几乎肯定不会定量反映混合样品中物种的实际丰度。通过以低严格性进行杂交,可以最大限度地减少这种偏差的影响。关于这些限制,应该注意的是,其他克隆方法(例如 shotgun 克隆方法)也可能使克隆表示产生偏差,但也具有进一步的缺点,例如连接反应的要求,以及方案的总体费用和复杂性。

E. 使用 PCR 的误差来源
E.使用 PCR 的误差来源

(i) Taq 聚合酶读数错误  (i)Taq 聚合酶读数错误

在克隆和测序 PCR 产物时,碱基掺入错误导致的复制错误可能是一个令人担忧的问题。Innis 等人 (1988) 报告了 35 个 PCR 循环后,4000 至 5000 个碱基对的错误率为 1 个。Dunning 等人(1988 年)报告了 8000 个核苷酸测序中的 22 个可能错误——每 364 个核苷酸中有一个错误( 0.3 % 0.3 % 0.3%0.3 \%).Innis 等人认为,错误掺入会促进链终止,从而减弱缺陷分子的扩增。
在克隆和测序 PCR 产物时,碱基掺入错误导致的复制错误可能是一个令人担忧的问题。Innis 等人(1988 年)报告了 35 个 PCR 循环后,4000 至 5000 个碱基对的错误率为 1 个。报告了 35 个 PCR 循环后,4000 至 5000 个碱基对的错误率为 1 个。Dunning 等人(1988 年)报告了 8000 个核苷酸测序中的 22 个可能错误--每 364 个核苷酸中有一个错误( 0.3 % 0.3 % 0.3%0.3 \% ).Innis 等人认为,错误掺入会促进链终止,从而减弱缺陷分子的扩增。
报告错误率的巨大差异可能反映了对尚未充分探索的反应条件的依赖性。由于重复复制的简单加性效应,可以预期误差会随着扩增轮次的增加而线性增加。在某些情况下,在复制的晚期循环中核苷酸底物的耗竭可能会导致错误率增加。
PCR 伪影对微生物系统学研究有什么影响?与观察到的微生物物种之间的相似性相比,报告的最高错误率 (0.0025) 可以忽略不计。因此,Taq 聚合酶碱基掺入错误不太可能导致系统发育推断错误。
pcr 伪影对微生物系统学研究有什么影响? 与观察到的微生物物种之间的相似性相比,报告的最高错误率 (0.0025)。可以忽略不计。因此,Taq 聚合酶碱基掺入错误不太可能导致系统发育推断错误。
来自许多嗜热细菌的 DNA 聚合酶已被报道并部分表征。有充分的理由乐观地认为,引入替代热稳定酶将减少 PCR 技术目前的一些局限性。

(ii) 嵌合基因产品  (ii) 嵌合基因产品嵌合基因产品

使用 PCR 扩增来自同源基因混合种群(例如混合微生物种群 DNA 中的 rRNA 基因)的基因的一个考虑因素是担心可能产生嵌合扩增产物。嵌合产物的形成可以通过一些模板在引物延伸期间未完全复制的机制发生。在随后的循环中,部分拷贝可以重新退火到相关的同系物,以便在第二个模板上进一步扩展。结果将是创建包含从不同同源物复制的区域的嵌合基因。 Shuldiner 等人 (1989) 报道了一个案例,其中明显的嵌合胰岛素前体基因被克隆为 PCR 的伪影,但到目前为止我们还没有观察到嵌合产物的例子。我们的实验室已经克隆了
使用PCR 扩增来自同源基因混合种群(例如混合微生物种群 DNA 中的rRNA 基因)的基因的一个考虑因素是担心可能产生嵌合扩增产物。嵌合产物的形成可以通过一些模板在引物延伸期间未完全复制的机制发生。 在随后的循环中,部分拷贝可以重新退火到相关的同系物,以便在第二个模板上进一步扩展。 结果将是创建包含从不同同源物复制的区域的嵌合基因。报道了一个案例,其中明显的嵌合胰岛素前体基因被克隆为 pcr 的伪影,但到目前为止我们还没有观察到嵌合产物的例子。

16 S 16 S 16 S16 S使用 PCR 从天然微浮游生物种群中获取 rRNA 基因。我们研究的克隆基因分为两个不相关的系统发育组。嵌合基因产物可能看起来介于两组之间。没有检测到这样的 “杂交种”。此外,嵌合基因可能被认为违反了高度保守的二级结构 16 S 16 S 16 S16 SrRNA,它由代偿性突变维持。没有发现这种违反二级结构的行为。相反,对一级序列、点图和二级结构的分析表明,嵌合基因不在我们研究的克隆中(图 7.4)。
16 S 16 S 16 S16 S 使用 PCR 从天然微浮游生物种群中获取 rRNA 基因。我们研究的克隆基因分为两个不相关的系统发育组。"杂交种"。此外,嵌合基因可能被认为违反了高度保守的二级结构 16 S 16 S 16 S16 S rRNA,它由代偿性突变维持。没有发现这种违反二级结构的行为。相反,对一级序列、点图和二级结构的分析表明,嵌合基因不在我们研究的克隆中(图 7.4)。
Innis 等人 (1988) 报道 Taq 聚合酶具有很强的合成能力。在存在足够 dNTP 底物的情况下,过早终止是罕见的事件。这表明嵌合基因,如错误掺入的核苷酸,可能是晚期 dNTP 底物浓度低的结果。因此,我们建议限制扩增循环的数量,使其不超过 25 % 25 % 25%25 \%最初存在的底物核苷酸被掺入。请注意,表 7.1 中列出的条件足以合成 26 μ g 26 μ g 26 mug26 \mu \mathrm{~g}的 DNA,假设碱基以等摩尔浓度存在于模板序列中。
Innis 等人 (1988)报道 Taq 聚合酶具有很强的合成能力。在存在足够 dNTP 底物的情况下,过早终止是罕见的事件。这表明嵌合基因,如错误掺入的核苷酸,可能是晚期 dNTP 底物浓度低的结果。因此,我们建议限制扩增循环的数量,使其不超过 25 % 25 % 25%25 \% 最初存在的底物核苷酸被掺入。请注意,表 7.1 中列出的条件足以合成 26 μ g 26 μ g 26 mug26 \mu \mathrm{~g} 的 DNA,假设碱基以等摩尔浓度存在于模板序列中。

(iii) 污染  (iii)污染

在使用 PCR 作为基因存在的测试的情况下,污染会造成严重的问题(Lo et al., 1988;Kwok 和 Higuchi,1989 年)。示例包括 PCR 的诊断用途,例如检测临床标本中的病毒或细菌基因,以及检测生物体中的基因。的敏感性 P C R P C R PCRP C R甚至允许检测单个基因拷贝。因此,玻璃器皿、试剂或移液装置的轻微污染很容易导致假阳性的形成。这些问题使基因检测成为 PCR 最具挑战性的用途之一。
在使用 PCR 作为基因存在的测试的情况下,污染会造成严重的问题(Lo et al.1988;Kwok 和 Higuchi,1989 年)。示例包括 PCR 的诊断用途,例如检测临床标本中的病毒或细菌基因,以及检测生物体中的基因。的敏感性 P C R P C R PCRP C R 甚至允许检测单个基因拷贝。因此,玻璃器皿、试剂或移液装置的轻微污染很容易导致假阳性的形成。这些问题使基因检测成为 PCR 最具挑战性的用途之一。
污染问题要求严格清洁和仔细控制。PCR 工作最好在与常规操作靶基因的实验室部分物理隔离的情况下进行。试剂、玻璃器皿和移液装置应分开存放。带有一次性吸头和柱塞的外置活塞式移液装置可防止吸入移液器的遗传物质污染。

确认

我感谢我的同事 Theresa Britschgi、Volker Huss 和 Nathan Wood 提供文中所示的 PCR 示例。我还要感谢 Katharine Field 对手稿的批判性评价。这项工作得到了美国国家科学基金会对 SJG 和俄勒冈农业实验站的 BSR-8818167 资助的部分支持,其中技术报告编号为 9056。
这项工作得到了美国国家科学基金会对 SJG 和俄勒冈农业实验站的 BSR-8818167 资助的部分支持,其中技术报告编号为 9056。

F. 参考资料  F.参考资料

鲍姆斯塔克,BR,罗伯茨,RJ 和 Rajbhandary,UL(1979 年)。使用短合成 DNA 双链体作为限制性核酸内切酶 Hpall 和 mnoI 的底物。J. Biol. Chem, 254: 8943-8950. Brosius, J., Dull, TJ, Sleeter, DD 和 Noller, HF (1981)。来自大肠杆菌的核糖体 RNA 操纵子的基因组织和一级结构。分子生物学杂志148:107-127。
鲍姆斯塔克,BR,罗伯茨,RJ 和 Rajbhandary,UL(1979 年)。使用短合成 DNA 双链体作为限制性核酸内切酶 Hpall 和 mnoI 的底物。Biol.Chem, 254: 8943-8950.Brosius, J., Dull, TJ, Sleeter, DD 和 Noller, HF (1981)。来自大肠杆菌的核糖体 RNA 操纵子的基因组织和一级结构。分子生物学杂志 148:107-127。

Chen, A., Edgar, DB和Trela, JM (1976)。来自 Chen, A.、Edgar, DB和 Trela, JM (1976) 的脱氧核糖核酸聚合酶。脱氧核糖核酸极度嗜热菌 Thermus aquaticus。I. 细菌。127:1550-1557。
Chen, A., Edgar, DB和 Trela, JM (1976)。 来自 Chen, A.、Edgar, DB和 Trela, JM (1976)的脱氧核糖核酸聚合酶。的脱氧核糖核酸聚合酶。脱氧核糖核酸极度嗜热菌 Thermus aquaticus。细菌。127:1550-1557。

Choi, Y., Kotzin, B., Herron, L., Callahan, J., Marrack, P. 和 Kappler, J. (1989)。金黄色葡萄球菌毒素“超抗原”与人类 T 细胞的相互作用。美国国家科学院院刊葡萄球菌 86:8941-8945。
Choi, Y., Kotzin, B., Herron, L., Callahan, J., Marrack, P. 和 Kappler, J. (1989)。金黄色葡萄球菌毒素 "超抗原 "与人类 T 细胞的相互作用。美国国家科学院院刊葡萄球菌 86:8941-8945。

邓宁,AM,塔木德,P. 和汉弗莱斯,S.(1988 年)。聚合酶链中的错误 Dunning, A. M., Talmud, P. 和 Hump 反应。核酸研究16:10393。
邓宁,AM,塔木德,P. 和汉弗莱斯,S.(1988 年)。和汉弗莱斯,S.(1988 年)。聚合酶链中的错误 Dunning,A. M.,Talmud,P. 和 Hump 反应。核酸研究 16:10393。

反应。核酸研究16:10393。恩格尔克,DR,Hoener,PA 和 Collins,FS(1988 年)。酶扩增的人基因组 DNA 的直接测序。美国国家科学院院刊 85:544-548
Erlich, HA (ed.) (1989)。PCR 技术 - DNA 扩增的原理和应用。纽约:斯托克顿出版社。
Erlich, HA (ed.)。(1989)。pcr 技术 - dna 扩增的原理和应用。纽约:斯托克顿出版社。

Fitch, WM 和 Margoliash, E. (1967)。系统发育树的构建:一种基于从细胞色素 c 序列估计的突变距离的方法具有普遍适用性。科学155:279-284。 Gilliland, G.、Perrin, S. 和 Bunn, H. (1990)。用于定量 mRNA 的竞争性 PCR。在:PCR 方案-方法和应用指南(Innis, MA、Gelfand, DH、Sninsky, JJ 和 White, TJ,编辑),第 60-69 页。圣地亚哥:学术出版社。
Fitch, WM 和 Margoliash, E. (1967)。系统发育树的构建:一种基于从细胞色素 c 序列估计的突变距离的方法具有普遍适用性。科学 155:279-284。 Gilliland, G.、Perrin, S. (1990)。和 Bunn, H. (1990)。用于定量 mRNA 的竞争性 PCR。在:PCR 方案-方法和应用指南(Innis, MA、Gelfand, DH、Sninsky, JJ 和 White, TJ,编辑),第 60-69 页。圣地亚哥:学术出版社。
乔瓦诺尼,SJ,德隆,EF,奥尔森,GJ 和佩斯,NR (1988a)。用于鉴定单个微生物细胞的系统发育组特异性寡脱氧核苷酸探针。J. 细菌学杂志170:720-726。乔瓦诺尼,SJ,特纳,S.,奥尔森,GJ,巴恩斯,S.,莱恩,DJ和佩斯,NR(1988b)。蓝藻和绿色叶绿体之间的进化关系。细菌学杂志170:3584-3592。
乔瓦诺尼,SJ,布里奇吉,TB,莫耶,CL和菲尔德,KG(1990)。马尾藻海浮游细菌的遗传多样性。自然 344:60-63。格雷,MW (1983)。质体和线粒体的细菌祖先。生物科学 33:693-699。
乔瓦诺尼,SJJ,布里奇吉,TB,莫耶,CL和菲尔德,kg(1990)。 马尾藻海浮游细菌的遗传多样性。自然 344:60-63。

美国吉伦斯滕 (1989)。体外扩增 DNA 的直接测序。在:PCR 技术DNA 扩增的原理和应用 (Erlich, HA, ed.),第 5 章。纽约:斯托克顿出版社。Gyllensten, UB 和 Erlich, HA (1988)。通过聚合酶链反应生成单链 DNA 及其在 HLA-DQalpha 基因座直接测序中的应用。美国国家科学院院刊 85:7652-7656。
美国吉尔吉斯伦斯滕 (1989)。体外扩增 DNA 的直接测序。在:PCR 技术 DNA 扩增的原理和应用 (Erlich, HA, ed.),第 5 章。纽约:斯托克顿出版社。Gyllensten, UB 和 Erlich, HA (1988)。通过聚合酶链反应生成单链 DNA 及其在 HLA-DQalpha 基因座直接测序中的应用。美国国家科学院院刊 85:7652-7656。

Haun, G. 和 Göbel, U. (1987)。寡核苷酸探针,用于 Proteus 属代表的属种和亚种特异性鉴定。FEMS 微生物学。Lett. 43: Higuchi, RG 和 Ochman, H. (1989)。聚合酶链反应后通过核酸外切酶消化生产单链 DNA 模板。核酸研究17:5865。Huss, VA 和 Giovannoni, SJ (1989)。来自小球藻的叶绿体小亚基核糖体 RNA 基因的一级结构。核酸研究17:9487。
Haun, G. 和 Göbel, U. (1987)。寡核苷酸探针,用于 Proteus 属代表的属种和亚种特异性鉴定。FEMS 微生物学。43: Higuchi, RG 和 Ochman, H. (1989)。聚合酶链反应后通过核酸外切酶消化生产单链 DNA 模板。核酸研究17:5865。

Innis, MA, Myambo, KB, Gelfand, DH 和 Brow, MAD (1988)。使用 Thermus aquaticus DNA 聚合酶进行 DNA 测序,并对 PCR 扩增的 DNA 进行直接测序。美国国家科学院院刊 85:9436-9440。 Innis, MA, Gelfand, DH, Sninsky, JJ 和 White, T. (eds) (1990)。PCR 实验方案 - 方法和应用指南。圣地亚哥:学术出版社。
Innis, MA, Myambo, KB, Gelfand, DH 和 Brow, MAD (1988)。使用 Thermus aquaticus DNA 聚合酶进行 DNA 测序,并对 PCR 扩增的 DNA 进行直接测序。美国国家科学院院刊 85:9436-9440。Innis, MA, Gelfand, DH, Sninsky, JJ 和 White, T. (eds)。(1990)。PCR 实验方案 - 方法和应用指南。圣地亚哥:学术出版社。
杰弗里斯,AJ,威尔逊,V.,诺伊曼,R.和凯特,J.(1988)。通过聚合酶链反应扩增人类小卫星:实现单细胞的 DNA 指纹图谱。核酸研究 16:10953-10971。 Kwoz, S. 和 Higuchi, R. (1989)。避免 PCR 假阳性。自然 339:237。
李,H.,吉伦斯滕,UB,崔,X.,Saiki,RK,Erlich,H.和Arnheim,N.(1988)。扩增和分析单个人类精子和二倍体细胞中的 DNA 序列。自然 335:14-417。 Lo, Y., Mehal, WZ 和 Fleming, KA (1988)。假阳性结果和聚合酶链反应。柳叶刀 2:679。
李,H.,吉伦斯滕,UB,崔,X.,Saiki,RK,Erlich,H.和Arnheim,N.(1988)。扩增和分析单个人类精子和二倍体细胞中的 DNA 序列。自然 335:14-417。 Lo,Y.,Mehal,WZ 和 Fleming,KA (1988)。假阳性结果和聚合酶链反应。柳叶刀 2:679。

Medlin, L., Elwood, HJ, Stickel, S. 和 Sogin, ML(1988 年)。酶促扩增的真核生物 16S 样 rRNA 编码区的表征。基因 71:491-499。梅辛,J.(1983 年)。用于克隆的新 M13 载体。方法 Enzymol,101:20-78。
米切尔,LG 和梅里尔,CR(1989 年)。聚合酶链反应后用于双脱氧测序的单链 DNA 的亲和生成。肛门。生物化学。178: 239-242. Mullis, KB和Faloona, F.(1987)。通过聚合酶催化的链式反应在体外特异性合成 DNA。方法 Enzymol。155: 335-350.
米切尔,LG 和梅里尔,CR(1989 年)。聚合酶链式反应后用于双脱氧测序的单链 DNA 的亲和生成。Mullis, KB 和 Faloona, F.(1987)。通过聚合酶催化的链式反应在体外特异性合成 DNA。方法 Enzymol。

奥尔森,GJ(1988 年)。使用核糖体 RNA 进行系统发育分析。方法 Enzymol。164:793812 Olsen, GJ、Lane, DJ、Giovannoni, SJ 和 Pace, NR (1986)。微生物生态学和进化:核糖体 RNA 方法。微生物学年鉴。40: 337-365.
奥尔森,GJ(1988 年)。使用核糖体 RNA 进行系统发育分析。方法 Enzymol。164:793812 Olsen,GJ、Lane,DJ、Giovannoni,SJ 和 Pace,NR (1986 年)。微生物生态学和进化:核糖体 RNA 方法。微生物学年鉴。40: 337-365.

