Review“Smart” micro/nano container-based self-healing coatings on magnesium alloys: A review
Abstract
Keywords
Abbreviations
1. Introduction

Fig. 1. The common healing methods of anti-corrosion coatings [32].

Fig. 2. Research framework of “smart” micro/nano container-based self-healing coatings on Mg alloys.
2. Inorganic nanocontainers
Table 1. Applications of inorganic nanocontainers (loaded with corrosion inhibitor) coatings.
Types | Corrosion inhibitor | Applied coatings | Mg substrate | References |
---|---|---|---|---|
Mechanized SiO2 nanoparticles (MSNPs) | 2‑hydroxy-4‑methoxy-acetophenone (HMAP) | PFDS/MSNPs@SNAP coating | AZ31B | [33] |
Hollow mesoporous SiO2 nanoparticle (HMSN) | Polydopamine (PD) | Mg-PD-HMSN composite | Biomedical Mg | [58] |
Porous hollow SiO2 | 2-mercaptobenzothiazole (MBT) | Ni coating | AZ31 | [59] |
TiO2 | 5-amino-1,3,4-thiadiazole-2-thiol (5-ATDT) | Organic-inorganic hybrid coating | ZK10 | [34] |
Halloysite nanotubes (HNTs) | Ce3+/Zr4+ | Sol-gel coating | AZ91D | [60,61] |
HNTs | 2-aminobenzimidazole | Plasma electrolytic oxidation (PEO) coating | AZ31 | [62] |
HNTs | BTA | PEO coating | AM50 | [35] |
HNTs | Phytic acid | Silk-HNT/phytic acid coating | Mg-Ca alloys | [63] |
Hydrotalcite-like | Ce3+ + V2O74− | Mg-Al-Ce-V2O74- LDH films | AZ31 | [36] |
Zeolite | Ce3+ | PEO coating | AZ31 | [37] |
Calcium carbonate microspheres | Ce3+, salicylaldoxime (SAL), 2,5-dimercapto-1,3,4-thiadiazole salt (DMTD) | Epoxy resin | AZ91 | [64] |
CeO2 | MBT | Epoxy resin | AZ31 | [65] |
Cerium molybdate nanocontainers | MBT | Organic-inorganic hybrid coating | ZK30 | [66] |
2.1. Silica nanocontainer

Fig. 3. Working mechanism of self-healing, super-hydrophobic coating: (a) super-hydrophobic coating, (b) corrosive species invasion, micro-cathode and micro-anode formation on AZ31B surface (c) alkali/Mg2+stimuli-responsive release of HAMP, (d) HMAP forms a dense molecular coating [33].
Table 2. Stimulus responses of SiO2 nanocontainers under different conditions.
2.2. Titanium dioxide nanocontainer

Fig. 4. Bode plots of (a) Coat-nc-MgZK10 soaked for different times (b) different samples soaked for 288 h (12 days) in 5 mM NaCl solution [34].
2.3. Halloysite nanocontainer

Fig. 5. The process of HNT encapsulating corrosion inhibitor [89].
2.4. Hydrotalcite-like nanocontainer






Fig. 6. Corrosion resistance tests in 3.5 wt.% NaCl solution for 14 days: (a) images before and after immersion (b) hydrogen evolution rate (c) corrosion weight loss [36].
2.5. Other inorganic nanocontainers

Fig. 7. Conceptual schematic diagram of smart self-healing by releasing corrosion inhibitors from CaCO3 nanospheres in response to pH [64].
Table 3. Common inorganic nanocontainers.
Groups | Types | Preparation | Response | Applied coatings | Mg substrate | Ref. |
---|---|---|---|---|---|---|
Nanoparticles | SiO2 | Micro emulsion polymerization, co-templates method | pH | Waterborne polyurethane (WPU), alkyd resin | AZ31B | [33,69] |
Nanoparticles | TiO2 | Template synthesis, fast breakdown anodization, polymerization, hydrothermal | – | Sol-gel, epoxy resin | ZK10 | [111] |
Nanoparticles | Cerium molybdate nanoparticles | PEO | – | Sol-gel | AZ31B | [119,120] |
Nanoparticles | Boehmite nanoparticles | Dip coating method | – | Sol-gel | AZ91D | [122] |
Nanoparticles | CaCO3 microspheres | – | pH | Epoxy resin | AZ91 | [64] |
Nanoparticles | Mn2O3 microspheres | Solvothermal method | – | Epoxy resin | AZ31 | [40] |
Nanoparticles | CeO2 nanoparticles | LBL self-assembly | pH | Epoxy resin | AZ31 | [65] |
Nanoparticles | NaX zeolite | PEO | – | Epoxy resin | AZ31 | [37] |
Clays | Halloysite | Dip coating method | – | WPU, PEO, sol-gel | AZ91D, AM50 | [35,122] |
Clays | Hydrotalcite-like | Anion exchange, co-precipitation | Cl− | Epoxy resin, sol-gel, other organic coatings | AZ31 | [36] |
Clays | Montmorillonite | Physical mixing | – | Sol-gel | AZ31 | [39] |
Hybrids | Zeolitic imidazole framework (ZIF-8) | Ligand exchange | pH | Epoxy resin | AZ31D | [134] |
3. Organic nanocontainers
3.1. Polymer microcapsules

