这是用户在 2024-5-30 11:00 为 https://app.immersivetranslate.com/pdf-pro/dcd104f2-8056-436a-979a-72e13747b2db 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_05_30_5fe8f04e9bfca0a3bfb9g
The role of host pigments in coral photobiology
宿主色素在珊瑚光生物学中的作用
Ferreira, Gabriel; Bollati, Elena; Kühl, Michael
费雷拉,加布里埃尔;博拉蒂,埃琳娜;迈克尔·库尔

Published in:  出版于:

Frontiers in Marine Science
海洋科学前沿
DOI: 数字编号:
10.3389/fmars.2023.1204843
Publication date: 发布日期:
2023
Document version 文件版本
Publisher's PDF, also known as Version of record
出版商的 PDF,也称为记录版本
Document license: 文件许可:
CC BY 抄送
Citation for published version (APA):
已发布版本 (APA) 的引用:
Ferreira, G., Bollati, E., & Kühl, M. (2023). The role of host pigments in coral photobiology. Frontiers in Marine Science, 10, [1204843]. https://doi.org/10.3389/fmars.2023.1204843
Ferreira, G.、Bollat​​i, E. 和 Kühl, M. (2023)。宿主色素在珊瑚光生物学中的作用。海洋科学前沿,10,[1204843]。 https://doi.org/10.3389/fmars.2023.1204843

OPEN ACCESS 开放获取

EDITED BY 编辑者
Virginia M. Weis, 弗吉尼亚·M·韦斯,
Oregon State University, United States
美国俄勒冈州立大学
REVIEWED BY 审核人
Renaud Grover 雷诺格罗弗
Centre Scientifique de Monaco, Monaco Kenneth Hoadley,
摩纳哥科学中心,摩纳哥肯尼思·霍德利,
University of Alabama, United States
美国阿拉巴马大学
*CORRESPONDENCE *一致
Elena Bollati 埃琳娜·博拉蒂
®elena.bollati@bio.ku.dk
®elena.bollat​​i@bio.ku.dk
Michael Kühl 迈克尔·库尔
₪mkuhl@bio.ku.dk
RECEIVED 12 April 2023
2023 年 4 月 12 日收到
ACCEPTED 21 June 2023
2023 年 6 月 21 日接受
PUBLISHED 19 July 2023
发布日期:2023 年 7 月 19 日

CITATION 奖状

Ferreira G, Bollati E and Kühl M (2023)
费雷拉 G、博拉蒂 E 和库尔 M (2023)
The role of host pigments in
主体颜料的作用
coral photobiology. 珊瑚光生物学。
Front. Mar. Sci. 10:1204843.
正面。三月科学。 10:1204843。
doi: 10.3389/fmars.2023.1204843
DOI:10.3389/fmars.2023.1204843
(c) 2023 Ferreira, Bollati and Kühl. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
(c) 2023 Ferreira、Bollat​​i 和 Kühl。这是一篇根据知识共享署名许可 (CC BY) 条款分发的开放获取文章。允许在其他论坛使用、分发或复制,但须注明原作者和版权所有者,并根据公认的学术惯例引用本期刊的原始出版物。不允许不遵守这些条款的使用、分发或复制。

The role of host pigments in coral photobiology
宿主色素在珊瑚光生物学中的作用

Gabriel Ferreira, Elena Bollati* and Michael Kühl*
加布里埃尔·费雷拉 (Gabriel Ferreira)、埃琳娜·博拉蒂 (Elena Bollat​​i)* 和迈克尔·库尔 (Michael Kühl)*
Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
海洋生物学科,生物系,哥本哈根大学,赫尔辛格丹麦

Abstract 抽象的

Corals have the ability to synthesize various pigments, responsible for their characteristic vivid coloration. Most coral host pigments are green fluorescent protein (GFP)-like pigments exhibiting diverse spectral properties covering almost the entire visible spectrum, with pigments fluorescing from cyan to red. The type of pigment a coral can synthesize varies inter- and intraspecifically. However, the precise role of host pigments in coral biology has not been fully elucidated. Host pigments have the ability to modify local light fields and could thus contribute to optimizing the light exposure of the photosymbionts. Such fine-tuning of the light microenvironment could enable the holobiont to adapt to broader environmental conditions. Putative mechanisms include energy transfer between host pigments, as well as modulation of their scattering properties via tissue plasticity and granule formation that affect the distribution and organization of host pigments in coral tissue. These mechanisms can enable either photoprotection or photoenhancement depending on the coral's environment. In this review, we summarize and discuss current knowledge about the link between host pigments and symbiont photosynthesis in reefbuilding corals, and discuss limitations and challenges of experimental investigation of this connection.
珊瑚具有合成各种色素的能力,因此具有鲜艳的色彩。大多数珊瑚宿主色素是类似绿色荧光蛋白(GFP)的色素,表现出覆盖几乎整个可见光谱的多种光谱特性,色素发出从青色到红色的荧光。珊瑚可以合成的色素类型在种间和种内有所不同。然而,宿主色素在珊瑚生物学中的确切作用尚未完全阐明。宿主色素具有改变局部光场的能力,因此有助于优化光共生体的光照。这种对光微环境的微调可以使全生物适应更广泛的环境条件。假定的机制包括主体色素之间的能量转移,以及通过影响珊瑚组织中主体色素的分布和组织的组织可塑性和颗粒形成来调节其散射特性。这些机制可以根据珊瑚的环境实现光保护或光增强。在这篇综述中,我们总结并讨论了关于造礁珊瑚宿主色素与共生体光合作用之间联系的现有知识,并讨论了这种联系的实验研究的局限性和挑战。

KEYWORDS 关键词

fluorescence, GFP-like protein, photosynthesis, energy transfer, photoprotection, photo-enhancement, symbiosis
荧光,类GFP蛋白,光合作用,能量转移,光保护,光增强,共生

1 Introduction 1 简介

Symbiont-bearing corals live in close association with intracellular, dinoflagellate microalgae belonging to the family Symbiodiniaceae (LaJeunesse et al., 2018), also named zooxanthellae when in hospite. Zooxanthellae are contained by the cnidarian host in its endodermis, bound by membrane-enclosed vacuolar compartments called symbiosomes (Sheppard et al., 2017). This endosymbiosis allows the coral host to become polytrophic, with photosynthates covering up to of the organic carbon requirements of the host, supplemented by carbon and nutrients obtained by feeding on zooplankton (Muscatine et al., 1984) and phytoplankton (Seemann et al., 2013; Leal et al., 2014; Conlan et al., 2019), as well as vitamins and other compounds provided by the coral microbiome (van Oppen and Blackall, 2019). Zooxanthellae benefit from the absence of grazers in the host tissue, where light and inorganic carbon is provided for their photosynthesis along with a stable, yet limited access to nutrients in an otherwise oligotrophic marine environment (Tanaka et al., 2018;
共生珊瑚与属于共生科的细胞内甲藻微藻密切相关(LaJeunesse 等人,2018),在收容时也称为虫黄藻。虫黄藻被刺胞动物宿主包含在其内皮层中,并被称为共生体的膜封闭的液泡区室所束缚(Sheppard 等人,2017)。这种内共生使珊瑚宿主变得多营养,光合产物可满足宿主对有机碳的需求 ,并通过捕食浮游动物获得的碳和营养物进行补充(Muscatine等,1984)浮游植物(Seemann 等人,2013 年;Leal 等人,2014 年;Conlan 等人,2019 年),以及珊瑚微生物组提供的维生素和其他化合物(van Oppen 和 Blackall,2019 年)。虫黄藻受益于宿主组织中没有食草动物,为它们的光合作用提供了光和无机碳,同时在寡营养的海洋环境中稳定但有限地获取营养(Tanaka et al., 2018;
Ferrier-Pagès et al., 2021). Moreover, symbiont photosynthesis stimulates skeletogenesis of the coral via light-enhanced calcification (Goreau, 1959; Tambutté et al., 2011), and scleractinian, hermatypic corals are the main builders of coral reefs in tropical waters down to about (Jarrett et al., 2005). Some corals are able to harbor photosymbionts even deeper in the water column, i.e., down to (Rouzé et al., 2021), but reef formation at these depths is limited (Schlichter and Fricke, 1991). Optimizing the photosynthetic efficiency of their symbionts, while ensuring protection against high solar irradiation in shallow waters and alleviating light limitation in deeper waters, is a key element of coral fitness. Thus, both the symbionts and the host have evolved mechanisms to optimize photosynthesis (Roth, 2014; Iluz and Dubinsky, 2015), several of which involve the photopigments of the symbionts as well as coral host pigmentation. The colors of corals are partly due to the yellow-brownish coloration of the zooxanthellae containing chlorophylls ( and ) and carotenoids (Jeffrey and Haxo,
Ferrier-Pagès 等人,2021)。此外,共生光合作用通过光增强钙化刺激珊瑚的骨骼形成(Goreau,1959;Tambutté 等人,2011),石珊瑚、造礁珊瑚是热带水域珊瑚礁的主要建造者,深度可达 )容纳光共生生物(Rouzé 等人,2021 年),但在这些深度的珊瑚礁形成是有限的(Schlichter 和 Fricke,1991 年)。优化共生体的光合作用效率,同时确保浅水区免受高太阳辐射并减轻较深水域的光限制,是珊瑚健康的关键要素。因此,共生体和宿主都进化出了优化光合作用的机制(Roth,2014;Iluz 和 Dubinsky,2015),其中一些机制涉及共生体的感光色素以及珊瑚宿主的色素沉着。珊瑚的颜色部分是由于含有叶绿素( )和类胡萝卜素的虫黄藻呈黄褐色(Jeffrey 和 Haxo,

1968), while the more spectacular color hues of many corals are due to pigments synthesized by the coral host (Figure 1) (Salih et al., 2000; Dove et al., 2001; Oswald et al., 2007;). Coral host pigments can contribute up to of the soluble cellular proteins in coral tissues even under conditions of low energy supply (Leutenegger et al., 2007; Oswald et al., 2007; Bollati et al., 2020), suggesting that they fulfill a significant function within the coral host that remains to be fully resolved.
1968),而许多珊瑚更壮观的色调是由珊瑚宿主合成的色素造成的(图 1)(Salih 等人,2000;Dove 等人,2001;Oswald 等人,2007;)。即使在低能量供应的条件下,珊瑚宿主色素也可以贡献珊瑚组织中高达 的可溶性细胞蛋白(Leutenegger 等人,2007 年;Oswald 等人,2007 年;Bollat​​i 等人,2020 年) ),表明它们在珊瑚宿主内发挥着重要的功能,但这一功能仍有待完全解决。
The majority of coral host pigments are related to the green fluorescent protein (GFP) (Dove et al., 2001; Leutenegger et al., 2007; Oswald et al., 2007), first discovered in the bioluminescent hydromedusa Aequorea victoria (Shimomura et al., 1962). Based on their absorption/emission properties, they can be broadly classified as i) fluorescent proteins (FP) absorbing light in the visible spectrum and re-emitting it at longer wavelengths, or ii) non-fluorescent chromoproteins (CP) with characteristic absorption spectra. There are several hypotheses attributing non-photosynthetic roles to host
大多数珊瑚宿主色素与绿色荧光蛋白 (GFP) 有关(Dove 等人,2001 年;Leutenegger 等人,2007 年;Oswald 等人,2007 年),首次在生物发光水母维多利亚水母中发现(Shimomura 等人)等,1962)。根据其吸收/发射特性,它们可大致分为 i) 吸收可见光谱中的光并以较长波长重新发射的荧光蛋白 (FP),或 ii) 具有特征吸收光谱的非荧光色素蛋白 (CP) 。有几种假设将非光合作用作用归因于宿主

FIGURE 1 图1

Spectral variety of fluorescent host pigments in corals. (A) RGB image under broad spectral illumination. The scale bars represent (B) RGB image taken under blue ( ) illumination using a long pass filter, showing coral FPs (green, orange) and chlorophyll fluorescence (darkred). Montipora sp. shows green fluorescence (517nm emission peak) and cyan fluorescence (485nm emmission peak). Acanthastrea sp. shows green (516nm emission peak) and orange fluorescence ( emission peak). (C) Excitation (emission , dotted line) and emission (excitation , solid line) spectra of the three coral species, with peak emission wavelength highlighted. Fluorescence was measured on clarified tissue extracts from each coral colony, using a Hitachi F-2500 FL spectrophotometer.
珊瑚中荧光主体色素的光谱变化。 (A) 宽光谱照明下的 RGB 图像。比例尺代表 (B) 在蓝色 ( ) 照明下使用 长通滤镜拍摄的 RGB 图像,显示珊瑚 FP(绿色、橙色)和叶绿素荧光(深红色)。蒙蒂波拉属显示绿色荧光(517nm 发射峰)和青色荧光(485nm 发射峰)。棘星属 sp.显示绿色(516nm 发射峰)和橙色荧光( 发射峰)。 (C) 三种珊瑚物种的激发(发射 ,虚线)和发射(激发 ,实线)光谱,突出显示峰值发射波长。使用 Hitachi F-2500 FL 分光光度计测量每个珊瑚群落的澄清组织提取物的荧光。

pigments in the ecophysiology of corals such as thermal dissipation (Lyndby et al., 2016), larval settlement (Kenkel et al., 2011) antioxidant activity (Bou-Abdallah et al., 2006), camouflage (Matz et al., 2006), and attraction of symbionts (Hollingsworth et al., 2005; Aihara et al., 2019) or prey (Ben-Zvi et al., 2022) from the environment. However, due to the ability of host pigments to alter the coral tissue light field, they are foremost presumed to interact with coral photosynthesis by providing photoprotection (Salih et al., 2000; Smith et al., 2013; Gittins et al., 2014; Quick et al., 2018; Bollati et al., 2020) or light enhancement (Schlichter et al., 1986; Salih et al., 2000; Smith et al., 2017; Bollati et al., 2022). Indeed, even before the exact nature of coral host pigments was known, it was suggested that these pigments could i) protect the coral against harmful radiation in shallow waters, and ii) transform radiation into wavelengths useful for photosynthesis, thus improving the photosynthetic efficiency of symbiont-bearing corals in deeper waters (Kawaguti, 1969; Schlichter et al., 1986; Schlichter and Fricke, 1991). In recent years, detailed investigations of the optical properties of corals have expanded our knowledge of how host pigments are involved in coral photobiology and stress response, but many open questions remain. Here, we review the current understanding of the roles host pigments play in coral photobiology, and highlight knowledge gaps and potential future research directions.
珊瑚生态生理学中的色素,例如散热(Lyndby 等人,2016)、幼虫沉降(Kenkel 等人,2011)、抗氧化活性(Bou-Abdallah 等人,2006)、伪装(Matz 等人,2006) ),以及从环境中吸引共生体(Hollingsworth et al., 2005;Aihara et al., 2019)或猎物(Ben-Zvi et al., 2022)。然而,由于宿主色素能够改变珊瑚组织光场,因此最重要的是推测它们通过提供光保护来与珊瑚光合作用相互作用(Salih 等人,2000;Smith 等人,2013;Gittins 等人,2014) ;Quick 等人,2018;Bollat​​i 等人,2020)或光增强(Schlichter 等人,1986;Salih 等人,2000;Smith 等人,2017;Bollat​​i 等人,2022)。事实上,甚至在了解珊瑚宿主色素的确切性质之前,就有人提出这些色素可以 i) 保护珊瑚免受浅水中的有害辐射,ii) 将辐射转化为有利于光合作用的波长,从而提高珊瑚的光合作用效率。更深水域中的共生珊瑚(Kawaguti,1969;Schlichter 等,1986;Schlichter 和 Fricke,1991)。近年来,对珊瑚光学特性的详细研究扩大了我们对宿主色素如何参与珊瑚光生物学和应激反应的了解,但仍然存在许多悬而未决的问题。在这里,我们回顾了目前对宿主色素在珊瑚光生物学中所扮演的角色的理解,并强调了知识差距和未来潜在的研究方向。