佩斯,NR,斯塔尔,DA,莱恩,DJ 和奥尔森,GJ(1986 年)。通过核糖体 RNA 序列分析天然微生物种群。Adv. Microb.生态学 9:1-55。 Saiki,RK,Scharf,S.,Faloona,F.,Mullis,KB,Horn,GT,Erlich,HA和Arnheim,NA(1985)。β-珠蛋白基因组序列的酶促扩增和限制性位点分析用于诊断镰状细胞性贫血。科学 230:1350-1354。
佩斯,NR,斯塔尔,DA,莱恩,DJ 和奥尔森,GJ(1986 年)。通过核糖体 RNA 序列分析天然微生物种群。Adv. Microb.生态学 9:1-55。 Saiki,RK,Scharf,S.,Faloona,F.,Mullis,KB,Horn,GT,Erlich,HA 和Arheim,NA(1985 年)。Mullis,KB,Horn,GT,Erlich,HA和Arnheim,NA(1985)。β-珠蛋白基因组序列的酶促扩增和限制性位点分析用于诊断镰状细胞性贫血。

Saiki, RK, Bugawan, TL, Mullis, KB和Erlich, HA (1986)。使用等位基因特异性寡核苷酸探针分析酶促扩增的 β-珠蛋白和 HLA-DQalpha DNA。自然 324:163-166。 Saiki,RK,Gelfand,DH,Stoffel,S.,Scharf,SJ,Higuchi,R.,Horn,GT,Mullis,KB和Erich,HA(1988a)。使用热稳定 DNA 聚合酶对 DNA 进行引物定向酶促扩增。科学 239:487-491。
Saiki,RK,Bugawan,TL,Mullis,KB和Erlich,HA (1986)。使用等位基因特异性寡核苷酸探针分析酶促扩增的β-珠蛋白和HLA-DQalpha DNA。自然 324:163-166。Scharf,SJ,Higuchi,R.,Horn,GT,Mullis,KB和Erich,HA(1988a)。使用热稳定 DNA 聚合酶对 DNA 进行引物定向酶促扩增。科学 239:487-491。

Saiki, R. K., Gyllensten, U. B. 和 Erlich, H.A. (1988b)。聚合酶链反应。在:基因组分析-一种实用方法(Davies, KE,编辑),第 141-152 页。华盛顿特区:IRL Press. Sanger, F.、Nicklen, S. 和 Coulson, AR (1977)。使用链终止抑制剂进行 DNA 测序。美国国家科学院院刊 74:5463-5467。
Saiki, R. K., Gyllensten, U. B. 和 Erlich, H.A. (1988B)。聚合酶链反应。在:基因组分析-一种实用方法(Davies, KE,编辑),第 141-152 页。华盛顿特区:IRL Press.Sanger, F.、Nicklen, S. 和 Coulson, AR (1977)。使用链终止抑制剂进行 DNA 测序。美国国家科学院院刊 74:5463-5467。

Scharf, SJ, Horn, GT 和 Erlich, HA (1986)。扩增基因组序列的直接克隆和序列分析。科学 233:1076-1078。 Shuldiner, AR, Nirula, A. 和 Roth, J. (1989)。来自密切相关靶序列的 PCR 的杂交 DNA 伪影。核酸研究17:4409。
Scharf, SJ, Horn, GT 和 Erlich, HA (1986)。扩增基因组序列的直接克隆和序列分析。科学 233:1076-1078。 Shuldiner, AR, Nirula, A. 和 Roth, J. (1989)。来自密切相关靶序列的 PCR 的杂交 DNA 伪影。核酸研究 17:4409。

Stackebrandt, E., Ludwig, W., Schubert, W., Klink, F., Schesner, H., Roggentin, T. 和 Hirsch, P. (1984)。出芽无肽聚糖真细菌早期进化起源的分子遗传学证据。自然 307:735-737。无肽聚糖真细菌。自然 307:735-737。
Stackebrandt, E., Ludwig, W., Schubert, W., Klink, F., Schesner, H., Roggentin, T. 和 Hirsch, P. (1984)。出芽无肽聚糖真细菌早期进化起源的分子遗传学证据。自然 307:735-737。

斯塔尔,DA,莱恩,DJ,奥尔森,GJ 和佩斯,NR (1985). 通过 55 个 rRNA 序列表征黄石温泉微生物群落。Appl. Environ.微生物学。45:1379-1384 斯塔尔,DA,弗莱舍,B.,曼斯菲尔德,HW 和蒙哥马利,L.(1988 年)。使用基于系统发育的杂交探针进行反刍动物微生物生态学研究。Appl. Environ.Microbid 54:1079-1084
斯塔尔,DA,莱恩,DJ,奥尔森,GJ 和佩斯,NR (1985).通过 55 个 rRNA 序列表征黄石温泉微生物群落。Appl. Environ.微生物学。45:1379-1384 斯塔尔,DA,弗莱舍,B.,曼斯菲尔德,HW 和蒙哥马利,L.(1988 年)。使用基于系统发育的杂交探针进行反刍动物微生物生态学研究。Appl. Environ.Microbid 54:1079-1084。

Stoflet,ES,Koeberl,DD,Sarker,G.和Sommer,SS(1988)。使用转录本测序进行基因组扩增。科学 239:490-494。 Vogelstein, B. 和 Gillespie, D. (1979)。从琼脂糖中制备和分析纯化 DNA。国家科学院院刊76:615-619。
Wang, AM 和 Mark, DF (1990)。定量 PCR。在:PCR 方案-方法和应用指南(Innis, MA, Gelfand, DH, Sninsky, JJ 和 White, TJ 编辑),第 70-75 页。圣地亚哥:学术出版社。Wayne, LG, Brenner, DJ, Colwell, RR, Grimont, P. A. D., Kandler, O., Krichevsky,
Wang, AM 和 Mark, DF (1990)。定量 PCR。在:PCR 方案-方法和应用指南(Innis, MA, Gelfand, DH, Sninsky, JJ 和 White, TJ 编辑),第 70-75 页。圣地亚哥:学术出版社。Wayne, LG, Brenner, DJ, Colwell, RR, Grimont, P.

MI, Moore, LH, Moore, W. E. C., Murray, R. G. E., Stackebrandt, E., Starr, MP 和 Truper, HG (1987)。关于 Whatley, J. M. 和 Watley, Rolution 的方法
和解特设委员会的报告。微生物学。修订版 51:221-271
Woese, CR, Guttell, RR, Gupta, R. 和 Knoler, H. Fibe 酸。微生物学。修订版 47:621-669。Saiki, R. K., Higuchi, R. G., Erlich, H. A. 和 Kazazian, H. H., Jr Nong, C., Dowling, C. E., Saiki, R. K., Higuchi, RG, Ers 使用直接基因组测序 (1987)。β-地中海贫血的特征化扩增了单拷贝 DNA。自然 330:384 (1987)。人类基因组 DNA 中的长度突变:酶扩增 DNA 的直接测序。核酸研究15:529-542。
Woese, CR, Guttell, RR, Gupta, R. 和 Knoler, H. Fibe 酸。微生物学。修订版 47:621-669。Higuchi, RG, Ers 使用直接基因组测序 (1987)。β-地中海贫血的特征化扩增了单拷贝 DNA。自然 330:384 (1987)。人类基因组 DNA 中的长度突变:酶扩增 DNA 的直接测序。核酸研究 15:529-542。

Zehr, J. 和 McRenolds, LA (1989)。使用简并寡核苷酸扩增来自海洋蓝细菌 Trichodesmium thiebautii 的 nifH 基因。Appl. Environ.微生物学。55: 2522-2526.
Zehr, J. 和 McRenolds, LA (1989)。使用简并寡核苷酸扩增来自海洋蓝细菌 Trichodesmium thiebautii 的 nifH 基因。Appl. Environ.微生物学。

8

核酸探针的开发与应用

David A. Stahl 和 Rudolf Amann伊利诺伊大学兽医病理生物学系,2001 South Lincoln Avenue, Urbana, IL 61801, USA
伊利诺伊大学兽医病理生物学系,2001 South Lincoln Avenue,Urbana, IL 61801, USA

A. 引言  A.引言

本章的必要介绍以免责声明的形式提供:(到目前为止)还没有单一的途径来设计确定性核酸探针。尽管核酸杂交的首次应用是在 1960 年代初期描述的(Marmur 和 Lane,1960 年;Hall 和 Spiegelman,1961 年),但在过去十年中,基本的经验和理论框架几乎没有变化。探针设计通常是经验性的或“裤子的座位”。一种常见的方法是随机筛选重组文库以查找所需特异性的探针。条件仅针对给定研究的必要程度进行优化。核酸探针的应用在很大程度上仍然是一门由即时需求驱动的艺术。杂交通常在非常广泛的条件下进行良好。然而,与常规实验室核酸操作通常所需的相比,使用细菌系统所需的确定性杂交对特异性和敏感性提出了更高的要求。本章介绍后一种需求。
本章的必要介绍以免责声明的形式提供:(到目前为止)还没有单一的途径来设计确定性核酸探针。尽管核酸杂交的首次应用是在 1960 年代初期描述的(Marmur 和 Lane,1960 年;Hall 和 Spiegelman,1961一种常见的方法是随机筛选重组文库以查找所需特异性的探针。条件仅针对给定研究的必要程度进行优化。核酸探针的应用在很大程度上仍然是一门由即时需求驱动的艺术。
Another aspect of nucleic acid probe technology concerns detection systems. Although all early studies used (and most contemporary studies still use) radioactive probes, concerns of safety and versatility have fostered the development of a variety of non-radioactive detection systems. These techniques are essential adjuncts to hybridization. However, it would require an entire volume to describe and properly elaborate upon the various existing and evolving approaches for the detection of nucleic acid hybrids; certainly beyond the scope of a single chapter. As a com-
核酸探针技术的另一个方面涉及检测系统。虽然所有早期研究都使用(而且大多数当代研究仍在使用)放射性探针,但对安全性和多功能性的关注促进了各种非放射性检测系统的发展。这些技术是杂交的重要辅助手段。然而,要描述并适当阐述现有的和不断发展的各种核酸杂交检测方法,需要整整一卷书的篇幅;当然,这也超出了一章的范围。作为一
© 1991 John Wiley & Sons Ltd.
© 1991 John Wiley & Sons Ltd. 保留所有权利。

promise, we have tabulated and commented upon those non-radioactive detection systems that have received widespread use. Those techniques now in common use are described in experimental detail. The primary focus of this chapter is probe design and establishing appropriate conditions of hybridization.
在此,我们列举并评述了那些得到广泛应用的非放射性检测系统。本章将对目前普遍使用的技术进行详细的实验描述。本章的主要重点是探针设计和建立适当的杂交条件。

The chapter therefore begins with a brief ‘nuts and bolts’ coverage of important theoretical and experimental considerations. These include working definitions of important parameters (e.g. stringency, specificity
T m T m T_(m)T_{\mathrm{m}} and T d T d T_(d)T_{\mathrm{d}} ) and the influence of reaction conditions (e.g. ionic strength, temperature) on them. Although much remains empirical, the introduction provides a useful starting point for optimization of specific hybridization reactions. The use of both DNA and RNA probes is described in detail, emphasizing experimental techniques of accepted general utility. Less tried or evolving approaches to probe fabrication will be addressed in tabular form. Since the emphasis of the book is upon determinative microbiology, the later portion of the chapter will focus on the use of the ribosomal RNAs as targets for nucleic acid probes. The use of the ribosomal RNAs for determinative and phylogenetic studies, as evidenced by other chapters in this volume, is now a well-accepted and powerful tool for determinative studies. The rRNA-based analyses are applicable to both extracted nucleic acid and whole cell hybridization. The latter has made possible the application of the extensive 16 S rRNA database to determinative fluorescence microscopy.
因此,本章首先简要介绍了重要的理论和实验注意事项。其中包括重要参数(如严格性、特异性 T m T m T_(m)T_{\mathrm{m}} T d T d T_(d)T_{\mathrm{d}} )的工作定义以及反应条件(如离子强度、温度)对它们的影响。尽管许多内容仍是经验之谈,但该介绍为优化特异性杂交反应提供了一个有用的起点。该书详细介绍了 DNA 和 RNA 探针的使用,强调了公认的通用实验技术。至于尝试较少或不断发展的探针制作方法,将以表格的形式加以说明。由于本书的重点是确定性微生物学,因此本章后半部分将重点介绍核糖体 RNA 作为核酸探针靶标的使用。核糖体 RNA 用于定性和系统发育研究,正如本卷其他章节所证明的那样,现已成为定性研究中公认的强大工具。基于 rRNA 的分析适用于提取核酸和全细胞杂交。后者使广泛的 16 S rRNA 数据库在确定性荧光显微镜中的应用成为可能。

B. GENERAL CONSIDERATIONS FOR NUCLEIC ACID HYBRIDIZATION
B.核酸杂交的一般注意事项

The use of determinative nucleic acid hybridization (nucleic acid probes) must take into account the characteristic features of formation and breakdown of a specific double-helix. Most important is the balance between specificity of the reaction and detection of reaction product. The latter is largely dependent upon the detection system used (see below). Specificity and sensitivity are usually competing entities and must be balanced according to the determinative requirements. As an introduction to the applied sections, an overview of fundamental and practical aspects of nucleic acid hybridization is offered. The following is a collection of common terms and definitions applied to studies and descriptions of hybridization reactions (adapted from Lathe, 1985).
使用确定性核酸杂交(核酸探针)必须考虑到特定双螺旋形成和分解的特征。最重要的是在反应的特异性和反应产物的检测之间取得平衡。后者在很大程度上取决于所使用的检测系统(见下文)。特异性和灵敏度通常是相互竞争的,必须根据决定性要求加以平衡。作为应用部分的引言,本文概述了核酸杂交的基本和实用方面。以下是应用于杂交反应研究和描述的常用术语和定义集(改编自 Lathe, 1985)。
Complement. With reference to the Watson-Crick canonical base pairs, A pairs with T (or U ) and G pairs with C . The canonical base pairs are also referred to as complementary or as complements of each other (i.e. A is complementary to T).
互补。关于沃森-克里克碱基对,A 与 T(或 U)成对,G 与 C 成对。典型碱基对也被称为互补碱基对或互补碱基对(如 A 与 T 互补)。
Probe. A single strand of DNA or RNA, intended to hybridize with a complementary sequence (e.g. the coding sequence for a particular protein or stable RNA) in order to detect that sequence. Probes are synthesized both enzymatically and chemically (see below).
探针。DNA 或 RNA 单链,用于与互补序列(如特定蛋白质或稳定 RNA 的编码序列)杂交,以检测该序列。探针可通过酶法和化学法合成(见下文)。
Target. The target sequence for a probe is the complementary sequence to which the probe is designed to hybridize.
目标。探针的靶序列是指探针与之杂交的互补序列。
Match. ‘Match’ is generally used to refer to canonical pairing between probe and target at a specified position. ‘Match’ is also used to describe complete complementarity between probe and target sequences.
匹配。匹配 "一般指探针和目标物在指定位置上的典型配对。匹配 "也用于描述探针和目标序列之间的完全互补性。
Mismatch. A mismatch at a particular position occurs when the nucleotide in the probe does not complement the nucleotide at the same position in the target sequence (non-canonical pair).
错配。当探针中的核苷酸与目标序列中同一位置的核苷酸不互补(非经典配对)时,就会出现特定位置的错配。
Homology. The percentage homology ( h h hh ) between two sequences of identical length ( n n nn ) and containing a given number of mismatches ( m m mm ) is given by the expression h = 100 ( n m ) / n h = 100 ( n m ) / n h=100(n-m)//nh=100(n-m) / n. Similarity is now considered the semantically correct term for this value. However, for the purposes of this chapter the terms homology and similarity are used interchangeably.
同源性。两个长度相同( n n nn )且包含一定数量错配( m m mm )的序列之间的同源性百分比( h h hh )由表达式 h = 100 ( n m ) / n h = 100 ( n m ) / n h=100(n-m)//nh=100(n-m) / n 给出。相似性现在被认为是该值在语义上的正确术语。不过,在本章中,同源性和相似性这两个术语可以互换使用。
Stringency. Stringency describes the conditions of hybridization or the hybridization wash step. The greater the stringency of the hybridization or subsequent wash step (see below), the fewer, if any, mismatches remain in the duplex structure.
严格度。严格程度是指杂交或杂交洗涤步骤的条件。杂交或后续清洗步骤(见下文)的严格程度越高,双链结构中残留的错配(如果有的话)就越少。
Oligonucleotide. A short single strand of DNA (oligodeoxyribonucleotide) usually 6-50 nucleotides in length.
寡核苷酸。通常长度为 6-50 个核苷酸的 DNA 短单链(寡脱氧核苷酸)。
Duplex structure. Double-helix structure composed of antiparallel strands of DNA-DNA, DNA-RNA or RNA-RNA held in association by specific hydrogen bonding between the nucleotides comprising each strand.
双链结构。由 DNA-DNA、DNA-RNA 或 RNA-RNA 的反平行链组成的双螺旋结构,每条链上的核苷酸之间通过特定的氢键结合在一起。

(i) Melting point  (i) 熔点

For determinative studies the single most important feature defining a given double-helix structure is its melting point ( T m ) T m (T_(m))\left(T_{m}\right). In this respect, the double helix structure has been likened to a one-dimensional crystalline lattice (Marmur and Doty, 1959). The breakdown of the helix (or crystal) occurs at a specific melting temperature and propagation of the helix (or growth of the crystal) follows a nucleation event (formation of a seed crystal or short duplex structure). However, with the exception of homopolymers (e.g. poly U-poly A), the double-helix structure does not dissociate (melt) completely at a specific temperature. Rather, denaturation proceeds over a temperature range.
对于确定性研究而言,定义特定双螺旋结构的唯一最重要特征是其熔点 ( T m ) T m (T_(m))\left(T_{m}\right) 。在这方面,双螺旋结构被比作一维晶格(Marmur 和 Doty,1959 年)。螺旋体(或晶体)在特定的熔化温度下分解,螺旋体的传播(或晶体的生长)遵循成核事件(种子晶体或短双链结构的形成)。然而,除均聚物(如聚 U 聚 A)外,双螺旋结构不会在特定温度下完全解离(熔化)。相反,变性是在一定温度范围内进行的。
The T m T m T_(m)T_{\mathrm{m}} is defined as the temperature corresponding to the mid-point in the transition from helix to random coil (frequently measured optically by monitoring the characteristic hyperchromatic shift of denaturation). In addition, the temperature range over which transition from helix to
T m T m T_(m)T_{\mathrm{m}} 被定义为从螺旋过渡到无规线圈的中点所对应的温度(通常通过监测变性的特征性高色移进行光学测量)。此外,从螺旋过渡到无规线圈的温度范围为

random coil occurs varies significantly, depending upon length, nucleotide composition and ionic strength. The zipping (renaturation) or unzipping (denaturation) of the helix is influenced by nucleotide composition in the vicinity of base-pair formation or denaturation (GC-rich versus AT-rich regions). This effect and its influence on the observed transition temperature is referred to as cooperativity. At low ionic strength local compositional differences are suggested to contribute to a broadening of the transition range (Dove and Davidson, 1962).
由于长度、核苷酸组成和离子强度的不同,随机螺旋的形成也有很大差异。螺旋的拉链(再饱和)或解压缩(变性)会受到碱基对形成或变性附近核苷酸组成(富含 GC 与富含 AT 的区域)的影响。这种效应及其对观察到的转变温度的影响被称为合作性。在低离子强度下,局部成分差异被认为有助于扩大转变范围(Dove 和 Davidson,1962 年)。