Fig. 8. (a) HRTEM, (b) FESEM images of microcapsules containing corrosion inhibitor, (c) salt spray test results of scratched samples [138].
3.2. Chitosan microcapsules


Fig. 9. (a) Preparation process, (b) structure, (c) self-healing behavior of M-CSCe hybrid coatings [145].
3.3. Nanofibers
3.4. Cyclodextrin nanocontainer


Fig. 10. Schematic diagram of release behavior under different stimuli [44].
3.5. Other organic nanocontainers
4. Nanocontainers based on carbon nanomaterials

Fig. 11. The process of MBTA microencapsulation [152].
Table 4. Common organic nanocontainers and carbon materials.
Types | Preparation | Response | Applied coatings | Mg substrate | Ref. |
---|---|---|---|---|---|
Polymer microcapsules | In situ aggregation, emulsion solvent evaporation, interface aggregation, soft template | pH, mechanical damage | PU coating, epoxy coating, shape memory polymer coating | AZ31 | [138] |
CS microcapsules | Complex coacervation | pH | Sol-gel coating, micro-arc oxidation coating | Mg-1Ca | [145] |
Polycaprolactone (PCL)/TiO2 nanofibers | Coaxial electrospinning, Hydrothermal method, soft template | pH | Epoxy coating | AM50 | [156] |
CD nanocontainer | – | – | Sol-gel coating | AZ31 | [157,158] |
Carbon nanotubes | – | Mechanical damage | Sol-gel coating | AZ31 | [47] |
Graphene | Electrochemical stripping method, Hummers method | – | Epoxy resin, PU composite coating | AZ31 | [49] |
5. Synergistic inhibition of different nanocontainers

Fig. 12. Schematic diagram of (a) the protection mechanism of smart anti-corrosion coatings and (b) pH-responsive synthesis of HMSN-BTA@ZIF-8 (The experiments demonstrated that the introduction of BTA@ZIF-8 not only blocked the micropores in the epoxy coating, but also increased the crosslinking density, resulting in a tortuous diffusion path of the electrolyte in the coating, showing good corrosion resistance. In addition, HMSN-BTA@ZIF-8 had obvious pH-triggering activity under both acidic and basic conditions.) [162].


Fig. 13. Preparation of self-healing superhydrophobic coatings and self-healing after chemical/physical damage [38].
6. Autonomous self-healing mechanisms
6.1. Defect-filling effect by polymerization healing

Fig. 14. The corrosion inhibitors passivate the metal surface and fill defects [171].

Fig. 15. Requirements of ideal microcapsule.
6.2. Corrosion inhibition effect by blocking corrosion path

Fig. 16. The corrosion inhibitor reacts with the ions generated by the metal matrix to fill defects [175].

Fig. 17. The self-healing mechanism of the coating [176].

Fig. 18. Response release process of Ce3+ [182].
7. Non-autonomous self-healing mechanisms
7.1. Based on dynamic bonds

Fig. 19. Self-healing mechanism of smart double-acting self-healing composite coating [204].

Fig. 20. (a) Response of hydrogel to different pH values, (b) self-healing mechanism of hydrogel, (c) the formation of chelate layer on Mg [208].
7.2. Based on shape memory polymers

Fig. 21. Self-healing of SMP/PF-POS@MWCNTs coatings under sunlight irradiation: (a) chemical damage (b) microstructural damage [213].
8. Multiple self-healing mechanisms

Fig. 22. Self-healing mechanisms of different corresponding types: (a) pH-responsive polyelectrolyte shell release inhibitor, (b) release inhibitor after mechanical fracture, (c) aggressive ions lead to inhibitor release (ion exchange) [171].

Fig. 23. Self-healing mechanism of POPG-Cu2+ coatings [38].