2 Spectral and biochemical properties of coral host pigments
2 珊瑚宿主色素的光谱和生化特性

Coral host pigments are often collectively referred to as GFPlike proteins, due to their structural homology with the A. victoria GFP (avGFP) (Shimomura et al., 1962). While avGFP emits green fluorescence under UV or blue illumination (Shimomura et al., 1962), coral GFP-like host pigments are not necessarily all green, nor fluorescent. GFP-like pigments with diverse absorption/ emission spectra were cloned and characterized from nonbioluminescent Anthozoa for the first time in 1999 (Matz et al., 1999). Since then, a plethora of host pigments have been found in corals (Labas et al., 2002; Alieva et al., 2008; Macel et al., 2020). At the time of writing, 251 different host pigments in 48 coral species have been sequenced and recorded in Genbank Dec 12, 2022 (Figure 2, sequences available in Supplementary Data). Additionally, there are many observations of fluorescent and nonfluorescent pigments that have not yet been cloned or characterized in detail (Gruber et al., 2008; Eyal et al., 2015).
珊瑚宿主色素通常统称为 GFP 样蛋白,因为它们与维多利亚珊瑚 GFP (avGFP) 结构同源(Shimomura 等人,1962)。虽然 avGFP 在紫外线或蓝色照明下发出绿色荧光(Shimomura 等人,1962),但珊瑚类 GFP 主体色素不一定全是绿色,也不一定发出荧光。 1999 年,首次从非生物发光 Anthozoa 中克隆并表征了具有不同吸收/发射光谱的类 GFP 色素(Matz 等,1999)。从那时起,在珊瑚中发现了大量的宿主色素(Labas 等人,2002 年;Alieva 等人,2008 年;Macel 等人,2020 年)。截至撰写本文时,48 个珊瑚物种的 251 种不同宿主色素已于 2022 年 12 月 12 日在 Genbank 中进行了测序和记录(图 2,补充数据中提供的序列)。此外,还有许多荧光和非荧光颜料的观察结果尚未被克隆或详细表征(Gruber 等人,2008 年;Eyal 等人,2015 年)。

2.1 Structural and spectral characteristics
2.1 结构和光谱特征

There are many structural similarities between coral GFP-like proteins and the well-characterized wild-type avGFP (wt-avGFP), where 238 amino acids form a 11-stranded-beta-barrel surrounding the chromophore, creating a very stable large unit (Yang et al., 1996; Yarbrough et al., 2001; Nienhaus and Wiedenmann, 2009). However, while the quaternary structure of wt-avGFP is usually a homodimer (Phillips, 1997), most wild-type coral GFP- like proteins (with the exception of some CPs) form tetramers under physiological conditions (Alieva et al., 2008; Nienhaus and Wiedenmann, 2009; Ahmed et al., 2022). The wt-avGFP chromophore can exist in a neutral or anionic form, and these two forms have different spectral properties. The neutral form has a maximum absorption in the UV, while the anionic form absorbs mainly in the blue-green spectral region (Brejc et al., 1997). Under physiological conditions, the chromophores of host pigments in corals are mainly found in anionic forms (Alieva et al., 2008), therefore they absorb predominantly in the visible range (Figure 2), as opposed to wt-avGFP, which absorbs mostly UV via its neutral chromophore (Heim et al., 1994). Based on their spectral properties, several types of FPs can be distinguished in corals (Figure 2). Cyan FPs (CFPs) are characterized by an emission maximum , commonly between and sometimes have spectral properties that are indicative of chromophores in the neutral state (Alieva et al., 2008; Salih, 2019). Green FPs (GFPs) have an emission maximum (Figure 2) (Alieva et al., 2008; Salih, 2019). Some red FPs (RFPs), known as "DsRed-type" after the first protein of this kind to be described (Matz et al., 1999), have a chromophore that emits green light when immature, while spontaneous chromophore maturation in the presence of oxygen leads to the emission of red light (Gross et al., 2000; Nienhaus and Wiedenmann, 2009) (Figure 2). Photoconvertible red FPs (pcRFPs) or Kaede-type RFPs, on the other hand, have an immature green-emitting chromophore that undergoes irreversible photoconversion from green to red emission upon exposure to UV radiation ( 390 nm) (Ando et al., 2002; Nienhaus and Wiedenmann, 2009). CPs are characterized by a trans non-coplanar chromophore with a high extinction coefficient but no or very low fluorescence emission (Prescott et al., 2003; Alieva et al., 2008; Ahmed et al., 2022). CPs can sometimes become fluorescent in a light or -induced conformational change known as kindling (Lukyanov et al., 2000; Battad et al., 2007), but the implications of this phenomenon for coral biology have not been studied in detail (Salih et al., 2004).
珊瑚 GFP 样蛋白和已充分表征的野生型 avGFP (wt-avGFP) 之间存在许多结构相似性,其中 238 个氨基酸形成围绕发色团的 11 链 β 桶,形成非常稳定的 大单元(Yang 等人,1996;Yarbrough 等人,2001;Nienhaus 和 Wiedenmann,2009)。然而,虽然 wt-avGFP 的四级结构通常是同二聚体(Phillips,1997),但大多数野生型珊瑚 GFP 样蛋白(某些 CP 除外)在生理条件下形成四聚体(Alieva 等,2008; Nienhaus 和 Wiedenmann,2009;Ahmed 等人,2022)。 wt-avGFP发色团可以以中性或阴离子形式存在,这两种形式具有不同的光谱特性。中性形式在紫外线中具有最大吸收,而阴离子形式主要在蓝绿色光谱区域中吸收(Brejc等人,1997)。在生理条件下,珊瑚宿主色素的发色团主要以阴离子形式存在(Alieva et al., 2008),因此它们主要吸收可见光范围(图 2),而 wt-avGFP 则主要吸收紫外线通过其中性发色团(Heim et al., 1994)。根据其光谱特性,可以在珊瑚中区分几种类型的 FP(图 2)。青色 FP (CFP) 的特征在于发射最大值 ,通常在 之间,有时具有指示中性状态发色团的光谱特性(Alieva 等,2008;萨利赫,2019)。绿色 FP (GFP) 具有最大排放量 (图 2)(Alieva 等人,2008 年;Salih,2019 年)。一些红色 FP(RFP),在第一个被描述的此类蛋白质之后被称为“DsRed 型”(Matz 等,2016)。,1999),具有未成熟时发出绿光的发色团,而在氧气存在下自发发色团成熟会导致发出红光(Gross 等人,2000;Nienhaus 和 Wiedenmann,2009)(图 2)。另一方面,光转换红色 FP (pcRFP) 或 Kaede 型 RFP 具有未成熟的绿光发射发色团,在暴露于紫外线辐射 (390 nm) 时会发生不可逆的从绿光到红光的光转换(Ando 等人,2002 年;尼恩豪斯和维登曼,2009)。 CP 的特点是具有高消光系数的反式非共面发色团,但没有或非常低的荧光发射(Prescott 等人,2003 年;Alieva 等人,2008 年;Ahmed 等人,2022 年)。 CP 有时会在光或 诱导的构象变化(称为点燃)中发出荧光(Lukyanov 等人,2000 年;Battad 等人,2007 年),但这种现象对珊瑚生物学的影响尚未显现。进行了详细研究(Salih 等,2004)。

2.2 Energy transfer 2.2 能量传递

The common presence within a single coral colony of several host pigments with overlapping absorption and fluorescence emission spectra suggests that they could interact with each other via energy transfer to modify the light environment experienced by the symbionts (Salih et al., 2000; Gilmore et al., 2003; Salih et al., 2003; Salih et al., 2004). Energy transfer between chromophores with overlapping excitation/emission spectra can occur via radiative transfer (i.e., emission and reabsorption) or via Förster resonance energy transfer (FRET), which is the non-radiative transfer of energy from an excited donor chromophore to an acceptor chromophore via intermolecular long-range dipole-dipole coupling (Clegg, 1995). FRET requires that i) the distance between the donor and the acceptor must be between , ii) the excitation and emission spectrum of the two molecules must overlap, iii) their dipoles must be appropriately aligned, and iv) the
单个珊瑚群落中共同存在几种具有重叠吸收和荧光发射光谱的寄主色素,这表明它们可以通过能量转移相互作用,从而改变共生体所经历的光环境(Salih 等人,2000 年;Gilmore 等人) .,2003;萨利赫等人,2003;萨利赫等人,2004)。具有重叠激发/发射光谱的发色团之间的能量转移可以通过辐射转移(即发射和重吸收)或通过福斯特共振能量转移(FRET)发生,这是能量从激发的供体发色团到受体发色团的非辐射转移通过分子间长程偶极-偶极耦合(Clegg,1995)。 FRET 要求 i) 供体和受体之间的距离必须在 之间,ii) 两个分子的激发和发射光谱必须重叠,iii) 它们的偶极子必须适当对齐,并且 iv)这
quantum yield of the donor and the absorption coefficient of the acceptor must be high enough (Clegg, 1995). Histological and spectroscopic studies have shown that in some coral species, the spectral combination and spatial arrangement of host pigments are suitable for the formation of FRET pairs (Salih et al., 2003, 2004). Indeed, measurements of fluorescence lifetime indicate that FRET can occur between host pigments, although the relative contribution of this mechanism to overall emission has not been quantified (Gilmore et al., 2003; Cox et al., 2007). Importantly, FRET between coral FPs and zooxanthellae photosynthetic pigments has not been observed, as they are likely organized too far away from each other (Gilmore et al., 2003).
施主的量子产率和受主的吸收系数必须足够高(Clegg,1995)。组织学和光谱研究表明,在一些珊瑚物种中,宿主色素的光谱组合和空间排列适合形成 FRET 对(Salih 等,2003,2004)。事实上,荧光寿命的测量表明,FRET 可以发生在主体颜料之间,尽管这种机制对总体发射的相对贡献尚未量化(Gilmore 等人,2003 年;Cox 等人,2007 年)。重要的是,尚未观察到珊瑚 FP 和虫黄藻光合色素之间的 FRET,因为它们可能组织得彼此距离太远(Gilmore 等,2003)。
However, intramolecular FRET can be found in coral RFPs. Since maturation of many DsRed-type proteins is incomplete, immature and mature chromophores can be found within the same tetramer (Gross et al., 2000; Nienhaus and Wiedenmann,
然而,分子内 FRET 可以在珊瑚 RFP 中找到。由于许多 DsRed 型蛋白的成熟不完全,因此在同一个四聚体中可以发现未成熟和成熟的发色团(Gross 等,2000;Nienhaus 和 Wiedenmann,

2009) that, therefore, emits red fluorescence via direct excitation of the mature red chromophore, as well as via FRET between immature and mature chromophores of the same tetramer (Baird et al., 2000; Gross et al., 2000; Nienhaus and Wiedenmann, 2009). Similar to DsRed-type RFPs, in pcRFPs both unconverted and converted chromophores can exist within the same tetramer. Thus, pcRFPs that have been exposed to UV light emit mainly red fluorescence, either via direct excitation of the red chromophore or via FRET between the green immature chromophore and the red photoconverted chromophore (Ando et al., 2002; Nienhaus and Wiedenmann, 2009; Bollati et al., 2017). In both DsRed-type and in pcRFPs, intra-tetrameric FRET is virtually efficient and green emission disappears upon maturation of a single chromophore; green emission arises mostly from tetramers composed of only immature chromophores (Baird et al., 2000; Wiedenmann et al., 2004).
2009),因此,通过成熟红色发色团的直接激发以及通过同一四聚体的未成熟和成熟发色团之间的 FRET 发射红色荧光(Baird 等人,2000;Gross 等人,2000;Nienhaus 和 Wiedenmann) ,2009)。与 DsRed 型 RFP 类似,在 pcRFP 中,未转换和转换的发色团可以存在于同一四聚体中。因此,暴露于紫外光的 pcRFP 主要发出红色荧光,或者通过红色生色团的直接激发,或者通过绿色未成熟生色团和红色光转换生色团之间的 FRET(Ando 等人,2002 年;Nienhaus 和 Wiedenmann,2009 年; Bollat​​i 等人,2017)。在 DsRed 型和 pcRFP 中,四聚体内 FRET 实际上 有效,并且绿色发射在单个发色团成熟后消失;绿色发射主要来自仅由未成熟发色团组成的四聚体(Baird 等,2000;Wiedenmann 等,2004)。
While these spectral and biochemical properties have been well described for some coral host pigments in vitro, in many cases it remains elusive how these properties affect the light environment inside coral tissue. In fact, considering their in vitro biochemistry is not sufficient in order to understand the potential involvement of host pigments in coral photobiology. The distribution of host pigments relative to each other and to the zooxanthellae, as well as the dynamic regulation of pigments, play a key role in determining the in vivo light environment and must also be taken into account.
虽然一些珊瑚宿主色素的这些光谱和生化特性已经在体外得到了很好的描述,但在许多情况下,这些特性如何影响珊瑚组织内部的光环境仍然难以捉摸。事实上,仅考虑它们的体外生物化学不足以了解宿主色素在珊瑚光生物学中的潜在参与。宿主色素相对于彼此和虫黄藻的分布,以及色素的动态调节,在确定体内光环境中起着关键作用,也必须考虑在内。