(ii) T m T m T_(m)T_{m} versus T d T d T_(d)T_{d} versus T w T w T_(w)T_{w}
(ii) T m T m T_(m)T_{m} T d T d T_(d)T_{d} T w T w T_(w)T_{w}

To this point, discussion has been restricted to long double-helix structures (greater than about 500 nucleotides in length). The temperature mid-point of the helix-to-random coil transition is the same for the formation or the breakdown of long duplexes. This is not true for oligonucleotides in duplex structure (e.g. bound to immobilized DNA). The dissociation temperatures T d T d T_(d)T_{\mathrm{d}} of short oligonucleotide hybrids, unlike longer complementary structures, is concentration dependent. Thus, under non-equilibrium conditions (such as temperature-dependent dissociation of membrane-bound probe) the observed mid-point in dissociation may be lower than a more thermodynamically rigorous determination of T m T m T_(m)T_{\mathrm{m}}. Another practical convention is the use of T w T w T_(w)T_{w}. This refers to the optimal temperature for washing at a specified monovalent cation concentration. In practice the T m T m T_(m)T_{\mathrm{m}} (or T d T d T_(d)T_{\mathrm{d}} ) and T w T w T_(w)T_{w} are frequently treated as equivalent.
到目前为止,讨论仅限于长双螺旋结构(长度超过约 500 个核苷酸)。从螺旋到随机线圈转变的温度中点对于长双链的形成或分解都是相同的。但双链结构中的寡核苷酸(如与固定 DNA 结合)则不然。与较长的互补结构不同,短寡核苷酸杂交体的解离温度 T d T d T_(d)T_{\mathrm{d}} 与浓度有关。因此,在非平衡条件下(如膜结合探针的解离与温度有关),观察到的解离中点可能低于更严格的热力学测定 T m T m T_(m)T_{\mathrm{m}} 。另一个实用惯例是使用 T w T w T_(w)T_{w} 。这是指在特定单价阳离子浓度下的最佳洗涤温度。在实践中, T m T m T_(m)T_{\mathrm{m}} (或 T d T d T_(d)T_{\mathrm{d}} )和 T w T w T_(w)T_{w} 经常被视为等价物。

(iii) Estimation of T m T m T_(m)T_{m}
(iii) T m T m T_(m)T_{m} 的估算

1. DNA probes of greater than 50 nucleotides
1.超过 50 个核苷酸的 DNA 探针

The basic parameters for estimating the T m T m T_(m)T_{\mathrm{m}} of a given double-helix structure were established in the early 1960s and 1970s. Empirical relationships describing their contributions to T m T m T_(m)T_{\mathrm{m}} are summarized below. These relationships were derived from relatively large double-helix structures and so are of less value in predicting the behavior of short duplexes. However, slight modifications offer reasonable approximations of shorter duplex structure stability (see below). The following provides the reader with a rationalization for the equations used for estimating T m T m T_(m)T_{\mathrm{m}} and also a better feeling for the relative importance of those parameters that are routinely adjusted in nucleic acid hybridization reactions.
用于估算给定双螺旋结构的 T m T m T_(m)T_{\mathrm{m}} 的基本参数是在 20 世纪 60 年代初和 70 年代确立的。下文总结了描述它们对 T m T m T_(m)T_{\mathrm{m}} 贡献的经验关系。这些关系是从相对较大的双螺旋结构中推导出来的,因此对预测短双链的行为价值较低。不过,稍加修改就可以合理地近似预测较短双链结构的稳定性(见下文)。以下内容为读者提供了估算 T m T m T_(m)T_{\mathrm{m}} 所用方程的合理性,同时也让读者更好地了解核酸杂交反应中常规调整参数的相对重要性。
Ionic strength. The T m T m T_(m)T_{\mathrm{m}} (in degrees Celsius) of DNA increases linearly with the logarithm of the ionic strength and is independent of the base ratio of the DNA (Dove and Davidson, 1962; Schildkraut and Lifson, 1965):
离子强度。DNA 的 T m T m T_(m)T_{\mathrm{m}} (摄氏度)随离子强度的对数线性增加,与 DNA 的碱基比率无关(Dove 和 Davidson,1962 年;Schildkraut 和 Lifson,1965 年):
T m , 2 = T m , 1 + 16.6 log ( M 2 / M 1 ) T m , 2 = T m , 1 + 16.6 log M 2 / M 1 T_(m,2)=T_(m,1)+16.6 log(M_(2)//M_(1))T_{\mathrm{m}, 2}=T_{\mathrm{m}, 1}+16.6 \log \left(M_{2} / M_{1}\right)
where M 1 M 1 M_(1)M_{1} and M 2 M 2 M_(2)M_{2} are the respective ionic strengths of the two solutions.
其中 M 1 M 1 M_(1)M_{1} M 2 M 2 M_(2)M_{2} 分别是两种溶液的离子强度。

G + C G + C G+CG+C content. The effect of base composition on the thermal denaturation of DNA was early observed and has served as the basis for determining the % ( G + C ) % ( G + C ) %(G+C)\%(\mathrm{G}+\mathrm{C}) content of microorganisms (Marmur and Doty, 1959):
G + C G + C G+CG+C 含量。人们很早就观察到碱基组成对 DNA 热变性的影响,并以此为基础确定微生物的 % ( G + C ) % ( G + C ) %(G+C)\%(\mathrm{G}+\mathrm{C}) 含量(Marmur 和 Doty,1959 年):
T m = 69.3 + 0.41 [ % ( G + C ) ] T m = 69.3 + 0.41 [ % ( G + C ) ] T_(m)=69.3+0.41[%(G+C)]T_{\mathrm{m}}=69.3+0.41[\%(\mathrm{G}+\mathrm{C})]
The above relationship was derived for solutions of DNA in 1 × 1 × 1xx1 \times SSC (standard saline citrate (SSC) contains 0.15 M sodium chloride and 0.015 M trisodium citrate).
上述关系是针对 DNA 在 1 × 1 × 1xx1 \times SSC(标准柠檬酸盐(SSC)含有 0.15 M 氯化钠和 0.015 M 柠檬酸三钠)中的溶液得出的。
The first equation combining the observed dependence of T m T m T_(m)T_{m} on both the salt concentration ( M ) ( M ) (M)(M) and the % ( G + C ) % ( G + C ) %(G+C)\%(G+C) was formulated by Schildkraut and Lifson (1965):
Schildkraut 和 Lifson(1965 年)提出了第一个方程,将观察到的 T m T m T_(m)T_{m} 对盐浓度 ( M ) ( M ) (M)(M) % ( G + C ) % ( G + C ) %(G+C)\%(G+C) 的依赖性结合起来:
T m = 81.5 + 16.6 log M + 0.41 [ % ( G + C ) ] T m = 81.5 + 16.6 log M + 0.41 [ % ( G + C ) ] T_(m)=81.5+16.6 log M+0.41[%(G+C)]T_{\mathrm{m}}=81.5+16.6 \log M+0.41[\%(\mathrm{G}+\mathrm{C})]
Percentage of mismatched base pairs. A 1 % 1 % 1%1 \% base pairing mismatch corresponds to about a 1 1.5 C 1 1.5 C 1-1.5^(@)C1-1.5^{\circ} \mathrm{C} decrease in T m T m T_(m)T_{\mathrm{m}} (Bonner et al., 1973; Ausubel et al., 1987). The rate of DNA reassociation is approximately halved (at the optimum temperature for reassociation) for every 10 C 10 C 10^(@)C10^{\circ} \mathrm{C} reduction in T m T m T_(m)T_{\mathrm{m}} (Bonner et al., 1973).
错配碱基对的百分比。 1 % 1 % 1%1 \% 碱基配对错配大约相当于 T m T m T_(m)T_{\mathrm{m}} 减少 1 1.5 C 1 1.5 C 1-1.5^(@)C1-1.5^{\circ} \mathrm{C} (Bonner 等人,1973 年;Ausubel 等人,1987 年)。 T m T m T_(m)T_{\mathrm{m}} 每减少 10 C 10 C 10^(@)C10^{\circ} \mathrm{C} ,DNA 的重新结合率大约减半(在重新结合的最佳温度下)(Bonner 等人,1973 年)。
Influence of formamide. The inclusion of formamide lowers the melting point of the double helix. For every 1 % 1 % 1%1 \% increase in the concentration
甲酰胺的影响。甲酰胺会降低双螺旋的熔点。甲酰胺浓度每增加 1 % 1 % 1%1 \%

1 1 1^(')1^{\prime} of formamide the T m T m T_(m)T_{\mathrm{m}} is reduced by about 0.7 C 0.7 C 0.7^(@)C0.7^{\circ} \mathrm{C} (McConaughy et al., 1969). Therefore, by adding formamide to the hybridization solution it is possible to perform the hybridization at a lower temperature without loss of high stringency (mismatch discrimination). This not only increases the life of nucleic acid by eliminating degradation (e.g. strand scission, depurination) but also avoids the loss of membrane-bound nucleic acid at high temperatures.
如果加入甲酰胺 1 1 1^(')1^{\prime} T m T m T_(m)T_{\mathrm{m}} 会降低约 0.7 C 0.7 C 0.7^(@)C0.7^{\circ} \mathrm{C} (McConaughy 等人,1969 年)。因此,通过在杂交溶液中加入甲酰胺,可以在较低温度下进行杂交,而不会失去高严格性(错配识别)。这不仅通过消除降解(如链裂解、去质化)延长了核酸的寿命,还避免了膜结合核酸在高温下的损失。
Effect of chain length. A correction for probe length n n nn must be subtracted from the estimation of T m T m T_(m)T_{\mathrm{m}} for probes less than about 500 nucleotides in length (Crothers et al., 1965). The following corrections have been used.
链长的影响。对于长度小于 500 个核苷酸的探针,在估算 T m T m T_(m)T_{\mathrm{m}} 时必须减去探针长度 n n nn 的校正(Crothers et al.)我们采用了以下校正方法。
  • no correction for n > 500 n > 500 n > 500n>500 nucleotides;
    不修正 n > 500 n > 500 n > 500n>500 核苷酸;
  • reduction by 500 / n 500 / n 500//n500 / n or 600 / n 600 / n 600//n600 / n for probes 50 500 50 500 50-50050-500 nucleotides in length (Meinkoth and Wahl, 1984; Ausubel et al., 1987);
    对于长度为 50 500 50 500 50-50050-500 核苷酸的探针,减少 500 / n 500 / n 500//n500 / n 600 / n 600 / n 600//n600 / n (Meinkoth 和 Wahl,1984 年;Ausubel 等人,1987 年);
  • reduction by 675/n for probes 50-100 nucleotides in length (Davis et al., 1986).
    对于长度为 50-100 个核苷酸的探针来说,该值减少了 675/n(Davis 等人,1986 年)。
These length corrections are commonly included in equations used for estimating the T m T m T_(m)T_{\mathrm{m}} of shorter probes (Crothers et al., 1965; Britten et al., 1974).
这些长度修正通常包含在用于估计较短探针的 T m T m T_(m)T_{\mathrm{m}} 的公式中(Crothers 等人,1965 年;Britten 等人,1974 年)。
On the basis of the above primarily empirical observations, a number of equations have been formulated for approximating T m T m T_(m)T_{m}. Only those in reasonably general use will be presented here. The first relationship was formulated by Frank-Kamenetskii (1971) by simplifying an equation of Owen et al. (1969).
在上述主要是经验观察的基础上,我们提出了许多用于逼近 T m T m T_(m)T_{m} 的方程。这里只介绍那些比较常用的方程。第一个关系式是 Frank-Kamenetskii(1971 年)通过简化 Owen 等人(1969 年)的方程式而提出的。
T m = 176 2.60 % ( G + C ) 100 { 36.0 7.04 log [ Na + ] } T m = 176 2.60 % ( G + C ) 100 36.0 7.04 log Na + T_(m)=176-(2.60-%(G+C))/(100){36.0-7.04 log[Na^(+)]}T_{\mathrm{m}}=176-\frac{2.60-\%(\mathrm{G}+\mathrm{C})}{100}\left\{36.0-7.04 \log \left[\mathrm{Na}^{+}\right]\right\}
This formula incorporates the % ( G + C ) % ( G + C ) %(G+C)\%(\mathrm{G}+\mathrm{C}) of a DNA probe and the concentration of monovalent cations (usually Na + Na + Na^(+)\mathrm{Na}^{+}) for estimating the melting point of the duplex. It has no correction for the average length of the probe and is only valid for probes of about 500 nucleotides (an average length of nick-translated or sheared DNA).
该公式包含 DNA 探针的 % ( G + C ) % ( G + C ) %(G+C)\%(\mathrm{G}+\mathrm{C}) 和单价阳离子的浓度(通常为 Na + Na + Na^(+)\mathrm{Na}^{+} ),用于估算双链的熔点。它没有对探针的平均长度进行修正,只适用于大约 500 个核苷酸的探针(缺口翻译或剪切 DNA 的平均长度)。

Equation (5) (below) has been used for probes longer than 50 nucleotides and takes into account the
% ( G + C ) % ( G + C ) %(G+C)\%(\mathrm{G}+\mathrm{C}) content, concentration M M MM of monovalent cations, length n n nn of the probe and the percent formamide ( w / v w / v w//v\mathrm{w} / \mathrm{v} ) in the hybridization solution (Meinkoth and Wahl, 1984).
等式 (5) (如下)适用于长度超过 50 个核苷酸的探针,并考虑了杂交溶液中的 % ( G + C ) % ( G + C ) %(G+C)\%(\mathrm{G}+\mathrm{C}) 含量、单价阳离子浓度 M M MM 、探针长度 n n nn 和甲酰胺 ( w / v w / v w//v\mathrm{w} / \mathrm{v} ) 百分比(Meinkoth 和 Wahl,1984 年)。

T m = 81.5 + 16.6 log M + 0.41 [ % ( G + C ) ] 500 n 0.61 ( % formamide ) T m = 81.5 + 16.6 log M + 0.41 [ % ( G + C ) ] 500 n 0.61 ( %  formamide  ) T_(m)=81.5+16.6 log M+0.41[%(G+C)]-(500)/(n-0.61(%" formamide "))T_{\mathrm{m}}=81.5+16.6 \log M+0.41[\%(\mathrm{G}+\mathrm{C})]-\frac{500}{n-0.61(\% \text { formamide })}
Figure 8.1 ( T m T m T_(m)T_{\mathrm{m}} versus salt versus GC plot) compares the melting points predicted by these equations for DNA probes of 35,50 and 65 % ( G + C ) 65 % ( G + C ) 65%(G+C)65 \%(\mathrm{G}+\mathrm{C}) in varying concentrations of monovalent cations (average probe length of 500 nucleotides and in the absence of formamide).
图 8.1( T m T m T_(m)T_{\mathrm{m}} 与盐和 GC 的关系图)比较了在不同浓度的一价阳离子中(探针平均长度为 500 个核苷酸,且不含甲酰胺),这些方程预测的 35、50 和 65 % ( G + C ) 65 % ( G + C ) 65%(G+C)65 \%(\mathrm{G}+\mathrm{C}) DNA 探针的熔点。

The following examples are calculations of
T m T m T_(m)T_{\mathrm{m}} for several different hybridization reactions. The first example includes a mismatch correction.
以下示例计算了几种不同杂交反应的 T m T m T_(m)T_{\mathrm{m}} 值。第一个例子包括错配校正。
EXAMPLE 1. A cloned gene fragment of Escherichia coli is labeled by nick translation (average chain length of 250 nucleotides) and used to detect a heterologous gene (about 65 % 65 % 65%65 \% similarity). For a hybridization buffer containing 6 × 6 × 6xx6 \times SSC and no formamide, the T m T m T_(m)T_{m} estimation includes the following considerations.
例 1.用缺口翻译法标记大肠杆菌克隆的基因片段(平均链长为 250 个核苷酸),并用来检测异源基因(相似度约为 65 % 65 % 65%65 \% )。对于含有 6 × 6 × 6xx6 \times SSC 且不含甲酰胺的杂交缓冲液, T m T m T_(m)T_{m} 估计值包括以下考虑因素。
  • 1 × 1 × 1xx1 \times SSC contains 0.15 M sodium chloride and 0.015 M trisodium citrate. Therefore the molar concentration of monovalent cations in 6 × 6 × 6xx6 \times SSC equals
    1 × 1 × 1xx1 \times SSC 中含有 0.15 M 氯化钠和 0.015 M 柠檬酸三钠。因此, 6 × 6 × 6xx6 \times SSC 中的单价阳离子摩尔浓度等于
M = 6 × [ 0.15 + ( 3 × 0.015 ) ] = 1.17 M = 6 × [ 0.15 + ( 3 × 0.015 ) ] = 1.17 M=6xx[0.15+(3xx0.015)]=1.17M=6 \times[0.15+(3 \times 0.015)]=1.17
  • The G+C content of an average Escherichia coli gene is 50 % 50 % 50%50 \%.
    大肠杆菌基因的平均 G+C 含量为 50 % 50 % 50%50 \%