Fig. 24. Preparation process of NCDs/PDA composite coating on AZ91D [25].
Table 5. Coatings for nanocontainers applications.
Types | Coatings | Advantage | Disadvantage | References |
---|---|---|---|---|
Organic coating | PU | Excellent abrasion resistance, color retention, water resistance, strong adhesion | Unstable in strong acid and alkali | [220] |
Organic coating | WPU | Excellent chemical resistance, oil resistance, abrasion resistance, high and low temperature resistance | Not water resistant and low adhesion | [221] |
Organic coating | Epoxy resin | Good corrosion resistance, water resistance, chemical resistance and thermal stability, strong adhesion | Poor appearance and weather resistance, easy to chalk | [91,107] |
Organic coating | Waterborne epoxy | Green environmental protection, low toxicity, excellent adhesion | Requires longer drying time to prepare | [222] |
Organic coating | Epoxy/polyamide polymerization | Strong adhesion, good corrosion resistance, water resistance, weather resistance and thermal stability | Poor chemical resistance | [223] |
Organic coating | Alkyd resin | Excellent flexibility, physical and mechanical properties, water resistance, heat resistance, strong adhesion | Not resistant to alkali | [50] |
Organic coating | Acrylic | Excellent weather resistance, wear resistance, heat resistance, high hardness | Poor corrosion resistance | [224] |
Organic coating | Polypyrrole | Easy to synthesize, good anti-oxidation performance, good electrical conductivity, easy to form film, soft and environmentally friendly | Poor adhesion, porous surface structure | [16,87] |
Organic coating | Shape memory polymer | Its volume integrity and surface topography are recoverable | High cost of preparation | [225] |
Organic-inorganic hybrid coating | Sol-gel | Accurate chemical composition, good uniformity, simple process, low synthesis temperature, low cost, and easy industrialization | Thin coating, surface prone to cracks | [60,61] |
Inorganic coating | Nickel coating | Good wear resistance, high hardness, low cost, environmental protection, low energy consumption | Porous surface structure | [46,226] |
Inorganic coating | PEO | High bonding strength with the substrate, good wear and corrosion resistance, high temperature resistance, good insulation | Thin coating, porous surface structure cannot prevent the penetration of corrosive media, high energy consumption | [35,145] |
9. Conclusions and future trends
- (a)Surface treatment has a significant impact on the durability of coatings. The common corrosion protection of anti-corrosion coatings is based on barrier performance, self-healing, active corrosion inhibition, anodic passivation, and cathodic protection.
- (b)Doping micro/nano containers into the coating can significantly improve the barrier performance by reducing the porosity of the coating and increasing the tortuosity of corrosion media (such as H2O, O2, and Cl−) invading the alloy. Micro/nano containers can improve the chemical stability, uniformity and biocompatibility of self-healing protective coating on Mg alloy surface, as well as its adhesion to the substrate.
- (c)The development of environmentally friendly polymers and micro/nano containers is a promising solution for creating more environmentally friendly nanocomposite “smart” self-healing coatings.
- (d)Further research should examine the causal relationship between surface properties, water penetration, and corrosion rate of Mg alloys to evaluate the anti-corrosion behavior and durability of “smart” self-healing coatings.
- (1)The long-term self-healing of the Mg alloy protective coating can be improved through the strict selection of corrosion inhibitor types and the rational design and formulation of the micro/nano containers. Their self-healing effect can be assessed by long-term corrosion tests in simulated or actual service environments.
- (2)At present, the preparation process of most of the smart micro/nano containers loaded with suitable corrosion inhibitors is complicated and demanding, making it difficult to achieve large-scale industrial production. The structural properties of some materials (such as the sensitivity of LDHs to ambient Cl−) should be fully exploited to reduce complicated surface modification or post-treatment steps.