3 Dynamics and optical properties of host pigments in corals
3 珊瑚宿主色素的动力学和光学特性

3.1 Distribution and dynamics
3.1 分布与动态

The expression and distribution of host pigments vary between coral species, and even between individuals of the same species, representative of different color morphs living side by side on the same reef (Salih et al., 2000; Kelmanson & Matz, 2003; Dove et al. 2006; Oswald et al., 2007; Gittins et al., 2014). At the same time, host pigments with similar optical and biochemical properties can be expressed by different species (Alieva et al., 2008). Two mechanisms can generate such diversity: i) polymorphism, characterized by differences in the genome that were determined during zygote formation leading to phenotypic traits that do not change but can exhibit varying intensity during the lifespan of the organism, and ii) polyphenism, where organisms have the same gene set but develop different phenotypic traits that can vary over time due to differences in the levels of gene expression or post-translational mechanisms (Kelmanson and Matz, 2003). Both polyphenism and polymorphism are involved in determining coral coloration (Takabayashi and HoeghGuldberg, 1995; Gittins et al., 2014). For example, the different color morphs of Montastraea cavernosa are a result of polyphenism, where the green and red color morphs possess the same gene set but exhibit differences in expression levels of their genes (mRNA abundance) (Kelmanson and Matz, 2003). In red morphs of Acropora millepora, the intensity of red fluorescence is determined by the copy number of the RFP gene as well as the expression level, a combination of polymorphism and polyphenism (Gittins et al., 2014).
宿主色素的表达和分布在不同珊瑚物种之间,甚至在同一物种的个体之间也有所不同,代表着在同一珊瑚礁上并存的不同颜色形态(Salih 等人,2000 年;Kelmanson 和 Matz,2003 年;Dove 等人)等人,2006;奥斯瓦尔德等人,2007;吉廷斯等人,2014)。同时,不同物种可以表达具有相似光学和生化特性的主体颜料(Alieva et al., 2008)。有两种机制可以产生这种多样性:i) 多态性,其特征是在受精卵形成过程中确定的基因组差异,导致表型性状在生物体的生命周期中不会改变,但可以表现出不同的强度;ii) 多态性,其中生物体具有相同的基因组,但发展出不同的表型特征,由于基因表达水平或翻译后机制的差异,这些特征会随着时间的推移而变化(Kelmanson 和 Matz,2003)。多型现象和多态性都参与决定珊瑚的颜色(Takabayashi 和 HoeghGuldberg,1995;Gittins 等,2014)。例如,蒙塔斯特雷亚海绵体的不同颜色形态是多型现象的结果,其中绿色和红色形态拥有相同的基因集,但在其基因表达水平(mRNA丰度)方面表现出差异(Kelmanson和Matz,2003)。在千叶鹿角珊瑚的红色形态中,红色荧光的强度由 RFP 基因的拷贝数以及表达水平决定,这是多态性和多型性的结合(Gittins 等,2014)。
The expression of coral GFP-like host pigment genes can be regulated by a number of environmental factors, such as heat, light, and wounding (D'Angelo et al., 2008; Smith-Keune and Dove, 2008; Kenkel et al., 2011; Smith et al., 2013). For some coral host pigments, gene transcription is driven by light intensity, particularly of light in the blue part of the solar spectrum (D'Angelo et al., 2008). Such "light-induced" GFP-like proteins are thus not expressed in darkness or under spectral light fields lacking blue wavelengths, and have often been reported in shallow water corals from high light environments (D'Angelo et al., 2008; Roth et al., 2010; Smith et al., 2013; Bollati et al., 2020). The relationship between light intensity and gene expression can vary between different light-induced host pigments. Some are expressed under relatively low light and saturate at intermediate photon irradiance levels of around mol photons of photosynthetically active radiation (PAR, 400-700 nm) (low induction threshold), while others exhibit an almost linear relationship between photon irradiance and pigment production (high induction threshold) (D'Angelo et al., 2008). Many CFPs belong to the former group, and many CPs to the latter (D'Angelo et al., 2008), but we note that the light regulation of host pigment gene expression has only been characterized for a very small selection of host pigments and/or coral species (D'Angelo et al., 2008; Bay et al., 2009; Kenkel et al., 2011). The signaling pathway that links blue light to GFP-like protein transcription also remains unknown. Corals are known to possess a number of putative photoreceptors, including blue light sensing cryptochromes and opsins, as well as G-protein coupled receptors thought to play a role in light signal transduction (Levy et al., 2007; Mason et al., 2012; Kaniewska et al., 2015; Mason et al., 2023). However, none of these pathways have yet been directly linked to the transcriptional induction of host pigments.
珊瑚 GFP 样宿主色素基因的表达可以受到许多环境因素的调节,例如热、光和伤害(D'Angelo 等人,2008 年;Smith-Keune 和 Dove,2008 年;Kenkel 等人,2008 年)。 ,2011;史密斯等人,2013)。对于一些珊瑚宿主色素来说,基因转录是由光强度驱动的,特别是太阳光谱中蓝色部分的光(D'Angelo 等,2008)。因此,这种“光诱导”的 GFP 样蛋白在黑暗中或缺乏蓝色波长的光谱光场下不表达,并且经常在高光环境的浅水珊瑚中出现(D'Angelo 等人,2008 年;Roth 等人)等人,2010;史密斯等人,2013;Bollat​​i 等人,2020)。光强度和基因表达之间的关系在不同的光诱导宿主色素之间可能有所不同。有些在相对较低的光照下表达,并在光合有效辐射(PAR,400-700 nm)的 mol 光子 左右的中间光子辐照度水平下表达(低诱导阈值),而另一些则表现出光子辐照度和色素产生之间几乎呈线性关系(高感应阈值)(D'Angelo 等人,2008)。许多 CFP 属于前一组,许多 CP 属于后一组(D'Angelo 等,2008),但我们注意到,宿主色素基因表达的光调节仅针对极少数宿主色素进行了表征,并且/ 或珊瑚物种(D'Angelo 等人,2008 年;Bay 等人,2009 年;Kenkel 等人,2011 年)。将蓝光与 GFP 样蛋白转录联系起来的信号通路也仍然未知。 已知珊瑚拥有许多假定的光感受器,包括蓝光感应隐花色素和视蛋白,以及被认为在光信号转导中发挥作用的 G 蛋白偶联受体(Levy 等人,2007 年;Mason 等人,2012 年) ;Kaniewska 等人,2015;Mason 等人,2023)。然而,这些途径尚未与宿主色素的转录诱导直接相关。
For other coral host pigments, transcription appears to be lightindependent and high pigment concentrations are therefore maintained even when corals are kept in darkness (Leutenegger et al., 2007; Eyal et al., 2015); many FPs detected/observed in mesophotic corals belong to this group (Eyal et al., 2015). While transcriptionally independent from light levels, pcRFPs are to an extent still subject to light regulation via the post-translational photoconversion process, which does not affect protein concentration but does affect protein structure and spectral properties (Ando et al., 2002; Wiedenmann et al., 2004; Leutenegger et al., 2007).
对于其他珊瑚寄主色素来说,转录似乎与光无关,因此即使珊瑚处于黑暗中也能保持高色素浓度(Leutenegger 等人,2007 年;Eyal 等人,2015 年);在中光珊瑚中检测/观察到的许多 FP 都属于这一组(Eyal 等,2015)。虽然转录独立于光水平,但 pcRFP 在一定程度上仍然通过翻译后光转换过程受到光调节,这不会影响蛋白质浓度,但会影响蛋白质结构和光谱特性(Ando 等人,2002;Wiedenmann 等人) .,2004;Leutenegger 等,2007)。
Gene expression of host pigments, and therefore overall fluorescence of coral tissue, are also under regulation by water temperature (Dove et al., 2006; Desalvo et al., 2008; Smith-Keune and Dove, 2008; Hume et al., 2013; Roth and Deheyn, 2013; Mayfield et al., 2014). Specifically, temperature stress has been shown to induce a decrease in host pigment expression, sometimes as a precursor to bleaching (Desalvo et al., 2008; Smith-Keune and Dove, 2008; Mayfield et al., 2014). Additionally, cold exposure resulted in a reduction in host pigment fluorescence in the coral Acropora yongei (Roth & Deheyn, 2013). Since coral bleaching alters the internal light environment of corals (Wangpraseurt et al., 2012, 2017a), the interplay between light-induced upregulation and heatinduced downregulation is a critical factor in determining whether host pigment production will increase or decrease during a bleaching event, as described in later sections (Bollati et al., 2020).
宿主色素的基因表达以及珊瑚组织的整体荧光也受到水温的调节(Dove 等人,2006 年;Desalvo 等人,2008 年;Smith-Keune 和 Dove,2008 年;Hume 等人,2013 年) ;Roth 和 Deheyn,2013;梅菲尔德等人,2014)。具体而言,温度应激已被证明会导致宿主色素表达减少,有时会导致漂白(Desalvo 等人,2008 年;Smith-Keune 和 Dove,2008 年;Mayfield 等人,2014 年)。此外,寒冷暴露导致央氏卫城珊瑚的寄主色素荧光减少(Roth & Deheyn,2013)。由于珊瑚白化改变了珊瑚的内部光环境(Wangpraseurt et al., 2012, 2017a),光诱导的上调和热诱导的下调之间的相互作用是决定在白化事件期间宿主色素产量是否增加或减少的关键因素,如后面部分所述(Bollat​​i 等人,2020)。
Finally, an ontogenetic shift is sometimes observed in the expression of host pigments, with either an increase, a decrease or a spectral shift in fluorescence being reported during larval settlement and metamorphosis (Roth et al., 2013; Haryanti and Hidaka, 2019). For this review, we focus on the roles of host pigments in the photobiology of adult corals, therefore potential functions in aposymbiotic life stages will not be discussed further.
最后,有时会在寄主色素的表达中观察到个体发生变化,在幼虫定居和变态过程中报告荧光增加、减少或光谱变化(Roth 等人,2013 年;Haryanti 和 Hidaka,2019 年)。在这篇综述中,我们重点关注宿主色素在成年珊瑚光生物学中的作用,因此将不会进一步讨论非共生生命阶段的潜在功能。

3.2 Optical properties of corals
3.2 珊瑚的光学特性

The studies reviewed so far indicate that the light conditions around and within corals are heavily involved in regulating the expression of host pigments. The light microclimate inside the coral tissue is determined by the interaction between solar radiation and the fundamental optical properties of coral tissue and
迄今为止的研究表明,珊瑚周围和内部的光照条件在很大程度上参与调节宿主色素的表达。珊瑚组织内的光微气候是由太阳辐射与珊瑚组织的基本光学特性之间的相互作用决定的

skeleton, i.e., their absorption and scattering coefficient, and the directionality of scattering. These optical properties are important not only because they affect host pigment regulation, but also because they determine how light travels between host pigments and symbionts, how fluorescence emission is propagated in the tissue, and ultimately how light modulation by host pigments impacts symbiont photosynthesis.
骨架,即它们的吸收和散射系数,以及散射的方向性。这些光学特性很重要,不仅因为它们影响宿主色素调节,还因为它们决定光如何在宿主色素和共生体之间传播、荧光发射如何在组织中传播,以及最终宿主色素的光调制如何影响共生体光合作用。
In thick-tissued corals such as Lobophyllidae and Merulinidae, steep light gradients form from the tissue surface towards the skeleton, where the upper tissue layers can experience light levels reaching of the incident, downwelling photon irradiance of PAR, which is then attenuated to or less of the surface photon irradiance at the tissue-skeleton interface (Wangpraseurt et al., 2012, 2016b). This creates distinct light microhabitats across the coral tissue that can drive differential photoacclimation of symbionts in different compartments of thick-tissued corals (Lichtenberg et al., 2016; Wangpraseurt et al., 2016b), and might provide niche space for symbiont genotypes with different light requirements (Wangpraseurt et al., 2016a, 2016b). In contrast, the light field in thin-tissued corals like Pocillopora damicornis becomes more affected by the diffuse backscatter from the coral skeleton that also contributes strongly to light enhancement (Enríquez et al., 2005a; Wangpraseurt et al., 2016b). Despite the absence of steep vertical gradients in such thintissued corals, the complex architecture of the colony and scattering characteristics of the coral skeleton still enable homogenization across the coral colony (Enríquez et al., 2017), as well as the formation of shaded microhabitats (Kaniewska et al., 2014; Wangpraseurt et al., 2017b). The relative importance of tissue and skeleton optical properties for the light field of corals and their symbionts thus differs between different coral morphotypes and species, but also across different areas or tissue layers within the same colony.
在厚组织珊瑚中,例如 Lobophyllidae 和 Merulinidae,从组织表面到骨骼形成陡峭的光梯度,其中上层组织层可以经历达到 PAR 的入射、下降光子辐照度 的光水平,然后衰减到组织-骨架界面处的表面光子辐照度 或更低(Wangpraseurt 等人,2012,2016b)。这在珊瑚组织中创造了独特的光微生境,可以驱动厚组织珊瑚不同区室中共生体的差异光适应(Lichtenberg et al., 2016; Wangpraseurt et al., 2016b),并可能为具有不同基因型的共生体提供利基空间。光照要求(Wangpraseurt 等人,2016a,2016b)。相比之下,像 Pocillopora damicornis 这样的薄组织珊瑚的光场更容易受到珊瑚骨架漫反射的影响,这也对光增强有很大贡献(Enríquez 等人,2005a;Wangpraseurt 等人,2016b)。尽管这种薄组织珊瑚不存在陡峭的垂直梯度,但珊瑚群落的复杂结构和珊瑚骨架的散射特征仍然能够实现整个珊瑚群落的均质化(Enríquez et al., 2017),以及阴影微生境的形成( Kaniewska 等人,2014;Wangpraseurt 等人,2017b)。因此,组织和骨骼光学特性对于珊瑚及其共生体光场的相对重要性在不同珊瑚形态类型和物种之间有所不同,而且在同一珊瑚群内的不同区域或组织层之间也有所不同。
The spatial position and organization of host pigments within the tissue affect their optical properties. The macroscale distribution of host pigments across coral colonies can vary greatly (Figure 3). Some pigments are distributed homogeneously across the coenosarc, while others are limited to the tip of the polyp tentacles, around the oral disk of the polyp, or concentrated at the colony margin or tip of branches (Salih et al., 2000; Gruber et al., 2008; D'Angelo et al., 2012; Smith et al., 2013; Eyal et al., 2015). In shallow-water corals, host pigments are often found in the ectoderm or in the gastrodermis above the symbiont (Salih et al., 2000, 2004) (Figure 3). But e.g. in depth-generalist and mesophotic corals, they can also be found in the gastrodermis distributed below or around the symbiont (Schlichter et al., 1986; Salih et al., 2000; Mazel et al., 2003; Salih et al., 2004; Oswald et al., 2007). The distribution patterns of host pigments can be either granular, i.e. concentrated in discrete granules (approximately in size), which can aggregate to dense chromatophore systems, or diffuse, i.e. homogeneously distributed in the host cells (Salih et al., 2000; Salih et al., 2004; Wangpraseurt et al., 2017b; Wangpraseurt et al., 2019) (Figure 3). Granules, which can contain either a single host pigment or a combination (Salih et al., 2003, 2004), exhibit a more diffuse light scattering leading to enhancement of light closer to the coral tissue surface and a more rapid vertical attenuation of the light as compared to corals with more loosely distributed FPs (Lyndby et al., 2016; Wangpraseurt et al., 2017b). When present in the ectoderm, the scattering of FP chromatophores can thus reduce light exposure of deeper tissue layers shielding the zooxanthellae against excess irradiance and heat deposition (Lyndby et al., 2016). This can be further enhanced by high light induced contraction of coral tissue concentrating FP granules and enhancing the backscatter of light in the upper tissue layers (Wangpraseurt et al., 2017b). Ectodermal granules are uncommon in deep water corals (Salih et al., 2004), which can instead present chromatophore aggregations within or underneath the symbiont layer (Salih et al., 2000; Mazel et al., 2003; Salih et al., 2004; Oswald
组织内主体色素的空间位置和组织影响其光学特性。珊瑚群落中寄主色素的宏观分布差异很大(图 3)。一些色素均匀地分布在整个腔肉瘤上,而其他色素则仅限于息肉触手的尖端、息肉的口盘周围,或集中在菌落边缘或分支的尖端(Salih等人,2000;Gruber等人) .,2008;D'Angelo 等,2012;Smith 等,2013;Eyal 等,2015)。在浅水珊瑚中,宿主色素通常存在于共生体上方的外胚层或胃真皮中(Salih 等,2000,2004)(图 3)。但例如在深度通才珊瑚和中光珊瑚中,它们也可以在共生体下方或周围分布的腹皮层中找到(Schlichter 等,1986;Salih 等,2000;Mazel 等,2003;Salih 等,2004)奥斯瓦尔德等人,2007)。宿主色素的分布模式可以是颗粒状的,即集中在离散颗粒中(大小约为 ),可以聚集成致密的色素细胞系统,也可以是扩散的,即均匀分布在宿主细胞中(Salih 等人)等人,2000;Salih 等人,2004;Wangpraseurt 等人,2017b;Wangpraseurt 等人,2019)(图 3)。颗粒可以包含单一主体颜料或组合(Salih 等人,2003 年,2004 年),表现出更漫射的光散射,导致更靠近珊瑚组织表面的光增强以及光的更快速的垂直衰减与 FP 分布更松散的珊瑚相比(Lyndby 等人,2016 年;Wangpraseurt 等人,2017b)。 当存在于外胚层中时,FP 色素细胞的散射可以减少更深组织层的光照,从而保护虫黄藻免受过度的辐照和热沉积(Lyndby 等人,2016)。这可以通过强光诱导珊瑚组织收缩来进一步增强,从而浓缩 FP 颗粒并增强上层组织层中的光反向散射(Wangpraseurt 等人,2017b)。外胚层颗粒在深水珊瑚中并不常见(Salih 等,2004),它可以在共生层内部或之下呈现色素细胞聚集(Salih 等,2000;Mazel 等,2003;Salih 等,2003)。,2004年;奥斯瓦尔德
FIGURE 3 图3
Scattering and distribution of host and symbiont pigments in Dipsastraea sp. (A) Optical coherence tomography (OCT) 3D scan of Dipsastraea sp. (see Wangpraseurt et al., 2017b for methodology). Granules (on the right) and diffuse FPs can be observed in the ectoderm of the specimen. The grey framed area represents the region of scanning, while the color scale indicates intensity of scattering. (B) Confocal microscopy image of a thick tissue section of mouth tissue in Dipsastraea sp. Diffuse and granular FPs can be observed inside the ectoderm above the symbionts comprised in the gastrodermis. The red line represents the location of the section. Green represents GFPs (emission maxima 500-570nm), blue represents CFPs (emission maxima 460-500nm), and red represents chlorophyll fluorescence in the zooxanthellae. The emission of the laser used to acquire the microscopy image was set at . A live sample of Dipsastraea sp. was used for the OCT scan. The same sample was then fixed in paraformaldehyde dissolved in a solution of PBS. The sample was then decalcified using EDTA (10% EDTA), and was mounted on microscope slide for confocal microscopy imaging right after decalcification.
Dipsastraea sp. 寄主和共生色素的散射和分布。 (A) Dipsastraea sp. 的光学相干断层扫描 (OCT) 3D 扫描。 (方法见 Wangpraseurt 等人,2017b)。在标本的外胚层中可以观察到颗粒(右侧)和弥漫性 FP。灰色框区域表示扫描区域,而色标表示散射强度。 (B) Dipsastraea sp. 口腔组织 厚组织切片的共焦显微镜图像。在胃真皮中包含的共生体上方的外胚层内部可以观察到弥漫性和颗粒状的 FP。红线代表该部分的位置。绿色代表 GFP(最大发射波长 500-570nm),蓝色代表 CFP(最大发射波长 460-500nm),红色代表虫黄藻中的叶绿素荧光。用于获取显微图像的激光发射被设置为 。 Dipsastraea sp. 的活样本。用于 OCT 扫描。然后将相同的样品固定在溶解于 PBS 溶液中的 多聚甲醛中。然后使用 EDTA (10% EDTA) 将样品脱钙,并在脱钙后立即安装在显微镜载玻片上进行共焦显微镜成像。