Fig. 8.1 Relationship between T m T m T_(m)T_{\mathrm{m}}, salt concentration and % ( G + C ) % ( G + C ) %(G+C)\%(\mathrm{G}+\mathrm{C}). Two different equations describing the relationship between T m T m T_(m)T_{\mathrm{m}} and salt concentration are plotted. The equation of Schildkraut and Lifson (1965) is shown by solid lines and that of Frank-Kamenetskii (1971) by broken lines. The relationship between salt concentration ( 0.01 1.2 M 0.01 1.2 M 0.01-1.2M0.01-1.2 \mathrm{M} ) and T m T m T_(m)T_{\mathrm{m}} is displayed for three values of % ( G + C ) ( 35 % % ( G + C ) ( 35 % %(G+C)(35%\%(\mathrm{G}+\mathrm{C})(35 \%, 50 % 50 % 50%50 \%, and 65 % 65 % 65%65 \% ). These relationships approximate values for probes of an average length greater than 500 nucleotides and in the absence of formamide.
图 8.1 T m T m T_(m)T_{\mathrm{m}} 、盐浓度和 % ( G + C ) % ( G + C ) %(G+C)\%(\mathrm{G}+\mathrm{C}) 之间的关系。图中绘制了描述 T m T m T_(m)T_{\mathrm{m}} 与盐浓度之间关系的两个不同方程。实线表示 Schildkraut 和 Lifson(1965 年)的方程,断线表示 Frank-Kamenetskii (1971 年)的方程。盐浓度 ( 0.01 1.2 M 0.01 1.2 M 0.01-1.2M0.01-1.2 \mathrm{M} ) 和 T m T m T_(m)T_{\mathrm{m}} 之间的关系显示在 % ( G + C ) ( 35 % % ( G + C ) ( 35 % %(G+C)(35%\%(\mathrm{G}+\mathrm{C})(35 \% 50 % 50 % 50%50 \% 65 % 65 % 65%65 \% 三个值上。)这些关系是平均长度大于 500 个核苷酸的探针在没有甲酰胺的情况下的近似值。
The T m T m T_(m)T_{\mathrm{m}} for a perfect duplex is as estimated by Meinkoth and Wahl (1984) (eq. (5)):
完美双工的 T m T m T_(m)T_{\mathrm{m}} 是由 Meinkoth 和 Wahl(1984 年)估算得出的(公式 (5)):
T m ( 100 % ) = 81.5 + 16.6 log [ 1.17 ] + ( 0.41 × 50 ) 500 / 250 = 101.1 C T m ( 100 % ) = 81.5 + 16.6 log [ 1.17 ] + ( 0.41 × 50 ) 500 / 250 = 101.1 C T_(m)(100%)=81.5+16.6 log[1.17]+(0.41 xx50)-500//250=101.1^(@)CT_{\mathrm{m}}(100 \%)=81.5+16.6 \log [1.17]+(0.41 \times 50)-500 / 250=101.1^{\circ} \mathrm{C}
Including 35 % 35 % 35%35 \% mismatch destabilization (Bonner et al., 1973), the melting point is reduced by 35 C 35 C 35^(@)C35^{\circ} \mathrm{C} :
包括 35 % 35 % 35%35 \% 错配失稳(Bonner 等人,1973 年)在内,熔点降低了 35 C 35 C 35^(@)C35^{\circ} \mathrm{C}
T m ( 65 % ) = 101.1 35 = 66.1 C T m ( 65 % ) = 101.1 35 = 66.1 C T_(m)(65%)=101.1-35=66.1^(@)CT_{\mathrm{m}}(65 \%)=101.1-35=66.1^{\circ} \mathrm{C}
However, the above calculation does not take into account the rate of hybridization. In general, for long probes, the rate of hybridization is optimal at about 25 C 25 C 25^(@)C25^{\circ} \mathrm{C} below the T m T m T_(m)T_{\mathrm{m}} (Britten and Kohne, 1966; Wetmur and Davidson, 1968). Therefore, hybridizations are generally performed at temperatures considerably below the melting point. The above estimated melting point would not be the kinetically optimal temperature for formation of a duplex containing 35% mismatched base pairs. Keep in mind that stringency is adjusted both by the conditions of hybridization and the wash conditions following hybridization. Thus, in this example the 66.1 C 66.1 C 66.1^(@)C66.1^{\circ} \mathrm{C} temperature would better serve as an estimate of the wash
不过,上述计算并未考虑杂交率。一般来说,对于长探针,最佳杂交速率约为 25 C 25 C 25^(@)C25^{\circ} \mathrm{C} 低于 T m T m T_(m)T_{\mathrm{m}} (Britten 和 Kohne,1966 年;Wetmur 和 Davidson,1968 年)。因此,杂交通常在大大低于熔点的温度下进行。上述估计的熔点并不是形成含有 35% 错配碱基对的双链体的最佳动力学温度。请记住,严格程度可通过杂交条件和杂交后的洗涤条件进行调整。因此,在本例中, 66.1 C 66.1 C 66.1^(@)C66.1^{\circ} \mathrm{C} 温度最好作为洗涤条件的估计值。

temperature necessary to achieve the desired stringency. All practical examples given in this chapter concern immobilized (as opposed to solution) hybridization, and are amenable to controlling stringency at a posthybridization wash step. In practice the important point is the relationship between signal intensity and the specificity of the hybridization. Hybridization and wash conditions are always adjusted to fit the needs of the study.
达到所需严格度所需的温度。本章给出的所有实际例子都涉及固定杂交(而非溶液杂交),并可在杂交后的洗涤步骤中 控制严格程度。在实践中,重要的一点是信号强度与杂交特异性之间的关系。杂交和洗涤条件总是根据研究的需要进行调整。
Other considerations. The contribution of mismatch to hybrid destabilization was derived from duplex structures of relatively uniform mismatch distribution. For hybridization involving patchy distribution (for example between genes containing highly conserved domains) these relationships would not be expected to apply strictly.
其他考虑因素。错配对杂交不稳定性的影响是根据错配分布相对均匀的双链结构得出的。对于涉及斑块分布的杂交(例如含有高度保守结构域的基因之间的杂交),预计这些关系不会严格适用。

(iv) Oligonucleotide probes
(iv) 寡核苷酸探针

With increasing availability of chemically synthesized DNA, synthetic oligonucleotides should be considered part of the general working arsenal of both the microbial systematist and molecular biologist. Under appropriate conditions of stringency, oligonucleotide probes often discriminate between targets that differ in a single nucleotide. For example, oligonucleotide probes have been used to detect single-base-pair differences in sequences as complex as the human genome (Conner et al., 1983; Miyada and Wallace, 1987). Thus, they also offer exquisite specificity (with appropriate design) to the microbial systematist.
随着化学合成 DNA 的日益普及,合成寡核苷酸应被视为微生物系统学家和分子生物学家常用的工作武器之一。在适当的严格条件下,寡核苷酸探针通常可以区分单个核苷酸不同的目标物。例如,寡核苷酸探针已被用于检测人类基因组等复杂序列中的单碱基对差异(Conner 等人,1983 年;Miyada 和 Wallace,1987 年)。因此,它们也为微生物系统学家提供了精湛的特异性(通过适当的设计)。
Probe length. The specificity of a probe is determined by its length and the complexity of the target sequence. A minimum probe size of about 9 (with 4 G-C pairs) is required for stable hybridization (Szostak et al., 1979). The frequency of a random occurrence of a target sequence of length n n nn within a DNA sequence of length L L LL, assuming random and representative nucleotide occurrence is ( 0.25 ) n × 2 L ( 0.25 ) n × 2 L (0.25)^(n)xx2L(0.25)^{n} \times 2 L ( 2 L 2 L 2L2 L because DNA is double stranded). This relationship should be used as a starting point for probe design. Direct experimental observations include the following. A 12-nucleotide oligonucleotide with one mismatch will specifically hybridize to a single band within a restriction digest of lambda DNA ( 50 kb ). An oligonucleotide of 13-15 nucleotides is sufficient to identify a unique gene in a restriction digest of total yeast DNA (Szostak et al., 1979).
探针长度。探针的特异性取决于其长度和目标序列的复杂程度。要实现稳定的杂交,探针的最小长度约为 9(含 4 个 G-C 对)(Szostak 等人,1979 年)。长度为 n n nn 的目标序列在长度为 L L LL 的 DNA 序列中随机出现的频率,假设随机出现的代表性核苷酸为 ( 0.25 ) n × 2 L ( 0.25 ) n × 2 L (0.25)^(n)xx2L(0.25)^{n} \times 2 L 2 L 2 L 2L2 L ,因为 DNA 是双链的)。这种关系应作为探针设计的出发点。直接实验观察结果如下。有一个错配的 12 核苷酸寡核苷酸会特异性杂交到λ DNA 限制性消化液(50 kb)中的一个条带上。13-15 个核苷酸的寡核苷酸足以在酵母 DNA 的限制性消化液中鉴定出一个独特的基因(Szostak 等人,1979 年)。

The relationships derived for long hybridization probes have been modified for estimating the melting points of oligonucleotides paired with their complementary DNA sequences. The relationships have been empirically derived and should be treated only as a starting point for establishing appropriate hybridization and wash conditions. These relationships and a corresponding set of example calculations are given below.
为估算与其互补 DNA 序列配对的寡核苷酸的熔点,对长杂交探针得出的关系进行了修改。这些关系是根据经验得出的,只能作为确定适当杂交和洗涤条件的起点。下文给出了这些关系和相应的计算示例。
A variation of eq. (5) (Thomas and Dancis, 1973; Lathe, 1985) is used to estimate the dissociation temperature of oligonucleotides between lengths 10 and 50 :
公式 (5) 的变式(Thomas 和 Dancis,1973 年;Lathe,1985 年)用于估算长度在 10 到 50 之间的寡核苷酸的解离温度:
T d = 81.5 + 16.6 log M + 0.41 [ % ( G + C ) ] 820 / n T d = 81.5 + 16.6 log M + 0.41 [ % ( G + C ) ] 820 / n T_(d)=81.5+16.6 log M+0.41[%(G+C)]-820//nT_{\mathrm{d}}=81.5+16.6 \log M+0.41[\%(\mathrm{G}+\mathrm{C})]-820 / n
For 50 % ( G + C ) 50 % ( G + C ) 50%(G+C)50 \%(\mathrm{G}+\mathrm{C}) and 0.3 M concentration of monovalent cations this equation is simplified to (Lathe, 1985)
对于 50 % ( G + C ) 50 % ( G + C ) 50%(G+C)50 \%(\mathrm{G}+\mathrm{C}) 和 0.3 M 浓度的单价阳离子,该方程简化为(Lathe,1985 年)
T d = 94 820 / n T d = 94 820 / n T_(d)=94-820//nT_{\mathrm{d}}=94-820 / n
A simplified estimate of oligonucleotide duplex stability sums the contribution of GC and AT pairs (Suggs et al., 1981). For hybridization in 6 × 6 × 6xx6 \times SSC the T d T d T_(d)T_{\mathrm{d}} of the oligonucleotide duplex is estimated as follows.
对寡核苷酸双链稳定性的简化估计是将 GC 和 AT 对的贡献相加(Suggs 等人,1981 年)。对于 6 × 6 × 6xx6 \times SSC 中的杂交,寡核苷酸双链的 T d T d T_(d)T_{\mathrm{d}} 估计如下。
T d = 4 N G + C + 2 N A + T T d = 4 N G + C + 2 N A + T T_(d)=4N_(G+C)+2N_(A+T)T_{\mathrm{d}}=4 N_{\mathrm{G}+\mathrm{C}}+2 N_{\mathrm{A}+\mathrm{T}}
Where N G + C N G + C N_(G+C)N_{\mathrm{G}+\mathrm{C}} and N A + T N A + T N_(A+T)N_{\mathrm{A}+\mathrm{T}} are the numbers of G and C and of A and T .
其中 N G + C N G + C N_(G+C)N_{\mathrm{G}+\mathrm{C}} N A + T N A + T N_(A+T)N_{\mathrm{A}+\mathrm{T}} 分别是 G 和 C 以及 A 和 T 的编号。

Figure 8.2 displays a comparison of these relationships for washing probes of
50 % ( G + C ) 50 % ( G + C ) 50%(G+C)50 \%(\mathrm{G}+\mathrm{C}) content in 6 × 6 × 6xx6 \times SSC. As is evident in the figure, agreement is reasonably good for probes between 10 and 26 nucleotides in length.
图 8.2 显示了对 6 × 6 × 6xx6 \times SSC 中 50 % ( G + C ) 50 % ( G + C ) 50%(G+C)50 \%(\mathrm{G}+\mathrm{C}) 含量的洗涤探针的这些关系的比较。从图中可以看出,长度在 10 到 26 个核苷酸之间的探针的一致性相当好。

The following examples compare estimations of oligonucleotide melting points (derived from the above relationships) to each other and to empir-
下面的示例将寡核苷酸熔点的估计值(根据上述关系得出)与其他估计值和经验值进行了比较。

Fig. 8.2 Relationship between T d T d T_(d)T_{\mathrm{d}} and oligonucleotide probe length. Comparison of two relationships between T d ( C T d C T_(d)(^(@)C:}T_{\mathrm{d}}\left({ }^{\circ} \mathrm{C}\right. ) and probe length (number of nucleotides). The solid line (Suggs et al., 1981) and broken line (Lathe, 1985) are plotted for 50 % 50 % 50%50 \% (G+ C) and a salt concentration of 6 × 6 × 6xx6 \times SSC ( 1.17 M ) ( 1.17 M ) (1.17M)(1.17 \mathrm{M}).
图 8.2 T d T d T_(d)T_{\mathrm{d}} 与寡核苷酸探针长度的关系。 T d ( C T d C T_(d)(^(@)C:}T_{\mathrm{d}}\left({ }^{\circ} \mathrm{C}\right. ) 和探针长度(核苷酸数)之间的两种关系比较。实线(Suggs 等人,1981 年)和折线(Lathe,1985 年)是针对 50 % 50 % 50%50 \% (G+ C) 和 6 × 6 × 6xx6 \times SSC ( 1.17 M ) ( 1.17 M ) (1.17M)(1.17 \mathrm{M}) 的盐浓度绘制的。

ically determined
T d T d T_(d)T_{\mathrm{d}} values. The empirically derived values are for DNARNA hybrids (oligonucleotide probes and immobilized rRNA targets).
T d T d T_(d)T_{\mathrm{d}} 值。根据经验得出的值适用于 DNARNA 杂交(寡核苷酸探针和固定 rRNA 靶标)。
EXAMPLE 2. The T d T d T_(d)T_{\mathrm{d}} of the 21-mer 5 5 5^(')5^{\prime}-CCGCATCGATGAATCTTTCGT-3’ was empirically determined to be 52 C 52 C 52^(@)C52^{\circ} \mathrm{C} in 1 × 1 × 1xx1 \times SSC (Stahl, unpublished). How does this compare to the estimations determined by eqs (6) and (8)?
例 2.根据经验,21 聚体 5 5 5^(')5^{\prime} -CCGCATCGATGAATCTTTCGT-3' 的 T d T d T_(d)T_{\mathrm{d}} 1 × 1 × 1xx1 \times SSC 中为 52 C 52 C 52^(@)C52^{\circ} \mathrm{C} (Stahl,未发表)。这与公式(6)和(8)确定的估计值相比如何?
M ( 1 × SSC ) = 0.15 + 3 × 0.015 = 0.195 % ( G + C ) = 10 / 21 = 47.6 n = 21 M ( 1 × SSC ) = 0.15 + 3 × 0.015 = 0.195 % ( G + C ) = 10 / 21 = 47.6 n = 21 {:[M(1xxSSC)=0.15+3xx0.015=0.195],[%(G+C)=10//21=47.6],[n=21]:}\begin{aligned} M(1 \times \mathrm{SSC}) & =0.15+3 \times 0.015=0.195 \\ \%(\mathrm{G}+\mathrm{C}) & =10 / 21=47.6 \\ n & =21 \end{aligned}
Using the formula of Lathe (1985):
使用 Lathe(1985 年)的公式:
T d = 81.5 + 16.6 log 0.195 + ( 0.41 × 47.6 ) 820 / 21 = 50.2 C T d = 81.5 + 16.6 log 0.195 + ( 0.41 × 47.6 ) 820 / 21 = 50.2 C T_(d)=81.5+16.6 log 0.195+(0.41 xx47.6)-820//21=50.2^(@)CT_{\mathrm{d}}=81.5+16.6 \log 0.195+(0.41 \times 47.6)-820 / 21=50.2^{\circ} \mathrm{C}
Recall that eq. (8) (Suggs et al., 1981) is only valid for a salt concentration of 6 × 6 × 6xx6 \times SSC. Therefore, the use of this equation to estimate T d T d T_(d)T_{d} in 1 × 1 × 1xx1 \times SSC must be corrected for the change in monovalent cation concentration:
请注意,公式 (8) (Suggs 等人,1981 年)只适用于盐浓度为 6 × 6 × 6xx6 \times SSC 的情况。因此,使用该公式估算 1 × 1 × 1xx1 \times SSC 中的 T d T d T_(d)T_{d} 时,必须根据单价阳离子浓度的变化进行修正:
T d ( 6 × SSC ) = 4 N G + C + 2 N A + T = 4 × 10 + 2 × 11 = 62 C T d ( 6 × SSC ) = 4 N G + C + 2 N A + T = 4 × 10 + 2 × 11 = 62 C T_(d)(6xxSSC)=4N_(G+C)+2N_(A+T)=4xx10+2xx11=62^(@)CT_{\mathrm{d}}(6 \times \mathrm{SSC})=4 N_{\mathrm{G}+\mathrm{C}}+2 N_{\mathrm{A}+\mathrm{T}}=4 \times 10+2 \times 11=62^{\circ} \mathrm{C}
Equation (1) is used to correct for the different concentration of monovalent cations:
等式 (1) 用于校正不同浓度的单价阳离子:
T d , 2 = T d , 1 + 16.6 log ( M 2 / M 1 ) T d ( 1 × SSC ) = T d ( 6 × SSC ) + 16.6 log ( 1 / 6 ) = 62 12.9 = 49.1 C T d , 2 = T d , 1 + 16.6 log M 2 / M 1 T d ( 1 × SSC ) = T d ( 6 × SSC ) + 16.6 log ( 1 / 6 ) = 62 12.9 = 49.1 C {:[T_(d,2)=T_(d,1)+16.6 log(M_(2)//M_(1))],[T_(d)(1xxSSC)=T_(d)(6xxSSC)+16.6 log(1//6)=62-12.9=49.1^(@)C]:}\begin{gathered} T_{\mathrm{d}, 2}=T_{\mathrm{d}, 1}+16.6 \log \left(M_{2} / M_{1}\right) \\ T_{\mathrm{d}}(1 \times \mathrm{SSC})=T_{\mathrm{d}}(6 \times \mathrm{SSC})+16.6 \log (1 / 6)=62-12.9=49.1^{\circ} \mathrm{C} \end{gathered}
Thus, in this example, both estimates of the T d T d T_(d)T_{\mathrm{d}} agree to within about a degree and are within 3 C 3 C 3^(@)C3^{\circ} \mathrm{C} of the measured T d T d T_(d)T_{\mathrm{d}}.
因此,在此示例中, T d T d T_(d)T_{\mathrm{d}} 的两个估计值相差约一度,并且与测量值 T d T d T_(d)T_{\mathrm{d}} 相差 3 C 3 C 3^(@)C3^{\circ} \mathrm{C}
EXAMPLE 3. Estimate the T d ( 1 × SSC ) T d ( 1 × SSC ) T_(d)(1xxSSC)T_{\mathrm{d}}(1 \times \mathrm{SSC}) for the 23 mer 5 23 mer 5 23-mer5^(')23-\mathrm{mer} 5^{\prime}-AGTACCTCCGA AGAGGCCTTTCC-3’.
例 3.估计 23 mer 5 23 mer 5 23-mer5^(')23-\mathrm{mer} 5^{\prime} -AGTACCTCCGA AGAGGCCTTTCC-3' 的 T d ( 1 × SSC ) T d ( 1 × SSC ) T_(d)(1xxSSC)T_{\mathrm{d}}(1 \times \mathrm{SSC})
M = 0.195 % ( G + C ) = 56.6 n = 23 M = 0.195 % ( G + C ) = 56.6 n = 23 {:[M=0.195],[%(G+C)=56.6],[n=23]:}\begin{aligned} M & =0.195 \\ \%(\mathrm{G}+\mathrm{C}) & =56.6 \\ n & =23 \end{aligned}
From eq. (6) (Lathe, 1985):
根据公式 (6)(Lathe,1985 年):
T d = 81.5 + 16.6 log 0.195 + ( 0.41 × 56.5 ) 820 / 23 = 57.2 C T d = 81.5 + 16.6 log 0.195 + ( 0.41 × 56.5 ) 820 / 23 = 57.2 C T_(d)=81.5+16.6 log 0.195+(0.41 xx56.5)-820//23=57.2^(@)CT_{d}=81.5+16.6 \log 0.195+(0.41 \times 56.5)-820 / 23=57.2^{\circ} \mathrm{C}
From eqs (1) and (8) (Suggs et al., 1981):
根据公式 (1) 和 (8)(Suggs 等人,1981 年):
T d ( 6 × SSC ) = 4 N G + C + 2 N A + T = 4 × 13 + 2 × 10 = 72 C T d ( 1 × SSC ) = T d ( 6 × SSC ) + 16.6 log ( 1 / 6 ) = 59.1 C T d ( 6 × SSC ) = 4 N G + C + 2 N A + T = 4 × 13 + 2 × 10 = 72 C T d ( 1 × SSC ) = T d ( 6 × SSC ) + 16.6 log ( 1 / 6 ) = 59.1 C {:[T_(d)(6xxSSC)=4N_(G+C)+2N_(A+T)],[=4xx13+2xx10=72^(@)C],[T_(d)(1xxSSC)=T_(d)(6xxSSC)+16.6 log(1//6)=59.1^(@)C]:}\begin{aligned} T_{\mathrm{d}}(6 \times \mathrm{SSC}) & =4 N_{\mathrm{G}+\mathrm{C}}+2 N_{\mathrm{A}+\mathrm{T}} \\ & =4 \times 13+2 \times 10=72^{\circ} \mathrm{C} \\ T_{\mathrm{d}}(1 \times \mathrm{SSC}) & =T_{\mathrm{d}}(6 \times \mathrm{SSC})+16.6 \log (1 / 6)=59.1^{\circ} \mathrm{C} \end{aligned}
The empirical measurement of the T d T d T_(d)T_{\mathrm{d}} was 60 C 60 C 60^(@)C60^{\circ} \mathrm{C}. Both estimations are within 3 C 3 C 3^(@)C3^{\circ} \mathrm{C} and reasonably approximate the empirical value.
T d T d T_(d)T_{\mathrm{d}} 的经验测量值为 60 C 60 C 60^(@)C60^{\circ} \mathrm{C} 。两个估计值都在 3 C 3 C 3^(@)C3^{\circ} \mathrm{C} 范围内,与经验值比较接近。