- (3)There are still many challenges in size control of micro/nano containers, effective loading and controlled release of corrosion inhibitors, and uniform distribution within coatings. These issues should be solved for successful application of smart self-healing coatings.
- (4)It is of great research significance to endow self-healing coating with corrosion self-warning function. When the corrosion inhibitor is exhausted and the self-healing function of the coating fails, timely self-diagnosis and early warning is necessary to perform the maintenance on the damaged site of the coating and ensure the service safety of the equipment.
Declaration of competing interest
Acknowledgments
References
- [1]NPJ Mat. Degrad., 1 (2017), pp. 1-10, 10.1038/s41529-017-0005-2
- [2]J. Magnes. Alloy., 10 (2022), pp. 527-539, 10.1016/j.jma.2020.08.004
- [3]J. Magnes. Alloy., 10 (2022), pp. 1-61, 10.1016/j.jma.2021.05.012
- [4]Chem. Eng. J., 431 (2022), Article 133476, 10.1016/j.cej.2021.133476
- [5]Nanoscale, 14 (2022), pp. 8429-8440, 10.1039/D2NR01406H
- [6]J. Mater. Chem., 18 (2008), pp. 5390-5394, 10.1039/B810542A
- [7]Van Benthem R.A.T.M., Ming W., De With G., in: S van der Zwaag (Eds.) Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, Springer Netherlands, Dordrecht, 2007, pp. 139–159.
- [8]Coatings, 12 (2022), p. 518, 10.3390/coatings12040518
- [9]Metals, 12 (2022), p. 20, 10.3390/met12010020
- [10]Prog. Org. Coat., 64 (2009), pp. 327-338, 10.1016/j.porgcoat.2008.08.010
- [11]J. Magnes. Alloy., 11 (2022), pp. 493-508, 10.1016/j.jma.2022.11.012
- [12]J. Magnes. Alloy., 10 (2022), pp. 3306-3326, 10.1016/j.jma.2022.10.025
- [13]J. Magnes. Alloy., 10 (2022), pp. 938-955, 10.1016/j.jma.2021.11.006
- [14]J. Magnes. Alloy., 9 (2021), pp. 1906-1921, 10.1016/j.jma.2021.10.001
- [15]J. Magnes. Alloy., 7 (2019), pp. 345-354, 10.1016/j.jma.2019.03.002
- [16]J. Alloy. Compd., 711 (2017), pp. 560-567, 10.1016/j.jallcom.2017.04.044
- [17]J. Magnes. Alloy., 6 (2018), pp. 59-70, 10.1016/j.jma.2018.02.001
- [18]J. Alloy. Compd., 619 (2015), pp. 639-651, 10.1016/j.jallcom.2014.09.061
- [19]J. Alloy. Compd., 802 (2019), pp. 660-667, 10.1016/j.jallcom.2019.06.221
- [20]Appl. Surf. Sci., 464 (2019), pp. 644-650, 10.1016/j.apsusc.2018.09.047
- [21]J. Magnes. Alloy., 10 (2021), pp. 3082-3099, 10.1016/j.jma.2021.07.001
- [22]J. Magnes. Alloy., 10 (2022), pp. 2563-2573, 10.1016/j.jma.2021.11.020
- [23]J. Magnes. Alloy., 10 (2022), pp. 1351-1357, 10.1016/j.jma.2021.03.008
- [24]J. Magnes. Alloy., 10 (2022), pp. 3406-3417, 10.1016/j.jma.2021.04.004
- [25]J. Magnes. Alloy., 10 (2022), pp. 1358-1367, 10.1016/j.jma.2020.11.021
- [26]J. Magnes. Alloy., 10 (2022), pp. 670-688, 10.1016/j.jma.2022.02.005
- [27]J. Magnes. Alloy., 10 (2022), pp. 1154-1170, 10.1016/j.jma.2022.01.001
- [28]J. Mater. Sci. Technol., 152 (2023), pp. 169-180, 10.1016/j.jmst.2022.12.043
- [29]Yabuki A., Fathona I.W., in: NYA-T Abdel Salam Hamdy Makhlouf (Eds.) Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications, Elsevier, Elsevier Science_RM, 2020, pp. 99–133.
- [30]J. Magnes. Alloy., 10 (2022), pp. 3589-3611, 10.1016/j.jma.2022.05.002
- [31]Mater. Today, 11 (2008), pp. 24-30, 10.1016/S1369-7021(08)70204-9
- [32]Abdolahzadeh M., Van Der Zwaag S., Garcia S.J., in: SvdZ Martin D. Hager, Ulrich S. Schubert (Eds.) Self-healing Materials, Springer Cham, Switzerland 2016, pp. 185–218.
- [33]J. Mater. Chem. A, 4 (2016), pp. 8041-8052, 10.1039/c6ta02575g
- [34]Int. J. Struct. Integr., 4 (2013), pp. 127-142, 10.1108/17579861311303681
- [35]Corros. Sci., 111 (2016), pp. 753-769, 10.1016/j.corsci.2016.06.016
- [36]J. Mater. Sci. Technol., 64 (2021), pp. 66-72, 10.1016/j.jmst.2019.09.031
- [37]Prog. Org. Coat., 132 (2019), pp. 144-147, 10.1016/j.porgcoat.2019.03.046
- [38]ACS Appl. Mater. Inter., 14 (2022), pp. 30192-30204, 10.1021/acsami.2c06447
- [39]Acta Biomater., 98 (2019), pp. 196-214, 10.1016/j.actbio.2019.05.069