et al., 2007; Eyal et al., 2015). Specimens of some deep-water species can present granule shapes that are modified into needle- or rodlike structures (Salih et al., 2004), but whether and how such structures affect light propagation and harvesting remains to be studied. Host pigments with diffuse (non-granular), cytoplasmic arrangement are mostly found in ectodermal cells; they are common in corals from all depths (Salih et al., 2004; Eyal et al., 2015), and non-fluorescent CPs from shallow water corals seem to only assume this arrangement (Salih et al., 2000, 2004). In many coral species, multiple host pigments with different arrangement (granular and diffuse, see Figure 3) and localization (ectodermal or endodermal; above, within or below symbionts) coexist, creating complex and unique distribution patterns that contribute to the immense diversity of coral coloration.
等人,2007 年;埃亚尔等人,2015)。一些深水物种的样本可以呈现颗粒形状,这些形状被修改为针状或棒状结构(Salih等人,2004),但这些结构是否以及如何影响光传播和收获仍有待研究。具有弥漫性(非颗粒状)、细胞质排列的宿主色素主要存在于外胚层细胞中;它们在所有深度的珊瑚中都很常见(Salih 等人,2004 年;Eyal 等人,2015 年),来自浅水珊瑚的非荧光 CP 似乎只呈现这种排列(Salih 等人,2000 年、2004 年)。在许多珊瑚物种中,具有不同排列(颗粒状和弥漫性,见图 3)和定位(外胚层或内胚层;共生体上方、内部或下方)的多种宿主色素共存,创造了复杂而独特的分布模式,有助于珊瑚的巨大多样性着色。

4 Coral host pigments and photosynthesis
4 珊瑚宿主色素和光合作用

4.1 Role of host pigments in photoprotection
4.1 主体颜料在光防护中的作用

In shallow waters, corals can experience great variations in temperature and solar irradiance (e.g. Jimenez et al., 2012; Wangpraseurt et al., 2014b). Excessive heat stress and high light exposure induce an inhibition of the photosystem II repair mechanism and lower the photoinhibition threshold of the symbiont (Takahashi et al., 2009), which results in increased damage of photosystem II (Aro et al., 1993). Also, excessive light and heat can lead to increasing oxidative stress and production of harmful reactive oxygen species (ROS) in both host and symbiont cells (Rehman et al., 2016). Such stress can play a role in the breakdown of the coral symbiosis known as coral bleaching, where zooxanthellae are either broken down or expelled leaving the translucent coral animal tissue on top of the whitish coral skeleton (Brown, 1997). To cope with excessive temperature and light and avoid the breakdown of the symbiosis, several photoprotection mechanisms are employed either by the coral host or by the symbiont. Photoprotection in corals is in part ensured by the symbiont, using accessory pigments from the xanthophyll cycle (Ambarsari et al., 1997), alternative electron pathways (Reynolds et al., 2008), or by downregulating the activity of the photosystem II reaction centers (Gorbunov et al., 2001), and therefore decreasing the photosynthetic activity. The host also employs various mechanisms to protect their symbionts from excessive light and heat stress. One example is the self-shading morphology commonly found in shallow water corals (Kaniewska et al., 2014). This is typical of branched colonies, where the complex geometry creates more shade among the branches as the colony develops, reducing the total percentage of light absorbed per surface area compared to a spherical or plate shaped coral (Stambler and Dubinsky, 2005).
在浅水区,珊瑚会经历温度和太阳辐照度的巨大变化(例如 Jimenez 等人,2012 年;Wangpraseurt 等人,2014b)。过度的热应激和强光照射会抑制光系统II的修复机制,降低共生体的光抑制阈值(Takahashi et al., 2009),从而导致光系统II的损伤增加(Aro et al., 1993)。此外,过多的光和热会导致宿主细胞和共生细胞氧化应激增加并产生有害的活性氧(ROS)(Rehman et al., 2016)。这种压力可能会导致珊瑚共生的破坏,即珊瑚白化,虫黄藻要么被分解,要么被驱逐,留下半透明的珊瑚动物组织在白色的珊瑚骨架上(Brown,1997)。为了应对过高的温度和光照并避免共生关系的崩溃,珊瑚宿主或共生体采用了几种光保护机制。珊瑚的光保护部分是通过共生体、使用叶黄素循环中的辅助色素(Ambarsari 等人,1997)、替代电子途径(Reynolds 等人,2008)或通过下调光系统 II 反应中心的活性来确保的。 (Gorbunov et al., 2001),从而降低光合作用活性。宿主还采用各种机制来保护其共生体免受过度的光和热应激。一个例子是浅水珊瑚中常见的自遮光形态(Kaniewska et al., 2014)。 这是典型的分枝珊瑚群,随着群落的发展,复杂的几何形状在分枝之间产生了更多的阴影,与球形或板形珊瑚相比,减少了每个表面积吸收的光的总百分比(Stambler 和 Dubinsky,2005)。
Host pigments have been shown to exert a photoprotective action on the symbiont, and this is thought to be one of the primary roles for host pigments distributed above the symbiont layer in shallow water corals (Salih et al., 2000); particularly CPs, (Smith et al., 2013) but also CFPs (Quick et al., 2018), GFPs (Lyndby et al., 2016) and RFPs (Gittins et al., 2014). One proposed mechanism for photoprotection is absorption (or "screening") of excess light by host pigments before it reaches the symbiont layer (Salih et al., 2000; Smith et al., 2013). This is of high relevance for CPs found in thintissued corals, where in the absence of host pigments the symbionts experience a light-enhancing environment in hospite, meaning light inside the tissue is higher than outside thanks to the scattering properties of tissue and skeleton (Enríquez et al., 2005; Bollati et al., 2022; Wangpraseurt et al., 2017a). The presence of CPs can change this environment to become more light attenuating within the pigment-specific absorption spectrum (Bollati et al., 2022; Galindo-Martínez et al., 2022), potentially resulting in a reduction in chlorophyll excitation as estimated from in vitro studies (Smith et al., 2013). Besides absorption, coral host pigments can also dissipate excess light energy via elastic scattering (Lyndby et al., 2016; Wangpraseurt et al., 2017b), and FRET between different host pigments might also serve as a photoprotective mechanism via energy conversion (Gilmore et al., 2003; Salih et al., 2004). In shallow water corals such as Acropora spp., FRET was indirectly observed between blue and green FPs (Gilmore et al., 2003; Cox et al., 2007), and groups of pigments with spectral characteristics that are suitable for FRET coupling have been observed within the tightly packed arrangement of FP granules (Salih et al., 2004). FRET between CFPs and GFPs could facilitate a greater Stokes shift than in an individual chromophore, enabling conversion of blue light to yellow-green, which is less readily absorbed by symbiont photosynthetic pigments (Gilmore et al., 2003; Salih et al., 2004; Cox et al., 2007).
宿主色素已被证明对共生体具有光保护作用,这被认为是分布在浅水珊瑚共生体层上方的宿主色素的主要作用之一(Salih et al., 2000);特别是 CP(Smith 等人,2013),还有 CFP(Quick 等人,2018)、GFP(Lyndby 等人,2016)和 RFP(Gittins 等人,2014)。一种提出的光保护机制是宿主色素在到达共生层之前吸收(或“屏蔽”)多余的光(Salih 等人,2000;Smith 等人,2013)。这与在薄组织珊瑚中发现的 CP 高度相关,在缺乏宿主色素的情况下,共生体在寄宿处经历光增强环境,这意味着由于组织和骨骼的散射特性,组织内部的光比外部更高(Enríquez等人,2005;Bollat​​i 等人,2022;Wangpraseurt 等人,2017a)。 CP 的存在可以改变这种环境,使颜料特定吸收光谱内的光衰减更加严重(Bollat​​i 等人,2022 年;Galindo-Martínez 等人,2022 年),可能会导致 减少根据体外研究估计的叶绿素激发(Smith 等,2013)。除了吸收之外,珊瑚宿主色素还可以通过弹性散射消散多余的光能(Lyndby 等人,2016;Wangpraseurt 等人,2017b),并且不同宿主色素之间的 FRET 也可能通过能量转换作为光保护机制(Gilmore 等人)等人,2003 年;萨利赫等人,2004 年)。在浅水珊瑚如鹿角珊瑚中,在蓝色和绿色 FP 之间间接观察到 FRET(Gilmore 等人,2003 年;Cox 等人,2003 年)。,2007),并且在 FP 颗粒的紧密排列中观察到具有适合 FRET 耦合的光谱特性的颜料组(Salih 等,2004)。 CFP 和 GFP 之间的 FRET 可以促进比单个生色团更大的斯托克斯位移,从而能够将蓝光转换为黄绿色光,而黄绿色光不易被共生光合色素吸收(Gilmore 等人,2003 年;Salih 等人,2004 年)考克斯等人,2007)。
In high light environments, conspecific morphs with high host pigment content show i) higher growth rates (Quick et al., 2018), ii) lower photodamage under light stress (Salih et al., 2000; Smith et al., 2013; Gittins et al., 2014), and iii) lower susceptibility to lightinduced bleaching (Quick et al., 2018), as compared to less pigmented morphs. Some studies have suggested a positive relationship between pigmentation and resistance to thermal bleaching (Salih et al., 2000; Paley and Bay, 2012; Satoh et al., 2021), while other studies and some anecdotal evidence have reported the opposite relationship (Dove, 2004). Coral FPs can facilitate heat dissipation when they are highly concentrated as granules in the coral's ectoderm (Lyndby et al., 2016). Such aggregation of FP can be made more dramatic by coral tissue contraction (Wangpraseurt et al., 2017b) leading to intense scattering and light enhancement in the outermost tissue layer and strong vertical light attenuation, which decreases light exposure of the zooxanthellae and leads to less radiative heat dissipation in the symbiont layer (Lyndby et al., 2016). For the particular case of CPs, the effect of pigment concentration on the coral heat budget has not yet been explored in detail. However, it is likely to be very different from that of FPs due to the high extinction coefficient and very low (or zero) fluorescence quantum yield of CPs (Alieva et al., 2008), which results in the majority of excitation energy being dissipated as heat.
在高光环境中,具有高宿主色素含量的同种形态表现出 i) 更高的生长速率 (Quick et al., 2018),ii) 光胁迫下较低的光损伤 (Salih et al., 2000; Smith et al., 2013; Gittins)等人,2014),以及 iii)与色素较少的变体相比,对光致漂白的敏感性较低(Quick 等人,2018)。一些研究表明色素沉着与耐热漂白性之间存在正相关关系(Salih 等人,2000 年;Paley 和 Bay,2012 年;Satoh 等人,2021 年),而其他研究和一些轶事证据则报告了相反的关系(Dove) ,2004)。当珊瑚 FP 在珊瑚外胚层中高度浓缩为颗粒时,可以促进散热(Lyndby 等,2016)。珊瑚组织收缩可以使 FP 的这种聚集更加剧烈(Wangpraseurt 等人,2017b),导致最外层组织层的强烈散射和光增强以及强烈的垂直光衰减,从而减少虫黄藻的光暴露并导致更少共生层的辐射散热(Lyndby et al., 2016)。对于 CP 的特殊情况,色素浓度对珊瑚热收支的影响尚未详细探讨。然而,由于 CP 的高消光系数和非常低(或零)的荧光量子产率,它可能与 FP 有很大不同(Alieva et al., 2008),这导致大部分激发能量被耗散作为热量。
Photoprotection by host pigments has also been suggested to facilitate the (re)colonization of coral tissue by symbionts, both
宿主色素的光保护也被建议促进共生体对珊瑚组织的(重新)定殖,两者