(v) Additional factors influencing oligonucleotide duplex stability
(v) 影响寡核苷酸双链稳定性的其他因素

The above relationships should only be considered working approximations to be used as the basis for experimental characterization of oligonucleotide probes. In addition, the following are generalizations concerning the use of oligonucleotide probes. These should at least be considered when designing oligonucleotide probes or interpreting the results of oligonucleotide probe hybridization:
上述关系应仅被视为工作近似值,可用作寡核苷酸探针实验表征的基础。此外,以下是有关寡核苷酸探针使用的概括。在设计寡核苷酸探针或解释寡核苷酸探针杂交结果时,至少应考虑这些因素:

1. Position of mismatch
1.不匹配的位置

A mismatch near the end of a short duplex is generally less destabilizing than an internal mismatch. For example, the study of various single mismatches between a 12-mer probe and target sequence suggested that all the nucleotides on the short side of the mismatch were unpaired. Thus, for a short probe the ‘effective probe size’ was suggested to be equal to the number of base pairs before the mismatch minus 1 (the second deduction is to account for the destabilizing effect of the mismatch on the adjacent base pair). However, experimental observation has shown that the composition of a mismatch can in some instances override positional effects (Szostak et al., 1979). Thus, there are no absolute ‘rules’ for predicting the influence of mismatch position on hybrid stability.
与内部错配相比,短双链末端附近的错配通常不那么不稳定。例如,对 12 聚体探针和目标序列之间的各种单一错配进行的研究表明,错配短边的所有核苷酸都是未配对的。因此,对于短探针,"有效探针大小 "被认为等于错配前的碱基对数减去 1(第二个推论是考虑到错配对相邻碱基对的不稳定影响)。然而,实验观察表明,错配的构成在某些情况下可以超越位置效应(Szostak 等人,1979 年)。因此,预测错配位置对杂交稳定性的影响并没有绝对的 "规则"。

2. Mismatch composition  2.构成不匹配

As indicated above, the composition of the mismatch also influences’ the degree of destabilization. Slightly destabilizing base pairs include G-T, GA, (G-G?). Significant destabilization has been observed for: A-A, T-T, C-T, C-A (Ikuta et al., 1987). However, these are relative stabilities and will vary according to sequence context, e.g. stabilization resulting from stacking contributions of adjacent base pairs (nearest-neighbor contributions).
如上所述,错配的组成也会影响脱稳的程度。轻微脱稳的碱基对包括 G-T、GA、(G-G?)已观察到明显不稳定的碱基对有A-A、T-T、C-T、C-A(Ikuta 等人,1987 年)。不过,这些都是相对稳定性,会因序列背景而异,例如,相邻碱基对的堆叠作用(最近邻作用)会导致稳定。

3. Degenerate probe positions
3.退化探头位置

For certain applications it may be desirable to suppress the contribution of a specific mismatch to duplex destabilization. Such a situation could be a degenerate target position at a homologous position within a gene family or multiple copies of the same functional gene (e.g. between rRNA gene operons). For hybridization to such a target, the use of the G analog inosine (I) has been suggested (Takahashi et al., 1985; Corfield et al., 1987). Inosine pairs with C, T and A without significant destabilization.
在某些应用中,可能需要抑制特定错配对双链失稳的影响。这种情况可能是一个基因家族或同一功能基因的多个拷贝(如 rRNA 基因操作子之间)同源位置上的退化靶位。有人建议使用 G 类似物肌苷(I)与这种目标杂交(Takahashi 等人,1985 年;Corfield 等人,1987 年)。肌苷可与 C、T 和 A 配对,不会产生明显的不稳定性。
In practice, the contribution of these ‘additional’ factors to duplex stability are of greater importance for oligonucleotide probes. With increasing probe length, the influence of individual mismatch composition and position become less significant.
实际上,对于寡核苷酸探针来说,这些 "附加 "因素对双链稳定性的影响更为重要。随着探针长度的增加,单个错配成分和位置的影响就变得不那么重要了。

4. General considerations
4.一般考虑因素

Mismatch discrimination (stringency) is adjusted at one (or both) of two points; during hybridization (generally by adjusting temperature or concentration of formamide) or at a post-hybridization wash step (by adjusting both salt concentration and temperature). Again, the same general considerations discussed above apply. It is emphasized that, as yet, the rules for predicting stability of secondary structure (or higher structure) in nucleic acid are only approximations. The rules have been derived from a relatively limited collection of model structures. This is particularly true for predictions of oligonucleotide duplex stability, where stability is greatly influenced by both sequence and composition.
错配识别(严格程度)在两点中的一点(或两点)进行调整:杂交过程中(一般通过调整温度或甲酰胺浓度)或杂交后的清洗步骤(通过调整盐浓度和温度)。同样,上文讨论的一般注意事项也适用。需要强调的是,目前预测核酸二级结构(或高级结构)稳定性的规则还只是近似值。这些规则是从相对有限的模型结构集合中推导出来的。对于寡核苷酸双链体稳定性的预测来说尤其如此,因为稳定性受序列和组成的影响很大。

5. RNA-DNA versus DNA-DNA duplexes
5.RNA-DNA 与 DNA-DNA 双链体

The above relationships are derived from DNA-DNA duplexes. However, ribonucleotide and deoxyribonucleotide duplex structure differ in relative stability for the same sequence, in the following order: RNA-RNA > RNA-DNA > DNA-DNA (Saenger, 1984). This chapter will not attempt to address this contribution to duplex stability other than in passing. For short RNA-DNA duplex structures the increase in stability appears negligible (as illustrated by the above examples). However, for the use of long RNA transcripts as probes (riboprobes), this effect could markedly alter hybridization results. As a practical example, it may be possible to detect low-homology targets by taking advantage of the greater stability of RNA-DNA duplexes.
上述关系源自 DNA-DNA 双链。然而,对于相同序列,核糖核苷酸和脱氧核苷酸双链结构的相对稳定性不同,顺序如下:RNA-RNA > RNA-DNA > DNA-DNA(Saenger,1984):RNA-RNA>RNA-DNA>DNA-DNA(Saenger,1984 年)。本章将不试图讨论这种对双链稳定性的贡献,只是顺带一提。对于短 RNA-DNA 双链结构,稳定性的增加似乎可以忽略不计(如上述例子所示)。然而,对于使用长 RNA 转录本作为探针(核糖探针)来说,这种效应可能会明显改变杂交结果。举个实际例子,利用 RNA-DNA 双链体更高的稳定性,也许可以检测到低同源性目标。

C. PROBE DESIGN  C.探头设计

(i) Empirical probe design
(i) 经验性探针设计

Examples of the determinative use of nucleic acid probes are largely restricted to the clinical arena. Also, in large part, these probes have been empirically derived. There are two general approaches to design. The first
核酸探针的确定性应用实例主要局限于临床领域。而且,这些探针在很大程度上是根据经验推导出来的。设计方法一般有两种。第一种

requires the generation of a genomic recombinant library (using either phage or plasmid-based vectors) of the target microorganism followed by randomly screening selected clones (potential probes) for appropriate specificity. The alternative approach uses total genomic DNA (radioactively or non-radioactively labeled) derived from the target organism as a hybridization probe for identifying identical or closely related organisms. The reader is referred to standard references for preparation of DNA, cloning and screening of recombinant clones (Maniatis et al., 1982; Davis et al., 1986; Ausubel et al., 1987). Recent representative examples of both strategies are listed in Table 8.1.
这种方法需要生成目标微生物的基因组重组文库(使用噬菌体或质粒载体),然后随机筛选出具有适当特异性的克隆(潜在探针)。另一种方法是使用来自目标生物的总基因组 DNA(放射性或非放射性标记)作为杂交探针,用于鉴定相同或近缘生物。读者可参阅有关 DNA 制备、克隆和重组克隆筛选的标准参考文献(Maniatis 等人,1982 年;Davis 等人,1986 年;Ausubel 等人,1987 年)。表 8.1 列出了这两种策略的最新代表性实例。
TABLE 8.1 Examples of empirical probe design
表 8.1 经验探针设计示例
Organism or group identified
已确定的生物体或群体
Reference  参考资料
A. Whole-cell DNA probes
A.全细胞 DNA 探针
Bacteroides intermedius  中间菌 Moncla et al. (1988)
蒙克拉等人(1988 年)
Bacteroides strains  菌株 Morotomi et al. (1988)
Morotomi 等人(1988 年)
Campylobacter strains  弯曲杆菌菌株 Ng et al. (1987)
Ng 等人(1987 年)
Cheverier et al. (1989)
Cheverier 等人(1989 年)
B. Cloned genomic DNA probes
B.克隆基因组 DNA 探针
Bacteroides fragilis  脆弱拟杆菌 Groves and Clark (1987)
格罗夫斯和克拉克(1987 年)
Bacteroides ruminocola  反刍小球杆菌 Attwood et al. (1988)
阿特伍德等人(1988 年)
Campylobacter jejuni  空肠弯曲杆菌 Picken et al. (1987)
皮肯等人(1987 年)
Mycobacterium leprae  麻风分枝杆菌 Clark-Curtiss and Docherty (1989)
克拉克-柯蒂斯和多切蒂(1989 年)
Mycobacterium tuberculosis
结核分枝杆菌
Roberts et al. (1987)
罗伯茨等人(1987 年)
立 : Pao et al. (1988)
Pao 等人(1988 年)
Mycoplasma gallisepticum
胆囊支原体
Santha et al. (1987)
桑塔等人(1987 年)
Mycoplasma pneumoniae, M. genitalum
肺炎支原体、生殖器支原体
Hyman et al. (1987)
海曼等人(1987 年)
Organism or group identified Reference A. Whole-cell DNA probes Bacteroides intermedius Moncla et al. (1988) Bacteroides strains Morotomi et al. (1988) Campylobacter strains Ng et al. (1987) Cheverier et al. (1989) B. Cloned genomic DNA probes Bacteroides fragilis Groves and Clark (1987) Bacteroides ruminocola Attwood et al. (1988) Campylobacter jejuni Picken et al. (1987) Mycobacterium leprae Clark-Curtiss and Docherty (1989) Mycobacterium tuberculosis Roberts et al. (1987) 立 : Pao et al. (1988) Mycoplasma gallisepticum Santha et al. (1987) Mycoplasma pneumoniae, M. genitalum Hyman et al. (1987)| Organism or group identified | Reference | | :---: | :---: | | A. Whole-cell DNA probes | | | Bacteroides intermedius | Moncla et al. (1988) | | Bacteroides strains | Morotomi et al. (1988) | | Campylobacter strains | Ng et al. (1987) | | | Cheverier et al. (1989) | | B. Cloned genomic DNA probes | | | Bacteroides fragilis | Groves and Clark (1987) | | Bacteroides ruminocola | Attwood et al. (1988) | | Campylobacter jejuni | Picken et al. (1987) | | Mycobacterium leprae | Clark-Curtiss and Docherty (1989) | | Mycobacterium tuberculosis | Roberts et al. (1987) | | 立 : | Pao et al. (1988) | | Mycoplasma gallisepticum | Santha et al. (1987) | | Mycoplasma pneumoniae, M. genitalum | Hyman et al. (1987) |

(ii) Rational or directed probe design
(ii) 合理或定向探针设计

The use of directed probes (genes specifying surface epitopes, toxins, plasmid-encoded functions and conserved gene families) offers a rational and more readily interpretable basis for determinative hybridization. A partial listing of recently described determinative probes designed within a rational or comparative framework is given in Table 8.2. Perhaps the most powerful approach, as now developed, is the application of the large data collection of 16 S 16 S 16 S16 S rRNA sequences to the design of determinative hybridization probes. Several examples of the use of the ribosomal RNAs in such a directed fashion are given in Table 8.2. A more in-depth discussion is reserved for the section on the use of the 165 rRNA and a comparative framework for determinative hybridization.
定向探针(指定表面表位、毒素、质粒编码功能和保守基因家族的基因)的使用为确定性杂交提供了合理和更易于解释的基础。表 8.2 列出了最近在合理或比较框架内设计的确定性探针的部分清单。目前开发的最有力的方法也许是将大量的 16 S 16 S 16 S16 S rRNA 序列数据应用于确定性杂交探针的设计。表 8.2 给出了以这种定向方式使用核糖体 RNA 的几个例子。关于 165 rRNA 的使用和确定性杂交的比较框架的章节将保留更深入的讨论。
TABLE 8.2 Examples of rational probe design
表 8.2 合理探针设计示例

A. Targeting genes specifying surface epitopes Campylobacter jejuni antigenic whole-cell and membrane genes
A. 指定表面表位的靶向基因 空肠弯曲杆菌抗原全细胞和膜基因

B. Targeting genes specifying virulence factors Listeria monocytogenes
β β beta\beta-hemolysin gene
B. 指定毒力因子的靶向基因 单核细胞增多性李斯特菌 β β beta\beta -溶血素基因

Enteric toxin and invasion genes
肠毒素和入侵基因

Escherichia coli enterotoxin genes
大肠杆菌肠毒素基因

C. Targeting conserved genes
C. 锁定保守基因
Subclones of Micrococcus luteus 23S rRNA gene
黄体微球菌 23S rRNA 基因子克隆

rRNA coding and spacer regions, actin and discoidin gene families cloned from Dictyostelium discoideum
从盘状竹荪中克隆的 rRNA 编码区和间隔区、肌动蛋白和盘状蛋白基因家族

Oligonucleotide probe complementary to variable regions of Mycoplasma spp. rRNA
与支原体 rRNA 可变区互补的寡核苷酸探针

D. Targeting viral genomes
D. 针对病毒基因组
Oligonucleotide probes complementary to Papilloma virus genomic DNA
与乳头状瘤病毒基因组 DNA 互补的寡核苷酸探针
Cubie and Norval (1988)
库比和诺瓦尔(1988 年)

D. LABELING TECHNIQUES  D.标记技术

One of the most rapidly changing areas of molecular biology is in the development of alternative systems for detecting target-probe :hybridization. In large part, development is moving away from systems requiring the use of radioisotopes. The issues here are safety and shelf-life, balanced against the general requirement for high sensitivity. For research applications, the use of radioisotopes remains the preferred detection system for most applications requiring high sensitivity. However, more recent nonradioactive systems approach (or possibly surpass in certain applications) radioactive probes. Complete description of experimental or commercial non-radioactive labeling and detection systems is beyond the scope of this chapter and detailed labeling protocols are given only for the more commonly used radioactive systems (Tables 8.5-8.10). These are ‘tried and true’ techniques and are well suited to most research laboratories. It should be kept in mind that there are many variations of these basic protocols, many provided by the manufacturers of kits, vectors and reagents. In part the detailed listing of protocols in this chapter serves to remove some of the mystery from a variety of fairly straightforward techniques of molecular biology.
分子生物学中变化最快的领域之一是开发用于检测目标-探针杂交的替代系统。在很大程度上,开发工作正在摆脱需要使用放射性同位素的系统。这里的问题是安全性和保存期限,以及对高灵敏度的一般要求。在研究应用中,使用放射性同位素仍然是大多数要求高灵敏度的应用的首选检测系统。不过,最新的非放射性系统已接近(或在某些应用中可能超过)放射性探针。对实验性或商业性非放射性标记和检测系统的完整描述超出了本章的范围,本章仅针对较常 用的放射性系统(表 8.5-8.10)给出了详细的标记方案。这些都是 "屡试不爽 "的技术,非常适合大多数研究实验室。需要注意的是,这些基本方案有许多变体,其中许多由试剂盒、载体和试剂制造商提供。本章中详细列出的操作步骤,在一定程度上是为了揭开分子生物学中各种相当直 接的技术的神秘面纱。
There are two basic approaches for the detection of a specific hybrid. One can either directly label the probe (Table 8.3) or attach a reporter group
检测特定杂交种有两种基本方法。一种是直接标记探针(表 8.3),另一种是附加报告基团
TABLE 8.3 Direct labels for radioactive and non-radioactive hybridization probes
表 8.3 用于放射性和非放射性杂交探针的直接标签

Diagrammatic representation of direct labeling and detection of probes hybridized with target sequence.
直接标记和检测与目标序列杂交的探针的示意图。

Label Reference  标签参考
Radioisotopic labels  放射性同位素标签
3 H 3 H ^(3)H{ }^{3} \mathrm{H}
35 S 35 S ^(35)S{ }^{35} \mathrm{~S}
125 125 ^(125){ }^{125} I   125 125 ^(125){ }^{125}

Fluorescent dyes  荧光染料

Fluorescein and tetramethylrhodamine
荧光素和四甲基罗丹明

Nitrobenzofuran  硝基苯并呋喃
Enzymes  
Alkaline phosphatase  碱性磷酸酶
Horseradish peroxidase  辣根过氧化物酶
Horseradish peroxidase detected by chemiluminescence
化学发光检测辣根过氧化物酶

Microperoxidase detected by
微过氧化物酶检测

chemiluminescence  化学发光
Gillespie and Spiegelman (1965); Southern (1975); Collins and Hunsaker (1985); Giovannoni et al. (1988)
Gillespie 和 Spiegelman (1965);Southern (1975);Collins 和 Hunsaker (1985);Giovannoni 等人 (1988)
Gillespie and Spiegelman (1965); Cannon et al. (1985); ThomasCavallin and Ait-Ahmed (1988)
Gillespie 和 Spiegelman (1965);Cannon 等人 (1985);ThomasCavallin 和 Ait-Ahmed (1988)

Collins and Hunsaker (1985);
Collins 和 Hunsaker(1985 年);

Giovannoni et al. (1988)
乔凡诺尼等人(1988 年)

Edelstein (1986); Lewis et al. (1986); Allen et al. (1987)
Edelstein (1986);Lewis 等人 (1986);Allen 等人 (1987)
Bauman et al. (1981a, b); DeLong et al. (1989), Amann et al. (1990)
Bauman 等人(1981a, b);DeLong 等人(1989),Amann 等人(1990)
Draper (1984)  德雷珀(1984 年)
Renz and Kurz (1984); Jablonski et al. (1986); Li et al. (1987); Edman et al. (1988)
Renz 和 Kurz(1984 年);Jablonski 等人(1986 年);Li 等人(1987 年);Edman 等人(1988 年)
Urdea et al. (1987)  乌尔迪亚等人(1987 年)
Amersham Corporation (1989); Thorpe et al. (1985)
Amersham 公司(1989 年);Thorpe 等人(1985 年)

Heller and Shneider (1983)
海勒和施奈德(1983 年)
TABLE 8.4 Indirect detection of non-radioactive hybridization probes
表 8.4 非放射性杂交探针的间接检测

Diagramatic representation of indirect detection of labeled probes hybridized with target sequence.
标记探针与目标序列杂交的间接检测示意图。

Reporter group Biotin  Reporter group   Biotin  (" Reporter group ")/(" Biotin ")quad\frac{\text { Reporter group }}{\text { Biotin }} \quad Leference (1985); Matthews et al (1985); McInnes et al (1987); Kumar et al. (1988); Guitteny et al. (1988); Denman and Miller (1989)
Reporter group Biotin  Reporter group   Biotin  (" Reporter group ")/(" Biotin ")quad\frac{\text { Reporter group }}{\text { Biotin }} \quad Leference (1985);Matthews et al (1985);McInnes et al (1987);Kumar et al. (1988);Guitteny et al. (1988);Denman and Miller (1989)

Digoxigenin  地高辛
2,4-Dinitrophenyl  2,4-二硝基苯基
N -2-Acetylaminofluorene
N -2-乙酰氨基芴

Sulfone  
Boehringer Mannheim Biochemicals (1988); Heiles et al. (1988)
勃林格曼海姆生化公司(1988 年);海尔斯等人(1988 年)

Arnold (1984); Keller et al.
( 1988 , 1989 ) ( 1988 , 1989 ) (1988,1989)(1988,1989)
Arnold (1984); Keller et al.