- [40]Int. J. Hydrogen Energy, 46 (2021), pp. 15482-15496, 10.1016/j.ijhydene.2021.02.087
- [41]Adv. Mater., 25 (2013), pp. 6980-6984, 10.1002/adma.201302989
- [42]Prog. Org. Coat., 120 (2018), pp. 49-57, 10.1016/j.porgcoat.2018.03.010
- [43]Prog. Org. Coat., 151 (2021), Article 106055, 10.1016/j.porgcoat.2020.106055
- [44]Acs Appl. Nano Mater., 3 (2020), pp. 4542-4552, 10.1021/acsanm.0c00616
- [45]Corros. Sci., 130 (2018), pp. 56-63, 10.1016/j.corsci.2017.10.009
- [46]Mater. Corros., 66 (2015), pp. 1391-1396, 10.1002/maco.201508436
- [47]Surf. Coat. Tech., 202 (2008), pp. 4766-4774, 10.1016/j.surfcoat.2008.04.071
- [48]J. Coat. Technol. Res., 19 (2022), pp. 757-774, 10.1007/s11998-021-00599-2
- [49]Surf. Coat. Tech., 385 (2020), Article 125395, 10.1016/j.surfcoat.2020.125395
- [50]Corros. Sci., 140 (2018), pp. 349-362, 10.1016/j.corsci.2018.05.030
- [51]Prog. Org. Coat., 73 (2012), pp. 142-148, 10.1016/j.porgcoat.2011.10.005
- [52]Prog. Org. Coat., 80 (2015), pp. 106-119, 10.1016/j.porgcoat.2014.12.002
- [53]J. Magnes. Alloy., 9 (2021), pp. 202-215, 10.1016/j.jma.2020.06.010
- [54]RSC Adv., 5 (2015), pp. 39916-39929, 10.1039/c5ra03741g
- [55]Micropor. Mesopor. Mat., 188 (2014), pp. 8-15, 10.1016/j.micromeso.2014.01.004
- [56]Corros. Sci., 209 (2022), Article 110785, 10.1016/j.corsci.2022.110785
- [57]J. Magnes. Alloy. (2021), 10.1016/j.jma.2021.07.015
- [58]Mat. Sci. Eng. C, 97 (2019), pp. 254-263, 10.1016/j.msec.2018.12.031
- [59]J. Mater. Sci., 53 (2018), pp. 3744-3755, 10.1007/s10853-017-1774-2
- [60]Surf. Coat. Tech., 309 (2017), pp. 609-620, 10.1016/j.surfcoat.2016.12.018
- [61]J. Magnes. Alloy., 6 (2018), pp. 299-308, 10.1016/j.jma.2018.05.003
- [62]Surf. Coat. Tech., 416 (2021), Article 127116, 10.1016/j.surfcoat.2021.127116
- [63]Small, 18 (2022), Article 2106056, 10.1002/smll.202106056
- [64]Electrochim. Acta, 83 (2012), pp. 439-447, 10.1016/j.electacta.2012.07.102
- [65]J. Appl. Polym. Sci., 136 (2019), p. 47297, 10.1002/app.47297
- [66]J. Nanopart. Res., 15 (2013), pp. 1-17, 10.1007/s11051-013-1871-3
- [67]J. Mater. Chem., 19 (2009), pp. 5155-5160, 10.1039/B820534E
- [68]J. Appl. Polym. Sci., 136 (2019), p. 47082, 10.1002/app.47082
- [69]Nanotechnology, 23 (2012), Article 235605, 10.1088/0957-4484/23/23/235605
- [70]J. Mater. Sci. Technol., 33 (2017), pp. 1067-1074, 10.1016/j.jmst.2017.06.007
- [71]Micropor. Mesopor. Mat., 117 (2009), pp. 609-616, 10.1016/j.micromeso.2008.08.004
- [72]Polym. Chem., 2 (2011), pp. 1368-1374, 10.1039/c1py00054c
- [73]J. Mater. Sci., 52 (2017), pp. 8576-8590, 10.1007/s10853-017-1074-x
- [74]Prog. Org. Coat., 159 (2021), Article 106437, 10.1016/j.porgcoat.2021.106437
- [75]Adv. Funct. Mater., 23 (2013), pp. 3307-3314, 10.1002/adfm.201203180
- [76]Chem. Eng. J., 306 (2016), pp. 849-857, 10.1016/j.cej.2016.08.004
- [77]ACS Appl. Mater. Inter., 7 (2015), pp. 22756-22766, 10.1021/acsami.5b08028
- [78]ACS Appl. Mater. Inter., 11 (2019), pp. 4425-4438, 10.1021/acsami.8b19950
- [79]J. Magnes. Alloy., 10 (2022), pp. 836-849, 10.1016/j.jma.2020.11.007
- [80]J. Nanosci. Nanotechno., 10 (2010), pp. 5912-5920, 10.1166/jnn.2010.2571
- [81]Int. J. Struct. Integr., 4 (126) (2013), pp. 121-126, 10.1108/17579861311303672
- [82]Nanomaterials, 13 (2023), p. 1424, 10.3390/nano13081424
- [83]ACS Appl. Mater. Inter., 1 (2009), pp. 1437-1443, 10.1021/am9002028
- [84]Biomacromolecules, 11 (2010), pp. 820-826, 10.1021/bm9014446
- [85]Adv. Funct. Mater., 17 (2007), pp. 1451-1458, 10.1002/adfm.200601226
- [86]ACS Appl. Mater. Inter., 5 (2013), pp. 4464-4471, 10.1021/am400936m
- [87]Prog. Org. Coat., 74 (2012), pp. 418-426, 10.1016/j.porgcoat.2012.01.005
- [88]J. Coat. Technol. Res., 14 (2017), pp. 1195-1208, 10.1007/s11998-016-9912-3
- [89]Nano Struct. Nano Objects, 16 (2018), pp. 381-395, 10.1016/j.nanoso.2018.09.010
- [90]J. Phys. Chem. C, 112 (2008), pp. 958-964, 10.1021/jp076188r
- [91]Colloid. Polym. Sci., 296 (2018), pp. 1157-1164, 10.1007/s00396-018-4336-5
- [92]J. Disper. Sci. Technol., 31 (2010), pp. 162-168, 10.1080/01932690903110186
- [93]J. Mater. Sci., 53 (2018), pp. 7793-7808, 10.1007/s10853-018-2046-5