during colony expansion and after bleaching events. Bleached corals can accumulate high concentrations of host pigments as a result of an optical feedback loop caused by the loss of symbionts increasing exposure to blue wavelengths that lead to upregulation of host pigmentation, in a process named "colorful bleaching" (Bollati et al., 2020). In healthy corals, blue light inducing host pigment expression is rapidly attenuated in the coral tissue as it is absorbed by symbiont pigments. Therefore, the production of light-induced host pigments is low in a healthy coral with symbionts. However, upon bleaching, light absorption by symbionts decreases greatly leading to enhancement of blue light (Lyndby et al., 2016; Wangpraseurt et al., 2017a) and upregulation of host pigments. The highly concentrated host pigment layer creates a light-attenuating environment, which has been proposed to facilitate the recovery of the symbiont population (Bollati et al., 2020, 2022). A similar feedback mechanism has been proposed to occur in low-symbiont areas of healthy colonies such as axial polyps and plate coral margins (D'Angelo et al., 2012; Bollati et al., 2020).
在菌落扩张期间和白化事件之后。白化的珊瑚可以积累高浓度的寄主色素,这是由于共生体的丧失引起的光学反馈回路增加了对蓝色波长的暴露,从而导致寄主色素沉着的上调,这一过程称为“彩色漂白”(Bollat​​i 等人, 2020)。在健康的珊瑚中,蓝光诱导宿主色素表达在珊瑚组织中迅速减弱,因为它被共生色素吸收。因此,在具有共生体的健康珊瑚中,光诱导的宿主色素的产生量较低。然而,漂白后,共生体的光吸收大大减少,导致蓝光增强(Lyndby 等人,2016;Wangpraseurt 等人,2017a)和宿主色素上调。高度浓缩的宿主色素层创造了一个光衰减环境,这被认为有助于共生体种群的恢复(Bollat​​i et al., 2020, 2022)。类似的反馈机制已被提议出现在健康群体的低共生区域,例如轴状息肉和板珊瑚边缘(D'Angelo 等人,2012 年;Bollat​​i 等人,2020 年)。

4.2 Role in photosynthesis enhancement under low light conditions
4.2 弱光条件下增强光合作用的作用

While photoprotection is now a well-demonstrated role of coral host pigments in shallow water, a different type of potential involvement in photobiology has been proposed for host pigments found in corals that live in low light conditions, such as mesophotic environments. Mesophotic reefs are located in deeper waters ( ), where corals grow under low and strongly blue-shifted solar irradiance (Kahng et al., 2019). Such habitats are also characterized by low mechanical energy, more stable and lower water temperatures and a higher abundance of nutrients (Lesser et al., 2018; Kahng et al. 2019). It has been proposed that mesophotic habitats could be a refuge for corals under the ongoing climate crisis that impacts shallow water reefs with increasing frequency of mass coral bleaching (Bongaerts et al., 2017; Lesser et al., 2018). This "deep reef refuge" hypothesis stipulates that, since corals experience less intense environmental variations (temperature, wave activity, irradiance) in deeper waters, mesophotic reef habitats could become the preferred habitat of species able to adapt and/or acclimate to the mesophotic environment e.g. in terms of low irradiance, a narrow spectral light regime, and lower temperatures (Bongaerts and Smith, 2019). An important prerequisite for such acclimation involves optimization of light harvesting and coral photosynthesis in these blue-green light dominated shaded environments. Only of the surface solar irradiance remains at 65-150 m, depending on the angular position of the sun, and the prevailing light is strongly shifted towards blue wavelengths (Lesser et al., 2018; Kahng et al., 2019). To cope with such reduced light availability and quality, mesophotic corals show lower energy requirements (e.g. lower respiration), an increased dependence on heterotrophic feeding, a change in colony morphology towards more "plate-like" flattened shapes, and an increased spacing between branches that reduces self-shading and might increase light harvesting (Lesser et al., 2018; Kahng et al., 2019).
虽然光保护作用现已被充分证明是浅水中珊瑚宿主色素的作用,但对于生活在弱光条件(例如中光环境)的珊瑚中发现的宿主色素,人们提出了光生物学中不同类型的潜在参与。中光珊瑚礁位于较深的水域 ( ),珊瑚在低且强烈蓝移的太阳辐照度下生长(Kahng et al., 2019)。这种栖息地的特点还包括机械能低、水温更稳定和更低以及营养物质更丰富(Lesser等人,2018;Kahng等人,2019)。有人提出,在持续的气候危机下,随着大规模珊瑚白化频率的增加,中光生境可以成为珊瑚的避难所,该危机影响着浅水珊瑚礁(Bongaerts 等,2017;Lesser 等,2018)。这种“深部珊瑚礁避难所”假说规定,由于珊瑚在较深的水域中经历的环境变化(温度、波浪活动、辐照度)不太强烈,因此中光珊瑚礁栖息地可能成为能够适应和/或适应中光环境的物种的首选栖息地例如低辐照度、窄光谱光范围和较低温度(Bongaerts 和 Smith,2019)。这种适应的一个重要先决条件是在这些蓝绿光主导的阴影环境中优化光捕获和珊瑚光合作用。只有 的表面太阳辐照度保持在 65-150 m,具体取决于太阳的角度位置,并且主要光线强烈转向蓝色波长(Lesser 等人,2018 年;Kahng 等人) .,2019)。为了应对这种减少的光可用性和质量,中光珊瑚表现出较低的能量需求(例如 呼吸作用降低),对异养摄食的依赖性增加,菌落形态向更“板状”扁平形状变化,以及分支之间的间距增加,从而减少了自遮阳并可能增加光捕获(Lesser等人,2018; Kahng 等人,2019)。
Optimization of photosynthesis in these light-limited environments has long been proposed as one of the functions of coral host pigments (Schlichter et al., 1986; Salih et al., 2000; Enríquez et al., 2005; Dove et al., 2008). Host pigments are widespread in deep water corals and for some depth specialist species, fluorescent color morphs can represent of the specimens in mesophotic environments (Roth et al., 2015). However, the distribution patterns of color morphs with depth can be very variable. Generally, CFP-containing morphs tend to decrease towards mesophotic depths (Eyal et al., 2015; Roth et al., 2015), while the number of orange-red fluorescent corals increases (Eyal et al., 2015; Smith et al., 2017). However, such surveys have so far only been carried out for a limited number of species and reef locations (Salih et al., 2004; Eyal et al., 2015; Roth et al., 2015; Smith et al., 2017).
长期以来,这些光有限环境中光合作用的优化一直被认为是珊瑚宿主色素的功能之一(Schlichter 等人,1986;Salih 等人,2000;Enríquez 等人,2005;Dove 等人,2008) )。宿主色素广泛存在于深水珊瑚中,对于某些深度专科物种,荧光颜色变形可以代表中光环境中的样本的 (Roth 等人,2015)。然而,颜色随深度变化的分布模式可能变化很大。一般来说,含有 CFP 的珊瑚向中光深度趋于减少(Eyal 等,2015;Roth 等,2015),而橙红色荧光珊瑚的数量则增加(Eyal 等,2015;Smith 等,2015)。 ,2017)。然而,迄今为止,此类调查仅针对有限数量的物种和珊瑚礁位置进行(Salih 等人,2004 年;Eyal 等人,2015 年;Roth 等人,2015 年;Smith 等人,2017 年)。
Despite the abundance of fluorescent morphs at depth, direct evidence for a role of host pigments in enhancing photosynthesis in mesophotic corals is still lacking. For some mesophotic species, measurements of oxygen production and electron transport rates at the colony level did not show a difference in net photosynthesis between different fluorescent morphs (Ben-Zvi et al., 2019, 2021). However, it was experimentally shown that corals expressing pcRFPs had a greater survival rate in aquarium settings after extended (2 years) low blue light treatment as compared to their non-fluorescent counterparts, which showed mortality at the end of the experiment (Smith et al., 2017). The presence of pcRFPs in corals enables transformation of blue-green wavelengths, abundant in mesophotic environments, to orange-red light, which penetrates deeper in corals tissue, but is otherwise limited at mesophotic depth (Eyal et al., 2015; Lichtenberg et al., 2016; Smith et al., 2017; Bollati et al., 2022). Such transformation is possible and highly efficient due to FRET between green and orange subunits of partially converted pcRFPs (Wiedenmann et al., 2004; Bollati et al., 2017). An ambient light spectrum with reduced (but not zero) UV irradiance, as encountered on mesophotic reefs (Eyal et al., 2015; Kahng et al., 2019), is ideally suited to maintaining the pcRFP pool in a partially converted state, thus maximizing this long range wavelength conversion mechanism (Bollati et al., 2017). A similar partially converted state with high intratetrameric FRET can be found in non-photoconvertible coral RFPs (i.e. DsRed type) due to incomplete maturation of the red chromophore under physiological conditions (Matz et al., 1999; Baird et al., 2000), suggesting that this mechanism may constitute an integral part of the function of RFPs in corals and other Anthozoa (Bollati et al., 2017).
尽管深层荧光形态丰富,但仍然缺乏宿主色素在增强中光珊瑚光合作用方面作用的直接证据。对于一些中光物种,在菌落水平上测量氧气产量和电子传输速率并没有显示出不同荧光形态之间的净光合作用存在差异(Ben-Zvi et al., 2019, 2021)。然而,实验表明,与非荧光珊瑚相比,表达 pcRFP 的珊瑚在长期(2 年)低蓝光处理后在水族箱环境中具有更高的存活率,最终显示 死亡率实验的结果(Smith et al., 2017)。珊瑚中 pcRFP 的存在使得中光环境中丰富的蓝绿色波长能够转变为橙红色光,橙红色光可以穿透珊瑚组织更深处,但在中光深度上受到限制(Eyal 等人,2015 年;Lichtenberg 等人) .,2016;Smith 等,2017;Bollat​​i 等,2022)。由于部分转化的 pcRFP 的绿色和橙色亚基之间的 FRET,这种转化是可能且高效的(Wiedenmann 等人,2004 年;Bollat​​i 等人,2017 年)。中光珊瑚礁上遇到的紫外线辐照度降低(但不为零)的环境光谱(Eyal 等人,2015 年;Kahng 等人,2019 年)非常适合将 pcRFP 池维持在部分转换状态,因此最大化这种长距离波长转换机制(Bollat​​i 等人,2017)。由于红色发色团在生理条件下不完全成熟,在非光转换珊瑚 RFP(即 DsRed 型)中可以发现具有高四聚体 FRET 的类似部分转换状态(Matz 等人,1999 年;Baird 等人,1999 年)。,2000),表明这种机制可能构成珊瑚和其他珊瑚虫中 RFP 功能的组成部分(Bollat​​i 等,2017)。
It may appear counterintuitive that the transformation of actinic blue light into orange light could facilitate coral photosynthesis in a mesophotic environment. Blue light is quickly absorbed by the chlorophyll pigment of the symbiont (Wangpraseurt et al., 2012; Wangpraseurt et al., 2014b), while orange light is not as efficiently absorbed, and is thus able to penetrate deeper into the coral tissue, where it can be absorbed by symbionts contained in deeper tissue layers (Lichtenberg et al., 2016; Smith et al., 2017; Bollati et al., 2022). By transforming blue light into orange, the residence time of photons in the tissue is increased, increasing the chances for the symbionts to capture photons for photosynthesis (Wangpraseurt et al., 2014a; Bollati et al., 2017; Smith et al., 2017; Bollati et al., 2022). Such contribution
光化蓝光转化为橙光可以促进中光环境中的珊瑚光合作用,这似乎违反直觉。蓝光很快被共生体的叶绿素色素吸收(Wangpraseurt et al., 2012; Wangpraseurt et al., 2014b),而橙光则没有那么有效地吸收,因此能够更深入地渗透到珊瑚组织中,其中它可以被更深组织层中包含的共生体吸收(Lichtenberg et al., 2016; Smith et al., 2017; Bollat​​i et al., 2022)。通过将蓝光转化为橙光,光子在组织中的停留时间增加,从而增加了共生体捕获光子进行光合作用的机会(Wangpraseurt et al., 2014a;Bollat​​i et al., 2017;Smith et al., 2017)博拉蒂等人,2022)。这样的贡献

of pcRFPs to the internal light field of corals may be negligible under broad-spectrum, high irradiance conditions, but may become an asset under the ambient, narrow spectral light conditions found in mesophotic environments, allowing to illuminate microenvironments in the coral tissue that, without this contribution, would remain shaded (Bollati et al., 2017; Smith et al., 2017; Bollati et al., 2022). However, a direct stimulation of symbiont photosynthesis via this mechanism remains to be demonstrated, and any potential benefit remains to be quantified in terms of the overall energy budget of the holobiont.
在广谱、高辐照度条件下,pcRFP 对珊瑚内部光场的影响可能可以忽略不计,但在中光环境中的周围、窄光谱光条件下可能会成为一种资产,从而可以照亮珊瑚组织中的微环境,而无需这一贡献将保持阴影状态(Bollat​​i 等人,2017 年;Smith 等人,2017 年;Bollat​​i 等人,2022 年)。然而,通过这种机制对共生体光合作用的直接刺激仍有待证明,并且任何潜在的好处仍有待根据全生物体的总体能量预算来量化。
It has been shown that coral morphs harboring GFPs can better attract prey compared to non-fluorescent or orange fluorescent morphs (Ben-Zvi et al., 2022). This mechanism could thus have an important impact on the energy budgets of mesophotic corals that increasingly rely on predation and heterotrophic feeding (Kahng et al., 2019). While this and other non-photobiological roles of host pigments fall outside the scope of this review, we note that the two are not mutually exclusive and it is plausible that coral host pigments can fulfil multiple functions at the same time.
研究表明,与无荧光或橙色荧光的珊瑚形态相比,携带 GFP 的珊瑚形态可以更好地吸引猎物(Ben-Zvi 等人,2022)。因此,这种机制可能对日益依赖捕食和异养摄食的中光珊瑚的能量预算产生重要影响(Kahng et al., 2019)。虽然宿主色素的这种作用和其他非光生物学作用不属于本综述的范围,但我们注意到两者并不相互排斥,并且珊瑚宿主色素可以同时实现多种功能似乎是合理的。