Tchen et al. (1984);Syvaenen et al. (1986); Chevrier et al. (1989); Landegent et al. (1984)
Tchen 等人(1984 年);Syvaenen 等人(1986 年);Chevrier 等人(1989 年);Landegent 等人(1984 年)

Verdlov et al. (1974); Orgenics Ltd. (1987); Syvaenen et al. (1986)
Verdlov 等人(1974 年);Orgenics 有限公司(1987 年);Syvaenen 等人(1986 年)。(1987); Syvaenen 等人 (1986)

to the probe and detect this reporter with a labeled binding protein. In Table 8.4 we concentrate on commercially available reporter molecules. For a comprehensive listing of the tremendous variety of secondary labeling systems, the reader is referred to a review article by Matthews and Kricka (1988).
在表 8.4 中,我们集中介绍了市场上可买到的报告分子。在表 8.4 中,我们主要介绍了市售的报告分子。如需全面了解各种二次标记系统,请参阅 Matthews 和 Kricka(1988 年)的综述文章。

(i) Methods for labeling probes with radioisotopes
(i) 用放射性同位素标记探针的方法

  1. Nick translation (Table 8.5)
    尼克翻译(表 8.5)
A combination of DNase I and Escherichia coli polymerase I serves to incorporate radioactive nucleotides in double-stranded DNA. The small amount of DNase I included in the reaction introduces a controlled number
DNase I 和大肠杆菌聚合酶 I 的组合可将放射性核苷酸结合到双链 DNA 中。反应中含有的少量 DNase I 会引入数量可控的放射性核苷酸。
TABLE 8.5 Nick translation (Rigby et al., 1977)
表 8.5 尼克翻译(里格比等人,1977 年)

A typical reaction mix contains:
典型的反应混合物包括

1 μ g 1 μ g 1mug1 \mu \mathrm{~g} double-stranded DNA
1 μ g 1 μ g 1mug1 \mu \mathrm{~g} 双链 DNA

5 μ 5 μ 5mu5 \mu I nucleotide mix (dGTP, dCTP, dTTP)
5 μ 5 μ 5mu5 \mu I 核苷酸混合物(dGTP、dCTP、dTTP)

5 μ 1 [ α 32 P ] dATP 5 μ 1 α 32 P dATP 5mu1[alpha^(32)P]dATP5 \mu 1\left[\alpha{ }^{32} \mathrm{P}\right] \mathrm{dATP} (NEN, Boston Mass., USA) with a volume specific activity of 10 μ Ci / μ l 10 μ Ci / μ l 10 muCi//mul10 \mu \mathrm{Ci} / \mu \mathrm{l} (specific activity 3000 Ci / mM 3000 Ci / mM 3000Ci//mM3000 \mathrm{Ci} / \mathrm{mM} )
5 μ 1 [ α 32 P ] dATP 5 μ 1 α 32 P dATP 5mu1[alpha^(32)P]dATP5 \mu 1\left[\alpha{ }^{32} \mathrm{P}\right] \mathrm{dATP} (美国波士顿马萨诸塞州 NEN 公司),体积比活性为 10 μ Ci / μ l 10 μ Ci / μ l 10 muCi//mul10 \mu \mathrm{Ci} / \mu \mathrm{l} (比活性 3000 Ci / mM 3000 Ci / mM 3000Ci//mM3000 \mathrm{Ci} / \mathrm{mM} )

5 μ l 5 μ l 5mul5 \mu \mathrm{l} DNase I-Escherichia coli Polymerase I mixture
5 μ l 5 μ l 5mul5 \mu \mathrm{l} DNase I-大肠杆菌聚合酶 I 混合物

50 μ l 50 μ l 50 mul50 \mu \mathrm{l} final volume with reaction buffer
50 μ l 50 μ l 50 mul50 \mu \mathrm{l} 含有反应缓冲液的最终体积

Mix and incubate at
15 C 15 C 15^(@)C15^{\circ} \mathrm{C} for 1 hour.
混合并在 15 C 15 C 15^(@)C15^{\circ} \mathrm{C} 温度下培养 1 小时。

Remove unincorporated nucleotides by standard methods (see Table 8.11).
用标准方法去除未结合的核苷酸(见表 8.11)。

of nicks (each containing a free
3 OH 3 OH 3^(')OH3^{\prime} \mathrm{OH} group) into the DNA duplex. Polymerase I initiates a replacement strand synthesis at these nicks by removing preceding nucleotides (using an intrinsic 5 3 5 3 5^(')-3^(')5^{\prime}-3^{\prime} exonuclease activity) and simultaneously synthesizing DNA. A variety of radioactive and non-radioactive nucleotides are incorporated by polymerase I. Nick translation kits (e.g. Bethesda Research Laboratories) are now commonly used and avoid the sometimes laborious optimization of reaction conditions.
聚合酶 I 在 DNA 双链上形成一个个缺口(每个缺口都含有一个游离的 3 OH 3 OH 3^(')OH3^{\prime} \mathrm{OH} 基团)。聚合酶 I 通过去除前面的核苷酸(利用固有的 5 3 5 3 5^(')-3^(')5^{\prime}-3^{\prime} 外切酶活性)并同时合成 DNA,从而在这些缺口处启动替换链合成。聚合酶 I 可合成各种放射性和非放射性核苷酸。目前,人们普遍使用尼克翻译试剂盒(如 Bethesda 研究实验室),它可避免有时费力的反应条件优化工作。

2. Random primer labeling (Table 8.6)
2.随机引物标记(表 8.6)

An increasingly popular alternative to nick translation is random primer labeling. Denatured DNA is primed with a random mixture of hexamers and incubated with the large fragment of Escherichia coli DNA polymerase I (Klenow fragment) in the presence of the four dNTPs (generally three unlabeled and one labeled). The label is uniformly incorporated in both strands, yielding a probe with high specific activity. Probes of even higher specific activity can be synthesized by substitution of two or more labeled dNTPs in the reaction mix.
随机引物标记是缺口翻译的一种日益流行的替代方法。变性 DNA 以随机六聚体混合物为引物,与大肠杆菌 DNA 聚合酶 I 的大片段(Klenow 片段)在四种 dNTPs(通常是三种未标记和一种已标记)的存在下孵育。标签会均匀地结合到两条链中,从而产生具有高特异性的探针。通过在反应混合物中替换两种或更多标记的 dNTP,可以合成比活性更高的探针。

3. Riboprobes  3.核糖体

Transcription labeling generally requires initial cloning of the DNA probe fragment to serve as template for synthesis of labeled RNA transcripts (riboprobes) (Rotbart et al., 1988). Several plasmid- and phage-based vectors are commercially available for cloning and transcription (Bethesda Research Laboratories, Gaithersberg, Md., USA; Pharmacia LKB Biotech., Sweden). An alternative to cloning is complete chemical synthesis of complementary oligonucleotides containing a phage promoter sequence and flanking probe sequence (Emson et al., 1988). Table 8.7 details the
转录标记通常需要先克隆 DNA 探针片段,作为合成标记 RNA 转录本(核糖体)的模板(Rotbart 等人,1988 年)。市场上有几种基于质粒和噬菌体的载体可用于克隆和转录(美国马里兰州盖瑟斯堡贝塞斯达研究实验室;瑞典 Pharmacia LKB 生物技术公司)。克隆的另一种方法是用化学方法合成含有噬菌体启动子序列和侧翼探针序列的互补寡核苷酸(Emson 等人,1988 年)。表 8.7 详细介绍了
TABLE 8.6 Random primer labeling (Feinberg and Vogelstein, 1983)
表 8.6 随机引物标记(Feinberg 和 Vogelstein,1983 年)
  1. Prepare solutions  准备解决方案
    10 × 10 × 10 xx10 \times Klenow fragment buffer
    10 × 10 × 10 xx10 \times 克勒诺片段缓冲区

    0.5 M Tris-HCl pH7.5

    0.1 M MgCl 2 0.1 M MgCl 2 0.1MMgCl_(2)0.1 \mathrm{M} \mathrm{MgCl}_{2}
    10 mMDTT
    0.5 mg / ml 0.5 mg / ml 0.5mg//ml0.5 \mathrm{mg} / \mathrm{ml} BSA
    3 dNTP mix  3 dNTP 混合液
    0.5 mMdTTP
    0.5 mMdGTP
    0.5 mM dCTP
Oligonucleotide solution  寡核苷酸溶液
1 μ g / μ l 1 μ g / μ l 1mug//mul1 \mu \mathrm{~g} / \mu \mathrm{l} random hexanucleotides (Pharmacia LKB Biotech., Piscataway, N.J., USA)
1 μ g / μ l 1 μ g / μ l 1mug//mul1 \mu \mathrm{~g} / \mu \mathrm{l} 随机六核苷酸(Pharmacia LKB Biotech.)

2. Denature 100 ng of linear DNA in
10 μ I 10 μ I 10 muI10 \mu \mathrm{I} TE-Buffer ( 10 mM Tris-HCl, pH 7.2; 1 mM EDTA) by boiling ( 100 C 100 C 100^(@)C100^{\circ} \mathrm{C} ) for 3 minutes
2.在 10 μ I 10 μ I 10 muI10 \mu \mathrm{I} TE 缓冲液(10 mM Tris-HCl,pH 7.2;1 mM EDTA)中煮沸( 100 C 100 C 100^(@)C100^{\circ} \mathrm{C} )3 分钟,使 100 纳克线性 DNA 变性。

3. Quench on ice
3.冰上淬火

4. Add in the following order
4.按以下顺序添加

10 μ 10 μ 10 mu10 \mu linearized, denatured DNA ( 100 ng )
10 μ 10 μ 10 mu10 \mu 线性化变性 DNA ( 100 纳克 )

4 μ l 4 μ l 4mul4 \mu \mathrm{l} oligonucleotide solution
4 μ l 4 μ l 4mul4 \mu \mathrm{l} 寡核苷酸溶液

2.5 μ I 2.5 μ I 2.5 muI2.5 \mu \mathrm{I} 3dNTP mix   2.5 μ I 2.5 μ I 2.5 muI2.5 \mu \mathrm{I} 3dNTP混合物
2.5 μ 2.5 μ 2.5 mu2.5 \mu Klenow fragment buffer
2.5 μ 2.5 μ 2.5 mu2.5 \mu 克勒诺片段缓冲区

5 μ 1 [ γ 32 P ] dATP ( 50 μ Ci 5 μ 1 γ 32 P dATP ( 50 μ Ci 5mu1[gamma^(-32)P]dATP(50 muCi5 \mu 1\left[\gamma^{-32} \mathrm{P}\right] \mathrm{dATP}(50 \mu \mathrm{Ci}; Table 8.5)   5 μ 1 [ γ 32 P ] dATP ( 50 μ Ci 5 μ 1 γ 32 P dATP ( 50 μ Ci 5mu1[gamma^(-32)P]dATP(50 muCi5 \mu 1\left[\gamma^{-32} \mathrm{P}\right] \mathrm{dATP}(50 \mu \mathrm{Ci} ;表 8.5)
1 μ 1 1 μ 1 1mu11 \mu 1 Klenow fragment (3-8 units)
1 μ 1 1 μ 1 1mu11 \mu 1 克勒诺片段(3-8 个单位)

5. Incubate 2 hours at room temperature
5.室温下孵育 2 小时

6. Remove unincorporated nucleotides by standard methods (see Table 8.11)
6.用标准方法去除未结合的核苷酸(见表 8.11) 7.

synthesis of an RNA probe using a plasmid-based T7 promotor/transcription system.
使用基于质粒的 T7 启动子/转录系统合成 RNA 探针。

4. Polymerase chain reaction
4.聚合酶链反应

The PCR method can produce unlimited amounts of double-stranded DNA starting from very small amounts of DNA or RNA (if cDNA is synthesized with reverse transcriptase prior to the chain reaction). Label can be incorporated during the PCR reaction as outlined in Table 8.8 or following amplification by using standard techniques (see Tables 8.5 and 8.6).
PCR 方法可以从极少量的 DNA 或 RNA(如果在链反应前用逆转录酶合成了 cDNA)开始产生无限量的双链 DNA。标签可在 PCR 反应过程中加入,如表 8.8 所示,或在扩增后使用标准技术加入(见表 8.5 和 8.6)。

5. 5 5 5^(')5^{\prime}-End labeling with 32 P 32 P ^(32)P{ }^{32} P (Table 8.9)
5. 5 5 5^(')5^{\prime} -以 32 P 32 P ^(32)P{ }^{32} P 结束标记(表 8.9)

T4 polynucleotide kinase catalyzes the transfer of the terminal phosphate group from ATP to the 5 5 5^(')5^{\prime}-hydroxyl group of RNA or DNA. Thiolated ( 35 35 ^(35){ }^{35} S)
T4 多核苷酸激酶催化 ATP 的末端磷酸基转移到 RNA 或 DNA 的 5 5 5^(')5^{\prime} - 羟基上。硫醇化( 35 35 ^(35){ }^{35} S)

TABLE 8.7 Transcript labeling (Melton et al., 1984)
表 8.7 转录本标记(梅尔顿等人,1984 年)

  1. Prepare 10 × 10 × 10 xx10 \times T7-RNA-polymerase buffer
    准备 10 × 10 × 10 xx10 \times T7-RNA 聚合酶缓冲液
400 mM Tris-HCl pH 7.5
60 mM MgCl 2 60 mM MgCl 2 60mMMgCl_(2)60 \mathrm{mM} \mathrm{MgCl}_{2}
100 mM DTT
40 mM spermidine  40 mM 亚精胺

1 mg / ml 1 mg / ml 1mg//ml1 \mathrm{mg} / \mathrm{ml} BSA
4 mM GTP
4 mM ATP
4 mM TTP
0.8 mMCTP
2. Add in the following order (
20 μ l 20 μ l 20 mul20 \mu \mathrm{l} final volume)
2.按以下顺序添加( 20 μ l 20 μ l 20 mul20 \mu \mathrm{l} 最后一卷)

10 μ 10 μ 10 mu10 \mu DNA template ( 0.6 μ g ) ( 0.6 μ g ) (0.6 mug)(0.6 \mu \mathrm{~g})
10 μ 10 μ 10 mu10 \mu DNA 模板 ( 0.6 μ g ) ( 0.6 μ g ) (0.6 mug)(0.6 \mu \mathrm{~g})

2 μ 110 × 2 μ 110 × 2mu110 xx2 \mu 110 \times T7-RNA-polymerase buffer
2 μ 110 × 2 μ 110 × 2mu110 xx2 \mu 110 \times T7-RNA 聚合酶缓冲液

7 μ ] [ α 32 P ] 7 μ ] α 32 P 7mu][alpha^(32)P]7 \mu]\left[\alpha{ }^{32} \mathrm{P}\right] CTP (ICN Radiochemicals, Irvine, Calif., USA) with a volume specific activity of 10 μ Ci / μ 1 10 μ Ci / μ 1 10 muCi//mu110 \mu \mathrm{Ci} / \mu 1 (specific activity 3000 Ci / mM 3000 Ci / mM 3000Ci//mM3000 \mathrm{Ci} / \mathrm{mM} )
7 μ ] [ α 32 P ] 7 μ ] α 32 P 7mu][alpha^(32)P]7 \mu]\left[\alpha{ }^{32} \mathrm{P}\right] CTP(ICN Radiochemicals,Irvine,Calif, USA),体积比活度为 10 μ Ci / μ 1 10 μ Ci / μ 1 10 muCi//mu110 \mu \mathrm{Ci} / \mu 1 (比活度 3000 Ci / mM 3000 Ci / mM 3000Ci//mM3000 \mathrm{Ci} / \mathrm{mM} )

1 μ IT 7 1 μ IT 7 1muIT71 \mu \mathrm{IT7}-RNA-polymerase (Boehringer Mannheim Biochemicals, Indianapolis, Ind., USA), 20 units/ μ μ mu\mu I
1 μ IT 7 1 μ IT 7 1muIT71 \mu \mathrm{IT7} -RNA-聚合酶(Boehringer Mannheim Biochemicals,Indianapolis,Ind.