- [94]Prog. Org. Coat., 111 (2017), pp. 175-185, 10.1016/j.porgcoat.2017.05.018
- [95]ACS Appl. Mater. Inter., 1 (2009), pp. 2353-2362, 10.1021/am900495r
- [96]Colloid Interfac. Sci., 24 (2018), pp. 18-23, 10.1016/j.colcom.2018.03.003
- [97]ACS Appl. Mater. Inter., 7 (2015), pp. 25180-25192, 10.1021/acsami.5b06702
- [98]J. Magnes. Alloy., 8 (2020), pp. 291-300, 10.1016/j.jma.2019.11.011
- [99]J. Magnes. Alloy., 9 (2021), pp. 658-667, 10.1016/j.jma.2020.03.013
- [100]J. Coat. Technol. Res., 11 (2014), pp. 793-803, 10.1007/s11998-014-9568-9
- [101]Sci. Rep., 8 (2018), p. 16049, 10.1038/s41598-018-34751-7
- [102]Surf. Coat. Tech., 439 (2022), Article 128414, 10.1016/j.surfcoat.2022.128414
- [103]J. Magnes. Alloy., 10 (2022), pp. 1268-1285, 10.1016/j.jma.2021.10.006
- [104]Appl. Clay Sci., 67–68 (2012), pp. 18-25, 10.1016/j.clay.2012.07.004
- [105]J. Taiwan Inst. Chem. E, 113 (2020), pp. 406-418, 10.1016/j.jtice.2020.08.021
- [106]Int. J. Polym. Sci., 2021 (2021), Article 6650499, 10.1155/2021/6650499
- [107]Mater. Chem. Phys., 238 (2019), Article 121883, 10.1016/j.matchemphys.2019.121883
- [108]Materi. Res. Bull., 46 (2011), pp. 1963-1968, 10.1016/j.materresbull.2011.07.021
- [109]Mater. Chem. Phys., 173 (2016), pp. 26-32, 10.1016/j.matchemphys.2015.12.049
- [110]Corros. Sci., 194 (2022), Article 109941, 10.1016/j.corsci.2021.109941
- [111]J. Am. Ceram. Soc., 93 (2010), pp. 65-73, 10.1111/j.1551-2916.2009.03310.x
- [112]J. Magnes. Alloy., 6 (2018), pp. 356-365, 10.1016/j.jma.2018.10.002
- [113]Prog. Org. Coat., 69 (2010), pp. 384-391, 10.1016/j.porgcoat.2010.07.012
- [114]Ceram. Int., 46 (2020), pp. 1934-1939, 10.1016/j.ceramint.2019.09.171
- [115]Cryst. Growth Des., 5 (2005), pp. 1129-1134, 10.1021/cg049606f
- [116]J. Funct. Biomater., 14 (2023), p. 15, 10.3390/jfb14010015
- [117]ECS Electrochem. Lett., 2 (2013), p. C39, 10.1149/2.003310eel
- [118]J. Mater. Sci. Technol., 80 (2021), pp. 13-19, 10.1016/j.jmst.2020.12.006
- [119]J. Nanosci. Nanotechno., 20 (2020), pp. 4778-4786, 10.1166/jnn.2020.18499
- [120]Surf. Coat. Tech., 386 (2020), Article 125456, 10.1016/j.surfcoat.2020.125456
- [121]J. Coat. Technol. Res., 15 (2018), pp. 721-735, 10.1007/s11998-018-0080-5
- [122]Surf. Coat. Tech., 352 (2018), pp. 445-461, 10.1016/j.surfcoat.2018.08.034
- [123]Mater. Chem. Phys., 225 (2019), pp. 298-308, 10.1016/j.matchemphys.2018.12.059
- [124]J. Ind. Eng. Chem., 66 (2018), pp. 221-230, 10.1016/j.jiec.2018.05.033
- [125]Mater. Corros., 70 (2019), pp. 1222-1229, 10.1002/maco.201810645
- [126]Colloid Surf. A, 555 (2018), pp. 18-26, 10.1016/j.colsurfa.2018.06.035
- [127]Colloid Surf. A, 561 (2019), pp. 1-8, 10.1016/j.colsurfa.2018.10.044
- [128]ACS Appl. Mater. Inter., 13 (2021), pp. 51685-51694, 10.1021/acsami.1c13738
- [129]J. Mater. Eng. Perform., 30 (2021), pp. 720-726, 10.1007/s11665-020-05370-z
- [130]Materials, 11 (2018), p. 396, 10.3390/ma11030396
- [131]Corros. Sci., 177 (2020), Article 108949, 10.1016/j.corsci.2020.108949
- [132]J. Magnes. Alloy., 10 (2022), pp. 1171-1190, 10.1016/j.jma.2022.01.015
- [133]J. Magnes. Alloy. (2023), 10.1016/j.jma.2022.12.013
- [134]ACS Appl. Mater. Inter., 11 (2019), pp. 38313-38320, 10.1021/acsami.9b13539
- [135]Appl. Surf. Sci. Adv., 10 (2022), Article 100269, 10.1016/J.Apsadv.2022.100269
- [136]RSC Adv., 6 (2016), pp. 114436-114446, 10.1039/c6ra21684f
- [137]J. Appl. Polym. Sci., 137 (2020), p. 49663, 10.1002/app.49663
- [138]Prog. Org. Coat., 138 (2020), Article 105404, 10.1016/j.porgcoat.2019.105404
- [139]Ind. Eng. Chem. Res., 52 (2013), pp. 15541-15548, 10.1021/ie402505s
- [140]Prog. Org. Coat., 109 (2017), pp. 61-69, 10.1016/j.porgcoat.2017.04.021
- [141]Prog. Org. Coat., 77 (2014), pp. 168-175, 10.1016/j.porgcoat.2013.09.002
- [142]Mater. Chem. Phys., 215 (2018), pp. 69-80, 10.1016/j.matchemphys.2018.05.021
- [143]Polymers, 13 (2021), p. 1194, 10.3390/polym13081194
- [144]Mater. Corros., 69 (2018), pp. 736-748, 10.1002/maco.201709840
- [145]J. Mater. Chem. B, 4 (2016), pp. 2498-2511, 10.1039/c6tb00117c
- [146]Int. J. Pharmaceut., 135 (1996), pp. 63-72, 10.1016/0378-5173(95)04347-0
- [147]New J. Chem., 44 (2020), pp. 5702-5710, 10.1039/c9nj06436b