5 Challenges and open questions
5 挑战和悬而未决的问题

In this review, we have highlighted how various properties of GFP-like pigments may be linked to a diversity of functions. Beyond their well-characterized spectral properties, host pigment regulation mechanisms, microscale spatial distribution, and optical context vary dramatically across habitats, between coral species and even within a single species (Figure 4). Such astounding diversity indicates that pigments with different combinations of these properties may be involved in different physiological functions. Therefore, all these properties should be taken into account when attempting to classify host pigments, and to attribute functions to specific pigment groups. Specifically, we recommend that pigments be characterized in terms of their emission properties (e.g. GFP vs RFP vs CP), but also by establishing whether they are light-induced or constitutive, whether they are distributed above or below the symbiont, diffusely or as granules, and whether they are placed in light-enhancing or light-attenuating tissue (Figure 4). In this context, it would be timely to build on previous surveys of host pigments (Salih et al., 2004; Alieva et al., 2008; Gruber et al., 2008; Eyal et al., 2015) by including all these properties in a comprehensive survey. By establishing how these properties are distributed across taxa and environments, such survey would yield important insights into the diverse ecological and physiological functions of this pigment group.
在这篇综述中,我们强调了类 GFP 色素的各种特性如何与多种功能联系起来。除了其明确的光谱特性之外,宿主色素调节机制、微尺度空间分布和光学环境在不同栖息地、珊瑚物种之间甚至在单个物种内也存在显着差异(图 4)。如此惊人的多样性表明,具有这些特性的不同组合的颜料可能涉及不同的生理功能。因此,在尝试对主体颜料进行分类并将功能归因于特定颜料组时,应考虑所有这些特性。具体来说,我们建议根据其发射特性(例如 GFP、RFP 与 CP)来表征颜料,同时确定它们是光诱导的还是本构的,无论它们是分布在共生体上方还是下方、分散分布还是颗粒状,以及它们是否放置在光增强或光衰减组织中(图 4)。在这种情况下,应及时以之前对主体颜料的调查为基础(Salih 等人,2004 年;Alieva 等人,2008 年;Gruber 等人,2008 年;Eyal 等人,2015 年),纳入所有这些特性在综合调查中。通过确定这些特性在分类单元和环境中的分布情况,此类调查将为了解该色素组的不同生态和生理功能提供重要的见解。
Many aspects of host pigment regulation have still not been explored in detail. While we have an understanding of light-driven pigment regulation (D'Angelo et al., 2008), the heat-driven downregulation of host pigment genes (Desalvo et al., 2008; SmithKeune and Dove, 2008; Mayfield et al., 2014) has not been explored extensively. The temperature thresholds at which such downregulation occurs are important in determining whether corals can increase host pigment production in response to bleaching, thus potentially affecting their recovery and survival (Bollati et al., 2020). These thresholds should be determined experimentally, perhaps using a standardized rapid thermal stress assay such as CBASS (Voolstra et al., 2020). Such assays could be used to test how heat stress interacts with other factors (light, nutrients, oxygen, feeding), which might impact host pigment regulation.
宿主色素调节的许多方面尚未得到详细探索。虽然我们了解光驱动的色素调节(D'Angelo 等,2008),但热驱动的宿主色素基因下调(Desalvo 等,2008;SmithKeune 和 Dove,2008;Mayfield 等, 2014)尚未得到广泛探索。发生这种下调的温度阈值对于确定珊瑚是否可以增加宿主色素的产生以应对白化非常重要,从而可能影响它们的恢复和生存(Bollat​​i 等人,2020)。这些阈值应通过实验确定,可能使用标准化快速热应力测定,例如 CBASS(Voolstra 等人,2020)。此类测定可用于测试热应激如何与其他因素(光、营养物、氧气、喂养)相互作用,这可能会影响宿主色素调节。
A key element needed to progress our understanding of the role of host pigments in photophysiology is direct measurements of symbiont photosynthesis at high spatial resolution in relation to the distribution of coral host pigments. These measurements are technically challenging, as the symbionts are contained under layers of tissue and operate under distinct microenvironmental conditions. This complicates the use of commonly applied methods for studying photosynthetic performance in coral ecophysiology such as variable chlorophyll fluorescence (see e.g. (Wangpraseurt et al., 2019). A more promising approach would entail local quantification of the photosynthesis of endosymbionts in the coral endoderm under controlled spectral regimes using microsensors for , light and variable chlorophyll fluorescence (e.g. Lichtenberg et al., 2016). Microsensor measurements, sometimes combined with nanoSIMS analyses, have so far been used to show i) that the optical properties of coral tissue allow the creation of micro-light environments for symbiont photosynthesis in hospite (Lichtenberg et al., 2016; Wangpraseurt et al., 2016b), and ii) that pcRFPs can provide a significant contribution to the photosynthetically active light spectrum available for the photosymbionts in mesophotic corals (Bollati et al., 2022). However, a direct measurement of how symbiont photosynthesis is affected by the presence and organization of coral host pigments around the zooaxanthellae is still lacking. So it remains to be determined whether and how fluorescent host pigments can stimulate coral photosynthesis, and what specific roles their spectral and scattering properties as well as their distribution inside the tissue might play in this process.
加深我们对宿主色素在光生理学中的作用的理解所需的一个关键要素是在高空间分辨率下直接测量与珊瑚宿主色素分布相关的共生体光合作用。这些测量在技术上具有挑战性,因为共生体包含在组织层下并在不同的微环境条件下运行。这使得研究珊瑚生态生理学中的光合作用性能的常用方法(例如可变叶绿素荧光)的使用变得复杂(参见例如(Wangpraseurt等人,2019)。一种更有前途的方法需要对珊瑚内胚层中内共生体的光合作用进行局部量化。使用微传感器控制光和可变叶绿素荧光的光谱范围(例如 Lichtenberg 等人,2016 年),微传感器测量有时与 nanoSIMS 分析相结合,迄今为止已用于表明 i) 光学。珊瑚组织的特性允许为收容所中的共生体光合作用创建微光环境(Lichtenberg 等人,2016 年;Wangpraseurt 等人,2016b),以及 ii)pcRFP 可以为可用的光合活性光谱做出重大贡献中光珊瑚中的光共生体(Bollat​​i 等人,2022)。然而,仍然缺乏对共生体光合作用如何受到虫黄藻周围珊瑚宿主色素的存在和组织影响的直接测量。因此,荧光主体色素是否以及如何刺激珊瑚光合作用,以及它们的光谱和散射特性以及它们在组织内的分布在这个过程中可能发挥什么具体作用,还有待确定。
Furthermore, energy transfer between different FPs in vivo remains a process that has been little explored. While in vitro studies have clearly shown that highly efficient intra-tetrameric FRET occurs in RFPs (Baird et al., 2000; Wiedenmann et al., 2004), any non-radiative energy transfer between separate FP molecules will be highly dependent on the intermolecular distance. In this context, the distribution and arrangement of FPs in the tissue becomes extremely important, as do any mechanisms that might dynamically increase or decrease pigment concentration and therefore determine whether two molecules can be close enough for non-radiative wavelength conversion. Confocal microscopy combined with lifetime imaging can help determine if any particular sets of pigments and pigment arrangements are positioned in a way that is conducive to energy transfer (Gilmore et al., 2003; Salih et al., 2003; Salih et al., 2004; Cox et al., 2007). Additionally, in vivo measurements of fluorescence lifetime would help establish the magnitude of energy transfer under physiological conditions. Eventually, such studies should lead to the quantification of the effects of energy transfer mechanisms on symbiont photosynthesis.
此外,体内不同 FP 之间的能量转移仍然是一个很少被探索的过程。虽然体外研究清楚地表明 RFP 中发生高效的四聚体内 FRET(Baird 等人,2000 年;Wiedenmann 等人,2004 年),但单独 FP 分子之间的任何非辐射能量转移将高度依赖于分子间的能量转移。距离。在这种情况下,组织中 FP 的分布和排列变得极其重要,任何可能动态增加或减少色素浓度并因此决定两个分子是否足够接近以进行非辐射波长转换的机制也是如此。共焦显微镜与寿命成像相结合可以帮助确定任何特定的颜料组和颜料排列是否以有利于能量转移的方式定位(Gilmore 等人,2003 年;Salih 等人,2003 年;Salih 等人,2004 年)考克斯等人,2007)。此外,荧光寿命的体内测量将有助于确定生理条件下能量转移的幅度。最终,此类研究应该能够量化能量转移机制对共生体光合作用的影响。
Besides more detailed in hospite measurements of microenvironmental and physiological variables of the host and symbiont, novel in vitro and in silico approaches will also be useful tools to help unravel the role of host pigments for coral
除了对宿主和共生体的微环境和生理变量进行更详细的测量外,新颖的体外和计算机方法也将成为帮助揭示珊瑚宿主色素的作用的有用工具。

FIGURE 4 图4

Key features of host pigments involved in coral photobiology. Based on their spectral properties, host pigments can be broadly categorised as CFPs, GFPs, RFPs and non-fluorescent CPs. Based on their regulation properties, host pigments can be categorised as light-induced (such as the CFPs and GFPs found in some Montipora sp.) or constitutive (such as the GFP found in some Euphyllia sp.), depending on whether transcription of their respective genes is induced by blue light or not. Post-translational photoconversion can also alter the spectral properties of host pigments by changing their emission colour from green to red after exposure to UV light (as observed in the pcRFP from Echinophyllia sp.). Host pigments can be distributed ectodermally or gastrodermally, above or below the symbionts, and they can be arranged diffusely in the cytoplasm or packed into dense granules. Additionally, contraction and expansion can dynamically change the optical properties of the tissue and the arrangement of host pigments. Combined together, these properties ultimately determine the quality and quantity of light that reaches the symbiont cell and is thus available for photosynthesis.
珊瑚光生物学涉及的宿主色素的主要特征。根据其光谱特性,主体颜料可大致分为 CFP、GFP、RFP 和非荧光 CP。根据其调节特性,宿主色素可分为光诱导型(例如在一些 Montipora sp. 中发现的 CFP 和 GFP)或组成型(例如在一些 Euphyllia sp. 中发现的 GFP),具体取决于它们的转录是否各个基因是否受蓝光诱导。翻译后光转换还可以通过在暴露于紫外线后将其发射颜色从绿色改变为红色来改变主体颜料的光谱特性(如在 Echinophyllia sp. 的 pcRFP 中观察到的)。宿主色素可以分布在外胚层或胃胚层、共生体的上方或下方,并且它们可以弥散地排列在细胞质中或堆积成致密的颗粒。此外,收缩和膨胀可以动态改变组织的光学特性和主体色素的排列。这些特性结合在一起,最终决定了到达共生细胞并因此可用于光合作用的光的质量和数量。
photobiology. The use of 3D bioprinting approaches has enabled the construction of bionic corals composed of biopolymers and microalgae mimicking key structural and optical traits of real corals (Wangpraseurt et al., 2020, 2022). Inclusion of host pigments in bionic corals in combination with novel means to read out metabolic activity in 3D bioprinted constructs (Trampe et al., 2018) would enable experimental exploration of how the spatial organization of these pigments relative to the microalgae and the skeleton affects light availability and photosynthesis.
光生物学。 3D 生物打印方法的使用使得能够构建由生物聚合物和微藻组成的仿生珊瑚,模仿真实珊瑚的关键结构和光学特征(Wangpraseurt 等人,2020,2022)。将宿主色素纳入仿生珊瑚中,结合读取 3D 生物打印结构中代谢活动的新方法(Trampe 等人,2018),将能够通过实验探索这些色素相对于微藻和骨骼的空间组织如何影响光可用性和光合作用。
Finally, multiphysics modeling of radiative, heat and mass transfer has recently enabled the simulation of light, temperature and oxygen distributions in corals of known tissue composition and 3D morphology (Taylor Parkins et al., 2021; Murthy et al., 2023). Including the elastic scattering properties of FPs, such numerical modeling was able to replicate experimental measurements of light and temperature enhancement in coral tissue areas with different FP content (Taylor Parkins et al., 2021), but so far the fluorescence properties of FPs have not been included in such simulations. Such modelling approach would enable predictive simulation of how different FP configurations affect the coral microenvironment and function in the context of the coral holobiont. This approach appears particularly promising to understand some of the tradeoffs of host pigment production, which are likely to be a major selection driver for color polymorphism (Gittins et al., 2014; Quick et al., 2018). For example, the trade-off between light modulation (Bollati et al., 2022; Galindo-Martínez et al., 2022) and heat budgets (Lyndby et al., 2019) is likely critical in determining recovery potential and eventually survival of corals during bleaching events (Bollati et al., 2020).
最后,辐射、热量和质量传递的多物理场建模最近能够模拟已知组织成分和 3D 形态的珊瑚中的光、温度和氧气分布(Taylor Parkins 等人,2021 年;Murthy 等人,2023 年)。包括 FP 的弹性散射特性,这种数值模型能够复制具有不同 FP 含量的珊瑚组织区域中光和温度增强的实验测量结果(Taylor Parkins 等人,2021),但迄今为止 FP 的荧光特性尚未得到证实。被包含在此类模拟中。这种建模方法将能够预测模拟不同的 FP 配置如何影响珊瑚微环境和珊瑚全生物背景下的功能。这种方法似乎特别有希望了解主体颜料生产的一些权衡,这可能是颜色多态性的主要选择驱动因素(Gittins 等人,2014 年;Quick 等人,2018 年)。例如,光调制(Bollat​​i 等人,2022 年;Galindo-Martínez 等人,2022 年)和热预算(Lyndby 等人,2019 年)之间的权衡对于确定珊瑚的恢复潜力和最终生存可能至关重要在白化事件期间(Bollat​​i 等人,2020)。
In conclusion, a multidisciplinary approach is needed to fully appreciate the diversity of host pigment functions in corals. While many knowledge gaps remain, microscale methods and other emerging technologies offer a great potential for advancing our understanding of the role of coral GFP-like pigments in coral ecophysiology. We hope that by adding to our current knowledge of how corals can acclimate and adapt to diverse habitats,
总之,需要采用多学科方法来充分了解珊瑚宿主色素功能的多样性。尽管仍然存在许多知识差距,但微尺度方法和其他新兴技术为增进我们对珊瑚 GFP 类色素在珊瑚生态生理学中的作用的理解提供了巨大的潜力。我们希望通过增加我们目前关于珊瑚如何适应和适应不同栖息地的知识,

these advances will help guide future conservation and reef management efforts.
这些进步将有助于指导未来的保护和珊瑚礁管理工作。

Author contributions 作者贡献

, and contributed to conception and design of the review. GF wrote the first draft of the manuscript. EB, GF, and MK wrote sections of the manuscript. GF designed the figures. All authors contributed to the article and approved the submitted version.
为评论的构思和设计做出了贡献。 GF 撰写了手稿的初稿。 EB、GF 和 MK 撰写了手稿的部分内容。 GF 设计了这些人物。所有作者都对本文做出了贡献并批准了提交的版本。

Funding 资金

This study was supported a grant from the European Union's Horizon 2020 research and innovation programme BEEP (Marie Skłodowska-Curie grant agreement No 860125), and an investigator award from the Gordon and Betty Moore Foundation (MK; grant no. GBMF9206; https://doi.org/10.37807/GBMF9206). The material in this study reflects only the author's views and the EU is not liable for any use that may be made of the information contained therein.
这项研究得到了欧盟地平线 2020 研究和创新计划 BEEP 的资助(Marie Skłodowska-Curie 资助协议编号 860125)以及戈登和贝蒂摩尔基金会的研究员奖(MK;资助号 GBMF9206;https:/ /doi.org/10.37807/GBMF9206)。本研究中的材料仅反映作者的观点,欧盟对其中所含信息的任何使用不承担任何责任。