3. Mix and incubate at
37 C 37 C 37^(@)C37^{\circ} \mathrm{C} for 1 hour
3.混合并在 37 C 37 C 37^(@)C37^{\circ} \mathrm{C} 温度下培养 1 小时

4. Remove unincorporated nucleotides (see Table 8.11)
4.去除未结合的核苷酸(见表 8.11)
ATP analogs also serve as substrate for this enzyme. This method can therefore be used to label virtually any polynucleotide (e.g. fragmented rRNA, DNA restriction fragments and oligonucleotides) with either 32 P 32 P ^(32)P{ }^{32} \mathrm{P} or 35 S 35 S ^(35)S{ }^{35} \mathrm{~S}. The primary limitation of this labeling strategy is incorporation of a single radioactive group per strand of RNA or DNA. As a consequence, the specific activity (and therefore the associated sensitivity of target detection) may not be as high as that realized by other labeling techniques.
ATP 类似物也可作为这种酶的底物。因此,这种方法几乎可以用来用 32 P 32 P ^(32)P{ }^{32} \mathrm{P} 35 S 35 S ^(35)S{ }^{35} \mathrm{~S} 标记任何多核苷酸(如片段 rRNA、DNA 限制片段和寡核苷酸)。这种标记策略的主要局限性在于每条 RNA 或 DNA 链只有一个放射性基团。因此,特异性活性(以及相关的目标检测灵敏度)可能不如其他标记技术高。

6. 3'-End labeling with terminal transferase (Table 8.10)
6.用末端转移酶进行 3'-末端标记(表 8.10)

Terminal transferase catalyzes the addition of deoxyribonucleotides to the 3 3 3^(')3^{\prime} termini (containing available 3 OH 3 OH 3^(')OH3^{\prime} \mathrm{OH} groups) of double- or singlestranded DNA in a template-independent reaction. Since multiple labels can be added to an oligonucleotide, yery high specific activities can be achieved. The tail length is controlled by adjusting the relative molar concentrations of 3 3 3^(')3^{\prime} ends and dNTPs. By using [ α 32 P ] ddNTP α 32 P ddNTP {: alpha^(-32)P]ddNTP\left.\alpha{ }^{-32} \mathrm{P}\right] \mathrm{ddNTP} (or [ α 32 P ] α 32 P {: alpha-^(32)P]\left.\alpha-{ }^{32} \mathrm{P}\right] cordycepin), incorporation can be limited to a single nucleotide.
末端转移酶在一个与模板无关的反应中,催化脱氧核苷酸添加到双链或单链 DNA 的 3 3 3^(')3^{\prime} 端部(含有可用的 3 OH 3 OH 3^(')OH3^{\prime} \mathrm{OH} 基团)。由于可以在一个寡核苷酸上添加多个标签,因此可以实现极高的比活度。通过调整 3 3 3^(')3^{\prime} 末端和 dNTPs 的相对摩尔浓度,可以控制尾部长度。通过使用[ α 32 P ] ddNTP α 32 P ddNTP {: alpha^(-32)P]ddNTP\left.\alpha{ }^{-32} \mathrm{P}\right] \mathrm{ddNTP} (或[ α 32 P ] α 32 P {: alpha-^(32)P]\left.\alpha-{ }^{32} \mathrm{P}\right] 虫草素)],可将掺入限制在单个核苷酸内。

7. Purification of labeled products
7.标记产品的纯化

There is a variety of methods for purification of labeled nucleic acid probes. Most simply, this involves only the removal of unincorporated
纯化标记核酸探针的方法多种多样。最简单的方法是只去除未结合的核酸探针。
TABLE 8.8 Probe labeling using the polymerase chain reaction (Saiki et al., 1986; Schowalter and Sommer, 1989)
表 8.8 利用聚合酶链反应进行探针标记(Saiki 等人,1986 年;Schowalter 和 Sommer,1989 年)
  1. Prepare solutions  准备解决方案
    20 × 20 × 20 xx20 \times minus dCTP buffer
    20 × 20 × 20 xx20 \times 减去 dCTP 缓冲液

    1 M KCl
    0.2 M Tris-HCl, pH 8.3
    0.2 M Tris-HCl,pH 8.3

    30 mM MgCl 2 30 mM MgCl 2 30mMMgCl_(2)30 \mathrm{mM} \mathrm{MgCl}{ }_{2}
    0.2 % 0.2 % 0.2%0.2 \% (w/v) gelatin   0.2 % 0.2 % 0.2%0.2 \% (重量/体积)明胶
    4 mM dATP
    4 mMdTTP
    4 mMdGTP
    Primer mix:
    20 μ M 20 μ M 20 muM20 \mu \mathrm{M} of both primers (for a 15-base oligonucleotide, c, 100 ng / μ l 100 ng / μ l 100ng//mul100 \mathrm{ng} / \mu \mathrm{l} )
    引物混合物:两种引物的 20 μ M 20 μ M 20 muM20 \mu \mathrm{M} (对于 15 个碱基的寡核苷酸,c, 100 ng / μ l 100 ng / μ l 100ng//mul100 \mathrm{ng} / \mu \mathrm{l} )
  2. Add reagents to a 500 μ l 500 μ l 500 mul500 \mu \mathrm{l} Eppendorf tube in the following order:
    按以下顺序将试剂加入 500 μ l 500 μ l 500 mul500 \mu \mathrm{l} Eppendorf 试管中:

    1 μ I 1 μ I 1muI1 \mu \mathrm{I} template DNA ( 100 pg / μ I 100 pg / μ I 100pg//muI100 \mathrm{pg} / \mu \mathrm{I} )
    1 μ I 1 μ I 1muI1 \mu \mathrm{I} 模板 DNA ( 100 pg / μ I 100 pg / μ I 100pg//muI100 \mathrm{pg} / \mu \mathrm{I} )

    2 μ 1 2 μ 1 2mu12 \mu 1 primer mix   2 μ 1 2 μ 1 2mu12 \mu 1 混合底漆
    15 μ l [ α 32 P ] dCTP 15 μ l α 32 P dCTP 15 mul[alpha-^(32)P]dCTP15 \mu \mathrm{l}\left[\alpha-{ }^{32} \mathrm{P}\right] \mathrm{dCTP} (ICN Radiochemicals, Irvine, Calif., USA) with a volume specific activity of 10 μ Ci / μ l 10 μ Ci / μ l 10 muCi//mul10 \mu \mathrm{Ci} / \mu \mathrm{l} (specific activity 3000 Ci / mM 3000 Ci / mM 3000Ci//mM3000 \mathrm{Ci} / \mathrm{mM} ) 1 μ l 20 × 1 μ l 20 × 1mul20 xx1 \mu \mathrm{l} 20 \times minus dCTP buffer
    15 μ l [ α 32 P ] dCTP 15 μ l α 32 P dCTP 15 mul[alpha-^(32)P]dCTP15 \mu \mathrm{l}\left[\alpha-{ }^{32} \mathrm{P}\right] \mathrm{dCTP} (ICN Radiochemicals,Irvine,Calif,USA),体积比活度为 10 μ Ci / μ l 10 μ Ci / μ l 10 muCi//mul10 \mu \mathrm{Ci} / \mu \mathrm{l} (比活度 3000 Ci / mM 3000 Ci / mM 3000Ci//mM3000 \mathrm{Ci} / \mathrm{mM} 1 μ l 20 × 1 μ l 20 × 1mul20 xx1 \mu \mathrm{l} 20 \times 减去 dCTP 缓冲液

    1 μ H 2 O 1 μ H 2 O 1muH_(2)O1 \mu \mathrm{H}_{2} \mathrm{O}
  3. Overlay with 20 μ 1 20 μ 1 20 mu120 \mu 1 mineral oil and heat to 94 C 94 C 94^(@)C94^{\circ} \mathrm{C} for 10 minutes
    覆上 20 μ 1 20 μ 1 20 mu120 \mu 1 矿物油,加热至 94 C 94 C 94^(@)C94^{\circ} \mathrm{C} 10 分钟
  4. Add 1 unit of Taq-Polymerase (Perkin-Elmer/Cetus, Emeryville, Calif., USA)
    加入 1 个单位的 Taq-聚合酶(Perkin-Elmer/Cetus,美国加利福尼亚州埃默里维尔市)
  5. Run 30 cycles (DNA thermal cycler) of denaturation, primer annealing and transcription (e.g. 1 minute 94 C 94 C 94^(@)C94^{\circ} \mathrm{C} denaturation, 2 minutes 50 C 50 C 50^(@)C50^{\circ} \mathrm{C} annealing, and 3 minutes 72 C 72 C 72^(@)C72^{\circ} \mathrm{C} elongation). Annealing temperature will vary with primer composition.
    运行 30 个变性、引物退火和转录循环(DNA 热循环仪)(例如,1 分钟 94 C 94 C 94^(@)C94^{\circ} \mathrm{C} 变性,2 分钟 50 C 50 C 50^(@)C50^{\circ} \mathrm{C} 退火,3 分钟 72 C 72 C 72^(@)C72^{\circ} \mathrm{C} 延伸)。退火温度因引物成分而异。
  6. Remove unincorporated label by using standard techniques (see Table 8.11)
    使用标准技术清除未加入的标签(见表 8.11)

    radiolabel. However, separation of intact probe from probe degradation products or unwanted side-reaction products may also be necessary. A common approach to simultaneous isolation of intact probe and removal of unincorporated label (commonly used for the purification of oligonucleotides) is fractionation of reaction products on a polyacrylamide gel. The region of the gel containing the labeled probe is excised and the oligonucleotide is eluted from the gel matrix (Miyada and Wallace, 1987). The approach detailed here (Table 8.11) is designed only to remove unincorporated label. However, it is suitable for purification of all of the probes described in this chapter. This technique takes advantage of a Dupont Corporation product (Nensorb
    TM 20 TM 20 ^(TM)20{ }^{\mathrm{TM}} 20 nucleic acid purification cartridge). The Nensorb cartridge can remove protein, salt and unincorporated label from either DNA or RNA. The recovery of nucleic acid from the cartridge is excellent ( 1 ng to 20 μ g 20 μ g 20 mug20 \mu \mathrm{~g} ) and it is suitable for purification of oligonucleotides as well as longer nucleic acid fragments.
    放射性标记。不过,也有必要将完整探针与探针降解产物或不需要的副反应产物分离开来。同时分离完整探针和去除未结合标记(常用于纯化寡核苷酸)的常用方法是在聚丙烯酰胺凝胶上对反应产物进行分馏。含有标记探针的凝胶区域被切除,寡核苷酸从凝胶基质中洗脱出来(Miyada 和 Wallace,1987 年)。此处详述的方法(表 8.11)仅用于去除未结合的标记。不过,它也适用于本章所述所有探针的纯化。这项技术利用了杜邦公司的产品(Nensorb0 TM 20 TM 20 ^(TM)20{ }^{\mathrm{TM}} 20 核酸纯化盒)。Nensorb 盒可以去除 DNA 或 RNA 中的蛋白质、盐和未结合的标签。该试剂盒的核酸回收率极高(1 ng 至 20 μ g 20 μ g 20 mug20 \mu \mathrm{~g} ),适用于纯化寡核苷酸和较长的核酸片段。
TABLE 8.9 5’-End labeling using T4 polynucleotide kinase (Maxam and Gilbert, 1980)
表 8.9 使用 T4 多核苷酸激酶进行 5'-末端标记(马克萨姆和吉尔伯特,1980 年)
  1. Prepare reaction buffer  准备反应缓冲液
    10 × 10 × 10 xx10 \times kinase buffer   10 × 10 × 10 xx10 \times 激酶缓冲液
    0.5 M Tris-HCl, pH 7.6
    0.5 M Tris-HCl,pH 7.6

    0.1 M MgCl 2 0.1 M MgCl 2 0.1MMgCl_(2)0.1 \mathrm{M} \mathrm{MgCl}_{2}
    50 mMDTT
    1 mM spermidine  1 mM 亚精胺
    1 mM EDTA
  2. Add in the following order:
    按以下顺序添加

    1 50 1 50 1-501-50 pmol dephosphorylated DNA 5 5 5^(')5^{\prime} ends
    1 50 1 50 1-501-50 毫摩尔去磷酸化 DNA 5 5 5^(')5^{\prime} 末端

    10 μ l 10 × 10 μ l 10 × 10 mul10 xx10 \mu \mathrm{l} 10 \times kinase buffer   10 μ l 10 × 10 μ l 10 × 10 mul10 xx10 \mu \mathrm{l} 10 \times 激酶缓冲液
    1 μ 1 [ γ 32 P ] 1 μ 1 γ 32 P 1mu1[gamma^(32)P]1 \mu 1\left[\gamma{ }^{32} \mathrm{P}\right] ATP (ICN Radiochemicals, Irvine, Calif., USA) with a volume specific activity of 160 mCi / ml ( 7000 Ci / mM ) 160 mCi / ml ( 7000 Ci / mM ) 160mCi//ml( >= 7000Ci//mM)160 \mathrm{mCi} / \mathrm{ml}(\geqslant 7000 \mathrm{Ci} / \mathrm{mM})
    1 μ 1 [ γ 32 P ] 1 μ 1 γ 32 P 1mu1[gamma^(32)P]1 \mu 1\left[\gamma{ }^{32} \mathrm{P}\right] ATP(ICN Radiochemicals,Irvine,Calif, USA)的体积比活性为 160 mCi / ml ( 7000 Ci / mM ) 160 mCi / ml ( 7000 Ci / mM ) 160mCi//ml( >= 7000Ci//mM)160 \mathrm{mCi} / \mathrm{ml}(\geqslant 7000 \mathrm{Ci} / \mathrm{mM})
  3. Adjust volume to 100 μ l 100 μ l 100 mul100 \mu \mathrm{l} with water
    用水将体积调整到 100 μ l 100 μ l 100 mul100 \mu \mathrm{l}
  4. Incubate at 37 C 37 C 37^(@)C37^{\circ} \mathrm{C} for 30 minutes
    37 C 37 C 37^(@)C37^{\circ} \mathrm{C} 条件下孵育 30 分钟
  5. Remove unincorporated nucleotides by standard techniques (see Table 8.11)
    用标准技术去除未结合的核苷酸(见表 8.11)
TABLE 8.10 3 3 quad3^(')\quad 3^{\prime}-End labeling of oligonucleotides using terminal deoxynucleotidyl transferase (Ratcliff, 1981)
表 8.10 3 3 quad3^(')\quad 3^{\prime} 使用末端脱氧核苷酸转移酶对寡核苷酸进行末端标记(Ratcliff,1981 年)
  1. Prepare 5 × 5 × 5xx5 \times cacodylate
    制备 5 × 5 × 5xx5 \times 卡科迪酸
500 mM potassium cacodylate
500 mM 水合碘酸钾

10 mM Tris pH 7.2
2. Add in the following order:
2.按以下顺序添加

10 μ l 10 μ l 10 mul10 \mu \mathrm{l} potassium cacodylate
10 μ l 10 μ l 10 mul10 \mu \mathrm{l} 卡可地酸钾

5 μ 10 mM 5 μ 10 mM 5mu10mM5 \mu 10 \mathrm{mM} cobalt chloride
5 μ 10 mM 5 μ 10 mM 5mu10mM5 \mu 10 \mathrm{mM} 氯化钴

10 ng oligonucleotide  10 纳克寡核苷酸

10 μ l [ α 32 10 μ l α 32 10 mul[alpha^(-32):}10 \mu \mathrm{l}\left[\alpha^{-32}\right. P]dATP (NEN, Boston, Mass., USA) with a volume specific activity of 10 μ Ci / μ 10 μ Ci / μ 10 muCi//mu10 \mu \mathrm{Ci} / \mu (specific activity 3000 Ci / mM 3000 Ci / mM 3000Ci//mM3000 \mathrm{Ci} / \mathrm{mM} )
10 μ l [ α 32 10 μ l α 32 10 mul[alpha^(-32):}10 \mu \mathrm{l}\left[\alpha^{-32}\right. P]dATP(NEN,波士顿,马萨诸塞州,美国),体积比活性为 10 μ Ci / μ 10 μ Ci / μ 10 muCi//mu10 \mu \mathrm{Ci} / \mu (比活性 3000 Ci / mM 3000 Ci / mM 3000Ci//mM3000 \mathrm{Ci} / \mathrm{mM} )

3. Adjust to a final volume of 50 μ l 50 μ l 50 mul50 \mu \mathrm{l} with water
3.用水调节到 50 μ l 50 μ l 50 mul50 \mu \mathrm{l} 的最终体积

4. Add
0.5 μ l 0.5 μ l 0.5 mul0.5 \mu \mathrm{l} terminal deoxynucleotidyl transferase ( 55 U / μ l 55 U / μ l 55U//mul55 \mathrm{U} / \mu \mathrm{l}, Boehringer Mannheim Biochemicals, Indianapolis, Ind., USA)
4.加入 0.5 μ l 0.5 μ l 0.5 mul0.5 \mu \mathrm{l} 末端脱氧核苷酸转移酶( 55 U / μ l 55 U / μ l 55U//mul55 \mathrm{U} / \mu \mathrm{l} ,Boehringer Mannheim Biochemicals,Indianapolis,Ind.)