- [148]Artif. Cell. Nanomed. B, 44 (2016), pp. 111-121, 10.3109/21691401.2014.922568
- [149]ACS Appl. Mater. Inter., 10 (2018), pp. 36229-36239, 10.1021/acsami.8b11108
- [150]Coordin. Chem. Rev., 432 (2021), Article 213711, 10.1016/j.ccr.2020.213711
- [151]Carbon, 50 (2012), pp. 5044-5051, 10.1016/j.carbon.2012.06.043
- [152]Chem. Eng. J., 332 (2018), pp. 658-670, 10.1016/j.cej.2017.09.112
- [153]J. Magnes. Alloy., 10 (2022), pp. 458-477, 10.1016/j.jma.2021.05.011
- [154]Corros. Sci., 127 (2017), pp. 240-259, 10.1016/j.corsci.2017.08.029
- [155]J. Magnes. Alloy., 10 (2022), pp. 1972-1980, 10.1016/j.jma.2021.06.019
- [156]J. Magnes. Alloy., 9 (2020), pp. 532-547, 10.1016/j.jma.2020.07.003
- [157]Thin Solid Films, 447 (2004), pp. 549-557, 10.1016/j.tsf.2003.07.016
- [158]J. Polym. Res., 21 (2014), pp. 1-8, 10.1007/S10965-014-0566-5
- [159]ACS Appl. Mater. Inter., 2 (2010), pp. 1528-1535, 10.1021/am100174t
- [160]Electrochim. Acta, 60 (2012), pp. 31-40, 10.1016/j.electacta.2011.10.078
- [161]Electrochem. Commun., 41 (2014), pp. 51-54, 10.1016/j.elecom.2014.01.023
- [162]Chem. Eng. J., 385 (2020), Article 123835, 10.1016/J.Cej.2019.123835
- [163]Nanoscale Res. Lett., 11 (2016), p. 231, 10.1186/s11671-016-1444-3
- [164]Prog. Org. Coat., 142 (2020), Article 105592, 10.1016/j.porgcoat.2020.105592
- [165]J. Colloid. Interf. Sci., 602 (2021), pp. 131-145, 10.1016/j.jcis.2021.06.004
- [166]Electrochim. Acta, 297 (2019), pp. 1035-1041, 10.1016/j.electacta.2018.12.062
- [167]Corros. Sci., 94 (2015), pp. 207-217, 10.1016/j.corsci.2015.02.007
- [168]Electrochim. Acta, 283 (2018), pp. 1845-1857, 10.1016/j.electacta.2018.07.113
- [169]Yasakau K.A., Ferreira M.G.S., Zheludkevich M.L., et al., in: BH Maria Forsyth (Eds.) Rare Earth-Based Corrosion Inhibitors, Elsevier, Woodhead Publishing_RM, 2014, pp. 233–266.
- [170]Prog. Org. Coat., 147 (2020), Article 105874, 10.1016/j.porgcoat.2020.105874
- [171]J. Mater. Sci. Technol., 116 (2022), pp. 224-237, 10.1016/j.jmst.2021.11.042
- [172]J. Appl. Polym. Sci., 136 (2019), p. 47562, 10.1002/App.47562
- [173]Chem. Eng. J., 189-190 (2012), pp. 464-472, 10.1016/j.cej.2012.02.076
- [174]ACS Appl. Mater. Inter., 9 (2017), pp. 36247-36260, 10.1021/acsami.7b12036
- [175]Chem. Mater., 19 (2007), pp. 402-411, 10.1021/cm062066k
- [176]RSC Adv., 5 (2015), pp. 47778-47787, 10.1039/c5ra05266a
- [177]Coatings, 9 (2019), p. 409, 10.3390/Coatings9060409
- [178]J. Magnes. Alloy., 9 (2021), pp. 1487-1504, 10.1016/j.jma.2020.11.004
- [179]J. Mater. Sci. Technol., 132 (2023), pp. 179-192, 10.1016/j.jmst.2022.04.053
- [180]Coat. Tech., 307 (2016), pp. 500-505, 10.1016/j.surfcoat.2016.09.024
- [181]Surf. Eng., 34 (2018), pp. 79-84, 10.1080/02670844.2017.1327187
- [182]Appl. Surf. Sci., 369 (2016), pp. 384-389, 10.1016/j.apsusc.2016.02.102
- [183]J. Magnes. Alloy., 11 (2021), pp. 287-300, 10.1016/j.jma.2021.07.006
- [184]J. Magnes. Alloy., 11 (2023), pp. 100-109, 10.1016/j.jma.2022.09.031
- [185]ChemistryOpen, 7 (2018), pp. 664-668, 10.1002/open.201800076
- [186]NPJ Mat. Degrad., 4 (2020), p. 42, 10.1038/s41529-020-00146-1
- [187]Corros. Sci., 51 (2009), pp. 1087-1094, 10.1016/j.corsci.2009.03.011
- [188]J. Magnes. Alloy., 9 (2021), pp. 1339-1348, 10.1016/j.jma.2019.08.004
- [189]J. Mater. Res. Technol., 10 (2021), pp. 390-421, 10.1016/j.jmrt.2020.12.025
- [190]Corros. Sci., 157 (2019), pp. 1-10, 10.1016/j.corsci.2019.05.022
- [191]Int. J. Electrochem. Sci., 15 (2020), pp. 3040-3053, 10.20964/2020.04.36
- [192]Rare Metals, 40 (2021), pp. 2254-2265, 10.1007/s12598-020-01538-7
- [193]J. Mater. Chem. A, 2 (2014), pp. 13049-13057, 10.1039/C4TA01341G
- [194]J. Magnes. Alloy. (2021), 10.1016/j.jma.2021.09.001
- [195]J. Mater. Chem. C, 7 (2019), pp. 2318-2326, 10.1039/C8TC06487C
- [196]Prog. Org. Coat., 147 (2020), Article 105741, 10.1016/j.porgcoat.2020.105741
- [197]Front. Mater., 8 (2021), Article 737792, 10.3389/fmats.2021.737792
- [198]RSC Adv., 8 (2018), pp. 34275-34286, 10.1039/C8RA05118F
- [199]ACS Appl. Mater. Inter., 7 (2015), pp. 27271-27278, 10.1021/acsami.5b08577
- [200]Corros. Sci., 144 (2018), pp. 74-88, 10.1016/j.corsci.2018.08.005