5. Incubate at
37 C 37 C 37^(@)C37^{\circ} \mathrm{C} for 1 hour
5.在 37 C 37 C 37^(@)C37^{\circ} \mathrm{C} 下培养 1 小时

6. Remove unincorporated nucleotides using standard techniques (see Table 8.11)
6.使用标准技术去除未结合的核苷酸(见表 8.11) 7.
TABLE 8.11 Purification of labeled hybridization probes using the Nensorb TM TM ^(TM){ }^{\mathrm{TM}} 20 cartridge (Dupont Corporation; Johnson et al., 1986)
表 8.11 使用 Nensorb TM TM ^(TM){ }^{\mathrm{TM}} 20 滤芯(杜邦公司;Johnson 等人,1986 年)纯化标记杂交探针
  1. Prepare solutions  准备解决方案
Reagent A A AA  试剂 A A AA
0.1 M Tris-HCl pH 7.7
10.0 mM triethylamine  10.0 mM 三乙胺
1.0 mMEDTA
Reagent B  试剂 B
50% methanol  50% 甲醇
2. Prerinse the cartridge with
2 ml 100 % 2 ml 100 % 2ml100%2 \mathrm{ml} 100 \% methanol
2.用 2 ml 100 % 2 ml 100 % 2ml100%2 \mathrm{ml} 100 \% 甲醇预洗滤芯

3. Equilibrate with 2 ml of reagent
A A AA
3.用 2 毫升试剂 A A AA 平衡

4. Load the sample in a volume greater than 400 μ l 400 μ l 400 mul400 \mu \mathrm{l}, wash with several ml reagent A and elute in a small volume of 50 % 50 % 50%50 \% methanol (reagent B)
4.以大于 400 μ l 400 μ l 400 mul400 \mu \mathrm{l} 的体积装载样品,用几毫升试剂 A 冲洗,然后用小体积的 50 % 50 % 50%50 \% 甲醇(试剂 B)洗脱。

E. IMMOBILIZATION OF NUCLEIC ACID ON MEMBRANE SUPPORTS
E.将核酸固定在膜支持物上

Detailed discussion of hybrid detection will be restricted to systems having the target nucleic acid immobilized on nylon or nitrocellulose membranes prior to hybridization with probe. Although solution hybridization coupled with capture/detection or detection techniques is an alternative approach, it is not a widely used research tool for determinative studies. Detailed discussion of solution hybridization is addressed elsewhere (see Chapters 2 and 3 ) and is beyond the scope of this chapter.
关于杂交检测的详细讨论将仅限于在与探针杂交前将目标核酸固定在尼龙膜或硝酸纤维膜上的系统。虽然溶液杂交与捕获/检测或检测技术相结合是一种替代方法,但它并不是确定性研究中广泛使用的研究工具。有关溶液杂交的详细讨论将在其他章节中进行(见第 2 章和第 3 章),不在本章讨论范围之内。
Immobilization of DNA on nitrocellulose was first described by Nygaard and Hall (1963, 1964). Two years later, Gillespie and Spiegelman (1965) described the detection of membrane-bound nucleic acid by hybridization with a radioactive probe. Denhardt (1966) further developed the method for application to multiple samples, making it a standard tool in molecular biology. Publication of the paper ‘Detection of specific sequences among DNA fragments separated by gel electrophoresis’ was another landmark in molecular biology (Southern, 1975). Since this time, a variety of alternative supports has been fabricated (e.g. activated nitrocellulose, nylon membranes) and many modifications of transfer and hybridization protocols have been described. Again for a complete listing the reader is referred to a recent review (Meinkoth and Wahl, 1984). Tables 8.12 and 8.13 detail two protocols using the much easier to handle nylon support membranes. These are derivatives of the basic techniques originally described by Denhardt and Southern.
Nygaard 和 Hall(1963 年、1964 年)首次描述了将 DNA 固定在硝酸纤维素上的方法。两年后,Gillespie 和 Spiegelman(1965 年)描述了通过与放射性探针杂交来检测膜结合核酸的方法。Denhardt(1966 年)进一步发展了这一方法,将其应用于多个样本,使其成为分子生物学的标准工具。通过凝胶电泳分离的 DNA 片段中特定序列的检测》一文的发表是分子生物学的另一个里程碑(Southern,1975 年)。从那时起,人们开始制造各种替代支撑物(如活化硝酸纤维素、尼龙膜),并对转移和杂交方案进行了许多修改。如需完整清单,读者可参阅最近的一篇综述(Meinkoth 和 Wahl,1984 年)。表 8.12 和 8.13 详细介绍了使用更容易处理的尼龙支撑膜的两种方案。这些都是 Denhardt 和 Southern 最初描述的基本技术的衍生物。
In response to the increasing use of nylon membranes for nucleic acid hybridization, the traditional Southern transfer has been slightly modified
由于越来越多地使用尼龙膜进行核酸杂交,传统的 Southern 转印也略有改动
TABLE 8.12 Immobilization of RNA and DNA on nylon membranes using a dot blot apparatus
表 8.12 使用点印迹仪将 RNA 和 DNA 固定在尼龙膜上

Denaturation of RNA  RNA 的变性

  1. Add three volumes 2 % 2 % 2%2 \% glutaraldehyde in 50 mM sodium phosphate ( pH 7.0 ) to the RNA solution (c. 100 μ g / ml 100 μ g / ml 100 mug//ml100 \mu \mathrm{~g} / \mathrm{ml} )
    在 RNA 溶液中加入三体积 2 % 2 % 2%2 \% 戊二醛(50 mM 磷酸钠,pH 7.0) (c. 100 μ g / ml 100 μ g / ml 100 mug//ml100 \mu \mathrm{~g} / \mathrm{ml} )
  2. Dilute the denatured RNA in dye/poly A ( 1 μ g / ml A ( 1 μ g / ml A(1mug//ml\mathrm{A}(1 \mu \mathrm{~g} / \mathrm{ml} polyadenylic acid, 0.0002 % 0.0002 % 0.0002%0.0002 \% bromophenol blue)
    将变性 RNA 稀释在染料/聚 A ( 1 μ g / ml A ( 1 μ g / ml A(1mug//ml\mathrm{A}(1 \mu \mathrm{~g} / \mathrm{ml} 多腺苷酸、 0.0002 % 0.0002 % 0.0002%0.0002 \% 溴酚蓝中)。

    Denaturation of DNA (Kafatos et al., 1979; Chen and Seeburg, 1985)
    DNA 的变性(Kafatos 等人,1979 年;Chen 和 Seeburg,1985 年)
  3. Add one volume denaturation buffer ( 0.4 M NaOH , 4 mM 0.4 M NaOH , 4 mM 0.4MNaOH,4mM0.4 \mathrm{M} \mathrm{NaOH}, 4 \mathrm{mM} EDTA) to the DNA and incubate at room temperature for 10 minutes
    向 DNA 中加入一体积变性缓冲液( 0.4 M NaOH , 4 mM 0.4 M NaOH , 4 mM 0.4MNaOH,4mM0.4 \mathrm{M} \mathrm{NaOH}, 4 \mathrm{mM} EDTA),室温下孵育 10 分钟
  4. Neutralize by adding 1 / 10 1 / 10 1//101 / 10 volume 2 M ammonium acetate, place on ice and apply immediately to the membrane
    加入 1 / 10 1 / 10 1//101 / 10 体积为 2 M 的醋酸铵进行中和,放在冰上并立即涂抹到膜上。

    Application of denatured nucleic acid to the nylon membrane
    变性核酸在尼龙膜上的应用
  5. Pre-wet the nylon membrane in water and place in the dot blot apparatus (Schleicher & Schuell, FRG)
    用水预湿尼龙膜,并将其放入点印迹仪(德国施莱歇尔和舒尔公司)
  6. Apply between 0.5 ng and 2 μ g 2 μ g 2mug2 \mu \mathrm{~g} of denatured nucleic acid in a volume of about 100 μ 1 100 μ 1 100 mu1100 \mu 1 to the membrane by using a slight vacuum
    使用轻微真空将 0.5 毫微克至 2 μ g 2 μ g 2mug2 \mu \mathrm{~g} 的变性核酸以约 100 μ 1 100 μ 1 100 mu1100 \mu 1 的体积涂抹到膜上
  7. Remove filter, rinse in 2 × 2 × 2xx2 \times SSC, and air dry (no additional fixation steps are required for nylon membranes
    取出过滤器,在 2 × 2 × 2xx2 \times SSC 中冲洗,然后晾干(尼龙膜不需要额外的固定步骤
TABLE 8.13 Southern transfer using nylon membranes
表 8.13 使用尼龙膜进行南方转印
  1. Place the agarose gel of electrophoretically separated DNA fragments in a tray containing 0.2 M HCl in a volume sufficient to cover the gel (depurination step)
    将电泳分离出 DNA 片段的琼脂糖凝胶放入装有 0.2 M HCl 的托盘中,HCl 的体积应足以覆盖凝胶(去质化步骤)。
  2. Incubate with slight shaking for 15 minutes
    轻微振荡孵育 15 分钟
  3. Exchange the acid solution and incubate an additional 15 minutes
    交换酸溶液并再培养 15 分钟
  4. Pour the acid away and wash several times with water
    倒掉酸液,用清水清洗几遍
  5. Wash 15 minutes each in two exchanges of 0.4 M NaOH
    在两次 0.4 M NaOH 交换中各清洗 15 分钟
  6. Wet the nylon membrane in water followed by immersing in 0.4 M NaOH
    用水浸湿尼龙膜,然后将其浸入 0.4 M NaOH 溶液中。
  7. Assemble the blotting pyramid; a common arrangement for a one-sided transfer includes (assembled from bottom to top):
    组装印迹金字塔;单面转移的常见排列方式包括(从下到上组装):
Wick in tray with 0.4 M NaOH
将蜡烛芯放入装有 0.4 M NaOH 的托盘中

Pretreated gel  预处理凝胶
NyIon membrane  离子膜
10 sheets of Whatman 3 MM paper
10 张 3 毫米 Whatman 纸

Paper towels  纸巾
Weight  重量
8. Transfer is completed in 12-24 hours at room temperature
8.室温下 12-24 小时内完成转移

9. Disassemble the blotting pyramid and rinse the filter in
2 × 2 × 2xx2 \times SSC
9.拆卸印迹金字塔,在 2 × 2 × 2xx2 \times SSC 中冲洗过滤器

(Reed and Mann, 1985). The method differs from the standard protocol (Maniatis et al., 1982) by performance of the transfer under denaturing conditions (Table 8.13).
(里德和曼恩,1985 年)。该方法与标准方案(Maniatis 等人,1982 年)的不同之处在于变性条件下的转移性能(表 8.13)。

(i) RFLP analysis  (i) RFLP 分析

An approach of increasing interest for determinative microbiology takes advantage of restriction fragment length polymorphism among conserved genes or conserved gene families. Total DNA from those organisms to be compared is digested with a variety of restriction enzymes, transferred to nylon (or nitrocellulose) membranes (Table 8.13) and hybridized with a suitable probe. The most common application of this technique to microbial systematics again takes advantage of the highly conserved rRNA genes (Grimont and Grimont, 1986; Stull et al., 1988; Yogev et al., 1988). A probe commonly used is base-hydrolyzed and 5 -end-labeled rRNA. Since cross-kingdom hybridization of these probes has been demonstrated, selection of the organism used as source of the rRNA probe is not critical. Organisms are identified or distinguished by characteristic banding patterns. One shortcoming of this approach is the lack of a quantitative relationship between banding pattern and the similarity of organisms compared.
限制性片段长度多态性是确定性微生物学中越来越受关注的一种方法,它利用了保守 基因或保守基因家族之间的限制性片段长度多态性。用各种限制性酶消化要比较的生物的总 DNA,将其转移到尼龙(或硝酸纤维素)膜上(表 8.13),然后与合适的探针杂交。这种技术在微生物系统学中最常见的应用还是利用高度保守的 rRNA 基因(Grimont 和 Grimont,1986 年;Stull 等人,1988 年;Yogev 等人,1988 年)。常用的探针是碱基水解和 5 端标记的 rRNA。由于这些探针的跨领域杂交已经得到证实,因此选择何种生物作为 rRNA 探针的来源并不重要。生物体可通过特征条带模式来识别或区分。这种方法的一个缺点是缺乏条带模式与所比较生物相似性之间的定量关系。

(ii) The 16S rRNA and a comparative framework for determinative hybridization
(ii) 16S rRNA 和确定性杂交的比较框架

As stated earlier, there is as yet no preferred strategy for probe design. However, directed (rational) probe design will probably prevail; only within a well-defined comparative framework can probe hybridization be properly interpreted. Microbiology has strong traditions of determinative classifications. Molecular comparisons have fostered a rebirth of naturally based classifications. It is within the determinative tradition that the empirically designed probes fall. Although experimental validation is a necessary ingredient of probe characterization, it is not a satisfying foundation for probe design. As traditional determinative classification schemes are increasingly merged with molecularly-based phylogenetic classifications, the design of determinative probes will increasingly reflect the natural classification. Comparative molecular analyses, most importantly comparative sequencing, are dramatically changing the character of microbiology and will increasingly influence the determinative arena. The most powerful determinative framework is provided now by the 16 S rRNA sequence collection.
如前所述,探针设计还没有首选策略。不过,定向(合理)探针设计可能会占上风;只有在一个明确的比较框架内,才能正确解释探针杂交。微生物学有很强的确定性分类传统。分子比较促进了自然分类法的重生。经验设计的探针正是属于确定性传统。虽然实验验证是探针特征描述的必要组成部分,但它并不是探针设计的令人满意的基础。随着传统的确定性分类方案越来越多地与基于分子的系统发育分类合并,确定性探针的设计将越来越多地反映自然分类。比较分子分析,最重要的是比较测序,正在极大地改变微生物学的特征,并将对确定性领域产生越来越大的影响。目前,16 S rRNA 序列收集提供了最强大的确定性框架。
The application of the 16 S 16 S 16 S16 S rRNA data collection to determinative studies in microbiology is presented in the form of a story. This investigative story should serve to illustrate the preceding theoretical, anecdotal and rote methodological listings. The intent is not to specify a preferred method-
16 S 16 S 16 S16 S rRNA 数据收集在微生物学确定性研究中的应用以故事的形式呈现。这个调查故事应有助于说明前面列出的理论、轶事和生搬硬套的方法。其目的并不是指定一种首选方法

ology, but to offer, by example, one approach to unifying molecular and determinative systematics using the described techniques of nucleic acid hybridization. The foundation of probe design, and experimental interpretation, is comparative sequencing of the ribosomal RNAs. The use of the 16 S rRNA sequence collection for the study of the natural microbial community of the bovine rumen will be described in detail. This includes the more recent development of fluorescent probes for microscopic identification of single cells in pure or mixed culture and in the environment.
在此,我只想举例说明一种利用所述核酸杂交技术统一分子系统学和确定系统学的方法。探针设计和实验解释的基础是核糖体 RNA 的比较测序。将详细介绍如何利用 16 S rRNA 序列集研究牛瘤胃的天然微生物群落。这包括最近开发的荧光探针,用于在显微镜下鉴定纯培养物或混合培养物以及环境中的单细胞。

An ongoing study in our laboratory concerns the study of ruminal microbial ecology. Most effort to this time has been directed to the study of the principal fiber-digesting microbiota. Among ruminal prokaryotes, three genera have been implicated as the principal fiber-digesting organisms. These include species of Butyrivibrio, Ruminococcus and Fibrobacter (formerly Bacteroides succinogenes). The molecular classification of these organisms and design of nucleic acid probes for their identification (within the pure culture collection and the environment) provides a useful framework for discussion of the development and application of probes for genus, species and subspecies identification. For purposes of instruction, details of probe design and application are restricted to discussion of the genus Fibrobacter. However, the development and application of probes for their determinative and environmental characterization could be applied to any microorganism.
我们实验室正在进行的一项研究涉及瘤胃微生物生态学研究。迄今为止,我们的大部分精力都放在了对主要纤维消化微生物群的研究上。在瘤胃原核生物中,有三个属被认为是主要的纤维消化生物。其中包括布氏嗜血杆菌属、反刍球菌属和纤维细菌属(原琥珀酸芽孢杆菌属)。这些生物的分子分类和用于鉴定它们的核酸探针的设计(在纯培养物和环境中)为讨论属、种和亚种鉴定探针的开发和应用提供了一个有用的框架。为了便于教学,探针设计和应用的细节仅限于讨论纤维细菌属。不过,探针的开发和应用可用于任何微生物的确定性和环境特征鉴定。

(iii) The design of phylogenetically based nucleic acid hybridization probes
(iii) 设计基于系统发育的核酸杂交探针

The use of ribosomal RNAs for studies of microbial phylogeny and evolution is well developed, as indicated by their prominent representation elsewhere (see Chapters 3, 5, 6 and 7). Although these studies are central to design of the determinative probes described here, background discussion will necessarily be limited. The reader is referred to reviews for detailed discussion of approach and analysis (Olsen et al., 1986; Stahl, 1988; Stahl et al., 1988)
核糖体 RNA 在微生物系统发育和进化研究中的应用已十分成熟,这一点在其他章节(见第 3 章、第 5 章、第 6 章和第 7 章)中也有突出表现(见第 3 章、第 5 章、第 6 章和第 7 章)。尽管这些研究是本文所述决定性探针设计的核心,但背景讨论必然有限。读者可参阅有关方法和分析的详细讨论(Olsen 等人,1986 年;Stahl,1988 年;Stahl 等人,1988 年)。
The ribosomal RNAs have for several reasons proved exceptionally well suited as targets for determinative probes. Although they are highly conserved biopolymers, they exhibit great variation in regional sequence conservation. Some nucleotide positions and locales have remained virtually unchanged since the divergence of all existing life (universal sequences), whereas other regions vary so quickly that they can be used to differentiate among species or subspecies of bacteria. In addition, their high copy number per cell lends greater sensitivity to direct determinative tests. A diagrammatic representation of relative positional conservation is shown in Fig. 8.3. For determinative studies, probes of 15 25 15 25 15-2515-25 nucleotides in length are commonly used for hybridization to whole cells or total
由于多种原因,核糖体 RNA 被证明非常适合作为确定性探针的目标。尽管核糖体 RNA 是高度保守的生物聚合物,但它们在区域序列保守性方面却表现出很大的差异。有些核苷酸的位置和位置自所有现存生命分化以来几乎保持不变(通用序列),而其他区域则变化极快,可用于区分细菌的物种或亚种。此外,它们在每个细胞中的拷贝数很高,因此对直接确定性测试的灵敏度更高。图 8.3 是相对位置保持的示意图。在确定性研究中,长度为 15 25 15 25 15-2515-25 核苷酸的探针通常用于与全细胞或总细胞杂交。

Fig. 8.3 Positional conservation representation of the 16S rRNA secondary structure derived from the comparison of 27 diverse eubacterial species. Shading intensity varies according to the relative conservation of each homologous nucleotide. Invariant positions are black. (Reproduced with permission, Nature Publishing Co.)
图 8.3 通过比较 27 个不同的真细菌物种得出的 16S rRNA 二级结构的位置保护表示法。阴影强度根据每个同源核苷酸的相对保守性而变化。不变位置为黑色。(经授权转载,自然出版公司)。

nucleic acid extracted from cultures or the environment. The assemblage of organisms addressed by a single hybridization probe varies according to the region of the molecule selected as the hybridization target. Subspeciesspecific probes target the most variable regions. More general probes (those identifying species or larger, phylogenetically coherent, assemblages) target more conserved regions of the molecule (Fig. 8.3). Examples of the design of kingdom-specific (eubacteria, archaebacteria; Woese and Fox, 1977) and species-specific (Fibrobacter succinogenes, F. intestinalis) oligonucleotide probes are shown in Fig. 8.4.
从培养物或环境中提取的核酸。单个杂交探针所针对的生物群体因分子中被选为杂交目标的区域而异。亚种特异性探针针对的是变化最大的区域。更通用的探针(识别物种或更大的、系统发育一致的集合体的探针)针对分子中更保守的区域(图 8.3)。图 8.4 显示了王国特异性(真细菌、古细菌;Woese 和 Fox,1977 年)和物种特异性(琥珀酸纤毛杆菌、肠道纤毛杆菌)寡核苷酸探针的设计实例。



Fig. 8.4 Target sequences for kingdom- and species-specific oligonucleotide probes. Sequence alignment of 16 S rRNAs in the ukaryotes). Left: target region for the eubacterial prope Eub338 the three primary kingdoms (eubacteria, archaebacteria and
图 8.4 王国和物种特异性寡核苷酸探针的目标序列。图 8.4 王国和物种特异性寡核苷酸探针的目标序列(图 8.4ukaryotes 中 16 S rRNA 的序列比对)。图 8.4 王国和物种特异性寡核苷酸探针的目标序列。



  1. Nucleic Acid Techniques in Bacterial Systematics. Edited by E. Stackebrandt and M. Goodfellow
    《细菌系统学中的核酸技术》。E. Stackebrandt 和 M. Goodfellow 编辑