- [201]Chem. Soc. Rev., 44 (2015), pp. 3786-3807, 10.1039/c5cs00194c
- [202]Prog. Polym. Sci., 49-50 (2015), pp. 121-153, 10.1016/j.progpolymsci.2015.04.004
- [203]Nat. Mater., 10 (2011), pp. 14-27, 10.1038/nmat2891
- [204]Chem. Eng. J., 424 (2021), Article 130551, 10.1016/J.Cej.2021.130551
- [205]Adv. Mater., 28 (2016), pp. 9060-9093, 10.1002/adma.201601613
- [206]Adv. Mater., 28 (2016), pp. 86-91, 10.1002/adma.201502902
- [207]Adv. Mater., 28 (2016), pp. 4678-4683, 10.1002/adma.201600480
- [208]Adv. Mater. Interfaces, 7 (2020), Article 1901782, 10.1002/admi.201901782
- [209]Science, 296 (2002), pp. 1673-1676, 10.1126/science.1066102
- [210]Stankiewicz A., Zielińska K., in: KZ Alicja Stankiewicz (Eds.) Supramolecular Chemistry in Corrosion and Biofouling Protection, CRC Press, 2021, pp. 131–156.
- [211]Prog. Org. Coat., 148 (2020), Article 105821, 10.1016/j.porgcoat.2020.105821
- [212]Eur. Polym. J., 53 (2014), pp. 118-125, 10.1016/j.eurpolymj.2014.01.026
- [213]Langmuir, 37 (2021), pp. 13527-13536, 10.1021/acs.langmuir.1c02355
- [214]Self-Healing Coatings with Multi-Level Protection Based on Active NanocontainersNanoSpain, Portugal (2018)
- [215]Electrochim. Acta, 82 (2012), pp. 314-323, 10.1016/j.electacta.2012.04.095
- [216]J. Civ. Eng. Manag., 15 (2009), pp. 387-394, 10.3846/1392-3730.2009.15.387-394
- [217]Carbohyd. Polym., 217 (2019), pp. 217-223, 10.1016/j.carbpol.2019.04.023
- [218]ACS Appl. Mater. Inter., 11 (2019), pp. 10283-10291, 10.1021/acsami.8b21197
- [219]ACS Appl. Polym. Mater., 2 (2020), pp. 3327-3338, 10.1021/acsapm.0c00446
- [220]Prog. Org. Coat., 82 (2015), pp. 57-67, 10.1016/j.porgcoat.2015.01.010
- [221]J. Disper. Sci. Technol., 39 (2018), pp. 507-516, 10.1080/01932691.2017.1327818
- [222]Prog. Org. Coat., 136 (2019), Article 105258, 10.1016/j.porgcoat.2019.105258
- [223]Green Process. Synth., 7 (2018), pp. 147-159, 10.1515/gps-2016-0160
- [224]Chinese J. Polym. Sci., 38 (2020), pp. 45-52, 10.1007/s10118-019-2317-x
- [225]J. Mater. Chem. A, 9 (2021), pp. 6827-6830, 10.1039/d1ta01111a
- [226]J. Electrochem. Soc., 159 (2012), pp. C552-C559, 10.1149/2.020212jes
Cited by (55)
Recent progress in protective coatings against corrosion upon magnesium–lithium alloys: A critical review
2024, Journal of Magnesium and AlloysCarboxylates as green corrosion inhibitors of magnesium alloy for biomedical application
2024, Journal of Magnesium and AlloysSelf-healing PEO/MgAlLa LDHs-MXene composite coating loaded with 4-aminophenol for corrosion protection of Mg-Gd-Y-Zn LPSO Mg alloy
2024, Electrochimica ActaCitation Excerpt :However, the current PEO/LDHs-inhibitor coatings need a long time to complete self-healing, so organics with better corrosion inhibition, such as 3, 5-dinitrosalicylic acid [45] and 4-aminophenol [46], can be used. It has been reported [43,47] that the limited interlayer structure of LDHs prevents the loading of organic environmentally-friendly macromolecular corrosion inhibitors, resulting in less corrosion inhibitors in LDHs or demanding loading experimental conditions [34,48]. In addition, the gaps between the LDHs nanosheets are unfavorable for the long-term service of LDHs in corrosive media [23].
Anticorrosion shape memory-assisted self-healing coatings: A review
2024, Progress in Organic CoatingsCitation Excerpt :The cause of corrosion is rooted in the inherent nature of metals and alloys to revert to their original state, driven by the imperative to minimize the Gibbs free energy within the system [132]. Among the various strategies adopted to counteract corrosion, self-healing coatings have emerged as an attractive option due to their ability to provide long-term protection [133–135]. Establishing a barrier property is feasible upon effectively impeding the penetration of corrosive agents onto the metal surface over extended periods [136].
The corrosion and biological behavior of 3D-printed polycaprolactone/chitosan scaffolds as protective coating for Mg alloy implants
2024, Surface and Coatings TechnologyAdvances in corrosion protection coatings: A comprehensive review
2023, International Journal of Corrosion and Scale Inhibition