References 参考

Ahmed, F. H., Caputo, A. T., French, N. G., Peat, T. S., Whitfield, J., Warden, A. C., et al. (2022). Over the rainbow: structural characterization of the chromoproteins gfasPurple, amilCP, spisPink and eforRed. Acta Crystallogr. Sect. Struct. Biol. 78, 599612. doi:
Ahmed, F. H.、Caputo, A. T.、French, N. G.、Peat, T. S.、Whitfield, J.、Warden, A. C. 等。 (2022)。彩虹之上:色素蛋白 gfasPurple、amilCP、spisPink 和 eforRed 的结构表征。晶体学报。教派。结构。生物。 78, 599612.doi:
Aihara, Y., Maruyama, S., Baird, A. H., Iguchi, A., Takahashi, S., and Minagawa, J. (2019). Green fluorescence from cnidarian hosts attracts symbiotic algae. Proc. Natl. Acad. Sci. 116, 2118-2123. doi: 10.1073/pnas. 1812257116
相原 Y.、丸山 S.、贝尔德 A. H.、井口 A.、高桥 S. 和皆川 J. (2019)。刺胞动物宿主发出的绿色荧光吸引共生藻类。过程。国家。阿卡德。科学。 116、2118-2123。 doi:10.1073/pnas。 1812257116
Alieva, N. O., Konzen, K. A., Field, S. F., Meleshkevitch, E. A., Hunt, M. E., BeltranRamirez, V., et al. (2008). Diversity and evolution of coral fluorescent proteins. PloS One 3, e2680. doi: 10.1371/journal.pone. 0002680
Alieva, N. O.、Konzen, K. A.、Field, S. F.、Meleshkevitch, E. A.、Hunt, M. E.、BeltranRamirez, V. 等。 (2008)。珊瑚荧光蛋白的多样性和进化。 PloS One 3,e2680。 doi:10.1371/journal.pone。 0002680
Ambarsari, I., Brown, B. E., Barlow, R. G., Britton, G., and Cummings, D. (1997). Fluctuations in algal chlorophyll and carotenoid pigments during solar bleaching in the coral Goniastrea aspera at Phuket, Thailand. Mar. Ecol. Prog. Ser. 159, 303-307. doi: meps159303
Ambarsari, I.、Brown, B. E.、Barlow, R. G.、Britton, G. 和 Cummings, D. (1997)。泰国普吉岛珊瑚 Goniastrea aspera 日光漂白过程中藻类叶绿素和类胡萝卜素色素的波动。三月Ecol。程序。序列。 159、303-307。 doi: meps159303
Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., and Miyawaki, A. (2002). An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. 99, 12651-12656. doi: 10.1073/pnas. 202320599
Ando, R.、Hama, H.、Yamamoto-Hino, M.、Mizuno, H. 和 Miyawaki, A. (2002)。一种基于紫外线诱导荧光蛋白绿光到红光转换的光学标记。过程。国家。阿卡德。科学。 99、12651-12656。 doi:10.1073/pnas。 202320599
Aro, E. M., Virgin, I., and Andersson, B. (1993). Photoinhibition of photosystem II. inactivation, protein damage and turnover. Biochim. Biophys. Acta BBA - Bioenerg. 1143, 113-134. doi: 10.1016/0005-2728(93)90134-2
Aro, E. M.、Virgin, I. 和 Andersson, B. (1993)。光系统 II 的光抑制。失活、蛋白质损伤和周转。生物化学。生物物理学。 Acta BBA - 生物能源。 1143、113-134。号码:10.1016/0005-2728(93)90134-2
Baird, G. S., Zacharias, D. A., and Tsien, R. Y. (2000). Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl. Acad Sci. 97, 11984-11989. doi: 10.1073/pnas.97.22.11984
Baird, G. S.、Zacharias, D. A. 和 Tsien, R. Y. (2000)。 DsRed(一种来自珊瑚的红色荧光蛋白)的生物化学、诱变和寡聚化。过程。国家。阿卡德科学。 97、11984-11989。 DOI:10.1073/pnas.97.22.11984
Battad, J. M., Wilmann, P. G., Olsen, S., Byres, E., Smith, S. C., Dove, S. G., et al. (2007). A structural basis for the ph-dependent increase in fluorescence efficiency of chromoproteins. J. Mol. Biol. 368, 998-1010. doi: 10.1016/j.jmb.2007.02.007
Battad, J. M.、Wilmann, P. G.、Olsen, S.、Byres, E.、Smith, S. C.、Dove, S. G. 等人。 (2007)。色素蛋白荧光效率的 pH 依赖性增加的结构基础。 J.莫尔。生物。 368、998-1010。 doi:10.1016/j.jmb.2007.02.007
Bay, L. K., Ulstrup, K. E., Nielsen, H. B., Jarmer, H., Goffard, N., Willis, B. L., et al. (2009). Microarray analysis reveals transcriptional plasticity in the reef building coral Acropora millepora. Mol. Ecol. 18, 3062-3075. doi: 10.1111/j.1365-294X.2009.04257.x
Bay, L. K.、Ulstrup, K. E.、Nielsen, H. B.、Jarmer, H.、Goffard, N.、Willis, B. L. 等人。 (2009)。微阵列分析揭示了造礁珊瑚鹿角珊瑚的转录可塑性。摩尔。生态。 18、3062-3075。 doi:10.1111/j.1365-294X.2009.04257.x
Ben-Zvi, O., Eyal, G., and Loya, Y. (2019). Response of fluorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation. Sci. Rep. 9, 5245. doi:
Ben-Zvi, O.、Eyal, G. 和 Loya, Y. (2019)。中光珊瑚 Euphyllia paradivisa 的荧光形态对紫外线辐射的响应。科学。众议员 9, 5245.doi:
Ben-Zvi, O., Lindemann, Y., Eyal, G., and Loya, Y. (2022). Coral fluorescence: a preylure in deep habitats. Commun. Biol. 5, 1-8. doi: 10.1038/s42003-022-03460-3
Ben-Zvi, O.、Lindemann, Y.、Eyal, G. 和 Loya, Y. (2022)。珊瑚荧光:深层栖息地的前身。交流。生物。 5、1-8。 DOI:10.1038/s42003-022-03460-3
Ben-Zvi, O., Wangpraseurt, D., Bronstein, O., Eyal, G., and Loya, Y. (2021). Photosynthesis and bio-optical properties of fluorescent mesophotic corals. Front. Mar. Sci. 8. doi: 10.3389/fmars.2021.651601
Ben-Zvi, O.、Wangpraseurt, D.、Bronstein, O.、Eyal, G. 和 Loya, Y. (2021)。荧光中光珊瑚的光合作用和生物光学特性。正面。三月科学。 8.doi:10.3389/fmars.2021.651601
Bollati, E., D'Angelo, C., Alderdice, R., Pratchett, M., Ziegler, M., and Wiedenmann, J. (2020). Optical feedback loop involving dinoflagellate symbiont and scleractinian
Bollat​​i, E.、D'Angelo, C.、Alderdice, R.、Pratchett, M.、Ziegler, M. 和 Wiedenmann, J. (2020)。涉及甲藻共生体和石珊瑚的光学反馈回路

Conflict of interest 利益冲突

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
作者声明,该研究是在不存在任何可能被视为潜在利益冲突的商业或财务关系的情况下进行的。

Publisher's note 出版商备注

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
本文中表达的所有主张仅代表作者的主张,并不一定代表其附属组织或出版商、编辑和审稿人的主张。本文中可能评估的任何产品或其制造商可能提出的声明均未得到出版商的保证或认可。

Supplementary material 补充材料

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars.2023.1204843/ full#supplementary-material host drives colorful coral bleaching. Curr. Biol. 30, 2433-2445.e3. doi: 10.1016/ j.cub. 2020.04 .055
本文的补充材料可在线找到:https://www.frontiersin.org/articles/10.3389/fmars.2023.1204843/full#supplementary-material 主机驱动彩色珊瑚白化。电流。生物。 30、2433-2445.e3。 doi:10.1016/j.cub。 2020.04.055
Bollati, E., Lyndby, N. H., D’Angelo, C., Kühl, M., Wiedenmann, J., and Wangpraseurt, D. (2022). Green fluorescent protein-like pigments optimize the internal light environment in symbiotic reef building corals. eLife 11, e73521. doi: 10.7554/eLife.73521. 2021.10.05.463211
Bollat​​i, E.、Lyndby, N. H.、D’Angelo, C.、Kühl, M.、Wiedenmann, J. 和 Wangpraseurt, D. (2022)。绿色荧光蛋白类色素可优化共生造礁珊瑚的内部光环境。 eLife 11,e73521。 doi:10.7554/eLife.73521。 2021.10.05.463211
Bollati, E., Plimmer, D., D’Angelo, C., and Wiedenmann, J. (2017). FRET-mediated long-range wavelength transformation by photoconvertible fluorescent proteins as an efficient mechanism to generate orange-red light in symbiotic deep water corals. Int. J. Mol. Sci. 18, 1174. doi: 10.3390/ijms18071174
Bollat​​i, E.、Plimmer, D.、D’Angelo, C. 和 Wiedenmann, J. (2017)。 FRET介导的光转换荧光蛋白的长程波长转换是在共生深水珊瑚中产生橙红光的有效机制。国际。 J.莫尔。科学。 18, 1174.doi: 10.3390/ijms18071174
Bongaerts, P., Riginos, C., Brunner, R., Englebert, N., Smith, S. R., and HoeghGuldberg, O. (2017). Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci. Adv. 3, e1602373. doi: 10.1126/sciadv. 1602373
Bongaerts, P.、Riginos, C.、Brunner, R.、Englebert, N.、Smith, S. R. 和 HoeghGuldberg, O. (2017)。深海珊瑚礁并不是普遍的避难所:不同珊瑚物种的重新播种潜力各不相同。科学。副词。 3、e1602373。 doi:10.1126/sciadv。 1602373
Bongaerts, P., and Smith, T. B. (2019). "Beyond the 'deep reef refuge' hypothesis: a conceptual framework to characterize persistence at depth," in Mesophotic coral ecosystems coral reefs of the world. Eds. Y. Loya, K. A. Puglise and T. C. L. Bridge (Cham: Springer International Publishing), 881-895. doi: 10.1007/978-3-319-92735
Bongaerts, P. 和 Smith, T. B. (2019)。 “超越‘深海珊瑚礁避难所’假说:描述深度持久性的概念框架”,《世界中光珊瑚生态系统珊瑚礁》。编辑。 Y. Loya、K. A. Puglise 和 T. C. L. Bridge(Cham:Springer International Publishing),881-895。号码:10.1007/978-3-319-92735
Bou-Abdallah, F., Chasteen, N. D., and Lesser, M. P. (2006). Quenching of superoxide radicals by green fluorescent protein. Biochim. Biophys. Acta BBA - Gen. Subj. 1760, 1690-1695. doi: 10.1016/j.bbagen.2006.08.014
Bou-Abdallah, F.、Chasteen, N.D. 和 Lesser, M.P. (2006)。绿色荧光蛋白猝灭超氧自由基。生物化学。生物物理学。 Acta BBA - Gen.Subj。 1760、1690-1695。 doi:10.1016/j.bbagen.2006.08.014
Brejc, K., Sixma, T. K., Kitts, P. A., Kain, S. R., Tsien, R. Y., Ormö, M., et al. (1997). Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl. Acad. Sci. 94, 2306-2311. doi: 10.1073/ pnas.94.6.2306
Brejc, K.、Sixma, T. K.、Kitts, P. A.、Kain, S. R.、Tsien, R. Y.、Ormö, M. 等。 (1997)。维多利亚水母绿色荧光蛋白的双重激发和光异构化的结构基础。过程。国家。阿卡德。科学。 94、2306-2311。 doi:10.1073/pnas.94.6.2306
Brown, B. E. (1997). Coral bleaching: causes and consequences. Coral Reefs 16, S129S138. doi: s003380050249
布朗,B.E.(1997)。珊瑚白化:原因和后果。珊瑚礁 16,S129S138。 doi: s003380050249
Clegg, R. M. (1995). Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 6, 103-110. doi: 10.1016/0958-1669(95)80016-6
克莱格,R.M. (1995)。荧光共振能量转移。电流。意见。生物技术。 6、103-110。号码:10.1016/0958-1669(95)80016-6
Conlan, J. A., Humphrey, C. A., Severati, A., Parrish, C. C., and Francis, D. S. (2019). Elucidating an optimal diet for captive acropora corals. Aquaculture 513, 734420. doi: 10.1016/j.aquaculture.2019.734420
Conlan, J. A.、Humphrey, C. A.、Severati, A.、Parrish, C. C. 和 Francis, D. S. (2019)。阐明圈养鹿角珊瑚的最佳饮食。水产养殖 513, 734420.doi: 10.1016/j.aquaculture.2019.734420
Cox, G., Matz, M., and Salih, A. (2007). Fluorescence lifetime imaging of coral fluorescent proteins. Microsc. Res. Tech. 70, 243-251. doi: 10.1002/jemt. 20410
Cox, G.、Matz, M. 和 Salih, A. (2007)。珊瑚荧光蛋白的荧光寿命成像。显微镜。资源。技术。 70、243-251。 doi:10.1002/jemt。 20410
D'Angelo, C., Denzel, A., Vogt, A., Matz, M. V., Oswald, F., Salih, A., et al. (2008). Blue light regulation of host pigment in reef-building corals. Mar. Ecol. Prog. Ser. 364, 97-106. doi:
D'Angelo, C.、Denzel, A.、Vogt, A.、Matz, M.V.、Oswald, F.、Salih, A. 等人。 (2008)。蓝光对造礁珊瑚宿主色素的调节。三月。生态。程序。看。 364、97-106。 doi:
D'Angelo, C., Smith, E. G., Oswald, F., Burt, J., Tchernov, D., and Wiedenmann, J. (2012). Locally accelerated growth is part of the innate immune response and repair
D'Angelo, C.、Smith, E. G.、Oswald, F.、Burt, J.、Tchernov, D. 和 Wiedenmann, J. (2012)。局部加速生长是先天免疫反应和修复的一部分

mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs 31, 1045-1056. doi: 10.1007/s00338-012-0926-8
通过绿色荧光蛋白(GFP)类色素检测到造礁珊瑚的机制。珊瑚礁 31,1045-1056。 DOI:10.1007/s00338-012-0926-8
Desalvo, M. K., Voolstra, C. R., Sunagawa, S., Schwarz, J. A., Stillman, J. H., Coffroth, M. A., et al. (2008). Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol. Ecol. 17, 3952-3971. doi: 10.1111 j.1365-294X.2008.03879.x
Desalvo, M. K.、Voolstra, C. R.、Sunakawa, S.、Schwarz, J. A.、Stillman, J. H.、Coffroth, M. A. 等人。 (2008)。加勒比珊瑚 Montastraea faveolata 热应激和白化期间的差异基因表达。摩尔。生态。 17、3952-3971。 doi:10.1111 j.1365-294X.2008.03879.x
Dove, S. (2004). Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar. Ecol. Prog. Ser. 272, 99-116. doi: 10.3354/ meps272099
多夫,S.(2004)。具有光保护宿主色素的石珊瑚对热漂白非常敏感。三月Ecol。程序。序列。 272、99-116。 doi:10.3354/meps272099
Dove, S. G., Hoegh-Guldberg, O., and Ranganathan, S. (2001). Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19, 197-204. doi: PL00006956
Dove, S. G.、Hoegh-Guldberg, O. 和 Ranganathan, S. (2001)。造礁珊瑚的主要颜色图案是由类 GFP 蛋白家族造成的。珊瑚礁 19, 197-204。 doi: PL00006956
Dove, S. G., Lovell, C., Fine, M., Deckenback, J., Hoegh-Guldberg, O., Iglesias-Prieto, R., et al. (2008). Host pigments: potential facilitators of photosynthesis in coral symbioses. Plant Cell Environ. 31, 1523-1533. doi: 10.1111/j.1365-3040.2008.01852.x
Dove, S. G.、Lovell, C.、Fine, M.、Deckenback, J.、Hoegh-Guldberg, O.、Iglesias-Prieto, R. 等。 (2008)。宿主色素:珊瑚共生中光合作用的潜在促进剂。植物细胞环境。 31、1523-1533。 doi:10.1111/j.1365-3040.2008.01852.x
Dove, S., Ortiz, J. C., Enríquez, S., Fine, M., Fisher, P., Iglesias -Prieto, R., et al. (2006). Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol. Oceanogr. 51, 1149-1158. doi: 10.4319/ lo.2006.51.2.1149
Dove, S.、Ortiz, J. C.、Enríquez, S.、Fine, M.、Fisher, P.、Iglesias -Prieto, R. 等。 (2006)。石珊瑚Montipora monasteriata 的全共生色素对短期热应激的反应。利姆诺尔。海洋学家。 51、1149-1158。 doi: 10.4319/lo.2006.51.2.1149
Enríquez, S., Méndez, E. R., Hoegh-Guldberg, O., and -Prieto, R. I. (2017). Key functional role of the optical properties of coral skeletons in coral ecology and evolution. Proc. R. Soc B Biol. Sci. 284, 20161667. doi: 10.1098/rspb.2016.1667
Enríquez, S.、Méndez, E. R.、Hoegh-Guldberg, O. 和 -Prieto, R. I. (2017)。珊瑚骨骼的光学特性在珊瑚生态和进化中的关键功能作用。过程。 R.Soc B Biol。科学。 284, 20161667.doi: 10.1098/rspb.2016.1667
Enríquez, S., Méndez, E. R., and -Prieto, R. I. (2005). Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol. Oceanogr. 50, 10251032. doi:
Enríquez, S.、Méndez, E. R. 和 -Prieto, R. I. (2005)。珊瑚骨架上的多重散射增强了共生藻类的光吸收。利姆诺尔。海洋学家。 50, 10251032.doi:
Eyal, G., Wiedenmann, J., Grinblat, M., D'Angelo, C., Kramarsky-Winter, E. Treibitz, T., et al. (2015). Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the red Sea. PloS One 10, e0128697. doi: 10.1371 journal.pone. 0128697
Eyal, G.、Wiedenmann, J.、Grinblat, M.、D'Angelo, C.、Kramarsky-Winter, E. Treibitz, T. 等。 (2015)。红海中光珊瑚礁栖息地珊瑚荧光的光谱多样性和调节。 PloS One 10,e0128697。 doi:10.1371 期刊.pone。 0128697
Ferrier-Pagès, C., Martinez, S., Grover, R., Cybulski, J., Shemesh, E., and Tchernov, D. (2021). Tracing the trophic plasticity of the coral-dinoflagellate symbiosis using amino acid compound-specific stable isotope analysis. Microorganisms 9, 182 doi: 10.3390 /microorganisms 9010182
Ferrier-Pagès, C.、Martinez, S.、Grover, R.、Cybulski, J.、Shemesh, E. 和 Tchernov, D. (2021)。使用氨基酸化合物特异性稳定同位素分析追踪珊瑚-甲藻共生的营养可塑性。微生物 9, 182 doi: 10.3390 /微生物 9010182
Galindo-Martínez, C. T., Chaparro, A., Enríquez, S., and Iglesias-Prieto, R. (2022) Modulation of the symbionts light environment in hospite in scleractinian corals. Front Mar. Sci. 9. doi: 10.3389/fmars.2022.1029201
Galindo-Martínez, C. T.、Chaparro, A.、Enríquez, S. 和 Iglesias-Prieto, R. (2022) 石珊瑚寄宿中共生体光环境的调节。前Mar.Sci。 9.doi:10.3389/fmars.2022.1029201
Gilmore, A. M., Larkum, A. W. D., Salih, A., Itoh, S., Shibata, Y., Bena, C., et al (2003). Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals. Photochem. Photobiol. 77, 515523. doi: 10.1562/0031-8655(2003)0770515STROTE2.0.CO2
Gilmore, A. M.、Larkum, A. W. D.、Salih, A.、Itoh, S.、Shibata, Y.、Bena, C. 等人 (2003)。造礁珊瑚中荧光蛋白和虫黄藻叶绿素发射光谱的同步时间分辨率。光化学。光生物。 77, 515523.doi: 10.1562/0031-8655(2003)0770515STROTE2.0.CO2
Gittins, J. R., D'Angelo, C., Oswald, F., Edwards, R. J., and Wiedenmann, J. (2014) Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments. Mol. Ecol. 24, 453-465. doi:
Gittins, J. R.、D'Angelo, C.、Oswald, F.、Edwards, R. J. 和 Wiedenmann, J. (2014) 珊瑚礁珊瑚中荧光蛋白介导的颜色多态性:多拷贝基因扩展了对可变光环境的适应/驯化潜力。摩尔。生态。 24、453-465。 doi:
Gorbunov, M. Y., Kolber, Z. S., Lesser, M. P., and Falkowski, P. G. (2001) Photosynthesis and photoprotection in symbiotic corals. Limnol. Oceanogr. 46, 75 85. doi: lo.2001.46.1.0075
Gorbunov, M. Y.、Kolber, Z. S.、Lesser, M. P. 和 Falkowski, P. G. (2001) 共生珊瑚的光合作用和光保护。利姆诺尔。海洋学家。 46, 75 85.doi: lo.2001.46.1.0075
Goreau, T. F. (1959). The physiology of skeleton formation in corals. i. a method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull. 116, 59-75. doi:
戈罗,T.F. (1959)。珊瑚骨骼形成的生理学。我。一种测量珊瑚在不同条件下钙沉积速率的方法。比奥公牛。 116、59-75。 doi:
Gross, L. A., Baird, G. S., Hoffman, R. C., Baldridge, K. K., and Tsien, R. Y. (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral Proc. Natl. Acad. Sci. 97, 11990-11995. doi: 10.1073/pnas.97.22.11990
Gross, L. A.、Baird, G. S.、Hoffman, R. C.、Baldridge, K. K. 和 Tsien, R. Y. (2000) DsRed 中发色团的结构,DsRed 是一种来自珊瑚的红色荧光蛋白。国家。阿卡德。科学。 97、11990-11995。 DOI:10.1073/pnas.97.22.11990
Gruber, D. F., Kao, H.-T., Janoschka, S., Tsai, J., and Pieribone, V. A. (2008). Patterns of fluorescent protein expression in scleractinian corals. Biol. Bull. 215, 143-154 doi:
Gruber, D. F.、Kao, H.-T.、Janoschka, S.、Tsai, J. 和 Pieribone, V. A. (2008)。石珊瑚中荧光蛋白的表达模式。生物。公牛。 215、143-154 doi:
Haryanti, D., and Hidaka, M. (2019). Developmental changes in the intensity and distribution pattern of green fluorescence in coral larvae and juveniles. Galaxea J. Cora Reef Stud. 21, 13-25. doi: 10.3755/galaxea.21.1_13
Haryanti, D. 和 Hidaka, M. (2019)。珊瑚幼虫和幼体绿色荧光强度和分布模式的发育变化。 Galaxea J. Cora 礁站。 21、13-25。 doi: 10.3755/galaxea.21.1_13
Heim, R., Prasher, D. C., and Tsien, R. Y. (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12501-12504. doi: 10.1073/pnas.91.26.12501
Heim, R.、Prasher, D. C. 和 Tsien, R. Y. (1994)。绿色荧光蛋白的波长突变和翻译后自动氧化。过程。国家。阿卡德。科学。美国 91,12501-12504。 DOI:10.1073/pnas.91.26.12501
Hollingsworth, L. L., Kinzie, R. A., Lewis, T. D., Krupp, D. A., and Leong, J.-A. C (2005). Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae. Coral Reefs 24, 523-523. doi: 10.1007/s00338-005-0063-8
Hollingsworth, L. L.、Kinzie, R. A.、Lewis, T. D.、Krupp, D. A. 和 Leong, J.-A. C(2005)。运动虫黄藻对绿光的趋光性可能有助于珊瑚幼虫捕获共生体。珊瑚礁 24, 523-523。 DOI:10.1007/s00338-005-0063-8
Hume, B., D’Angelo, C., Burt, J., Baker, A. C., Riegl, B., and Wiedenmann, J. (2013) Corals from the Persian/Arabian gulf as models for thermotolerant reef-builders prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar. pollut. Bull. 72, 313-322. doi: 10.1016/j.marpolbul.2012.11.032
Hume, B.、D'Angelo, C.、Burt, J.、Baker, A. C.、Riegl, B. 和 Wiedenmann, J. (2013) 来自波斯/阿拉伯湾的珊瑚作为耐热珊瑚礁建造者普遍存在的模型进化枝 C3 Symbiodinium,宿主荧光和异位温度耐受性。三月污染。公牛。 72、313-322。 doi:10.1016/j.marpolbul.2012.11.032
Iluz, D., and Dubinsky, Z. (2015). Coral photobiology: new light on old views. Zool. Jena Ger. 118, 71-78. doi: 10.1016/j.zool.2014.08.003
Iluz, D. 和 Dubinsky, Z. (2015)。珊瑚光生物学:旧观点的新见解。动物园。耶拿·格尔118、71-78。 doi:10.1016/j.zool.2014.08.003
Jarrett, B. D., Hine, A. C., Halley, R. B., Naar, D. F., Locker, S. D., Neumann, A. C., et al. (2005). Strange bedfellows - a deep-water hermatypic coral reef superimposed on a drowned barrier island; southern pulley ridge, SW Florida platform margin. Mar Geol. 214, 295-307. doi: 10.1016/j.margeo.2004.11.012
Jarrett, B. D.、Hine, A. C.、Halley, R. B.、Naar, D. F.、Locker, S. D.、Neumann, A. C. 等人。 (2005)。奇怪的同床异梦——深水造礁珊瑚礁叠加在淹没的障壁岛上;南滑轮山脊,佛罗里达州西南部台地边缘。玛尔·杰尔. 214、295-307。 doi:10.1016/j.margeo.2004.11.012
Jeffrey, S. W., and Haxo, F. T. (1968). Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. Biol. Bull. 135, 149-165 doi:
Jeffrey, S. W. 和 Haxo, F. T. (1968)。来自珊瑚和蛤的共生甲藻(虫黄藻)的光合色素。生物。公牛。 135、149-165 doi:

Jimenez, I. M., Larkum, A. W. D., Ralph, P. J., and Kühl, M. (2012). In situ thermal dynamics of shallow water corals is affected by tidal patterns and irradiance. Mar. Biol. 159, 1773-1782. doi: 10.1007/s00227-012-1968-8
Jimenez, I. M.、Larkum, A. W. D.、Ralph, P. J. 和 Kühl, M. (2012)。浅水珊瑚的原位热动力学受到潮汐模式和辐照度的影响。三月比奥尔。 159、1773-1782。 DOI:10.1007/s00227-012-1968-8
Kahng, S. E., Akkaynak, D., Shlesinger, T., Hochberg, E. J., Wiedenmann, J., Tamir R., et al. (2019). "Light, temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems," in Mesophotic coral ecosystems coral reefs of the world. Eds. Y. Loya, K. A. Puglise and T. C. L. Bridge (Cham: Springer Internationa Publishing), 801-828. doi: 10.1007/978-3-319-92735-0_42
Kahng, S. E.、Akkaynak, D.、Shlesinger, T.、Hochberg, E. J.、Wiedenmann, J.、Tamir R. 等。 (2019)。世界中光珊瑚生态系统珊瑚礁中的“光、温度、光合作用、异养和中光珊瑚生态系统的深度下限”。编辑。 Y. Loya、K. A. Puglise 和 T. C. L. Bridge(Cham:Springer International Publishing),801-828。号码:10.1007/978-3-319-92735-0_42
Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O., and Levy, O (2015). Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife 4, e09991. doi: 10.7554/eLife. 09991
Kaniewska, P.、Alon, S.、Karako-Lampert, S.、Hoegh-Guldberg, O. 和 Levy, O (2015)。信号级联和月光在珊瑚广播大规模产卵中的重要性。 eLife 4,e09991。 doi:10.7554/eLife。 09991
Kaniewska, P., Anthony, K. R. N., Sampayo, E. M., Campbell, P. R., and Hoegh Guldberg, O. (2014). Implications of geometric plasticity for maximizing photosynthesis in branching corals. Mar. Biol. 161, 313-328. doi: 10.1007/s00227
Kaniewska, P.、Anthony, K. R. N.、Sampayo, E. M.、Campbell, P. R. 和 Hoegh Guldberg, O. (2014)。几何可塑性对最大化分支珊瑚光合作用的影响。三月比奥尔。 161、313-328。 doi: 10.1007/s00227
Kawaguti, S. (1969). Effect of the green fluorescent pigment on the productivity of the reef corals. Micronesica 5,121
卡瓦古蒂,S.(1969)。绿色荧光颜料对珊瑚礁生产力的影响。密克罗尼西亚 5,121
Kelmanson, I. V., and Matz, M. V. (2003). Molecular basis and evolutionary origins of color diversity in great star coral Montastraea cavernosa (Scleractinia: faviida). Mo Biol. Evol. 20, 1125-1133. doi: 10.1093/molbev/msg130
Kelmanson, I. V. 和 Matz, M. V. (2003)。大星珊瑚 Montastraea Cavernosa(Scleractinia:faviida)颜色多样性的分子基础和进化起源。莫·比奥尔。进化。 20、1125-1133。 doi:10.1093/molbev/msg130
Kenkel, C. D., Aglyamova, G., Alamaru, A., Bhagooli, R., Capper, R., Cunning, R. et al. (2011). Development of gene expression markers of acute heat-light stress in reef building corals of the genus Porites. PloS One 6, e26914. doi: 10.1371 journal.pone. 0026914
Kenkel, C. D.、Aglyamova, G.、Alamaru, A.、Bhagooli, R.、Capper, R.、Cunning, R. 等人。 (2011)。滨珊瑚属造礁珊瑚急性热光应激基因表达标记的开发。 PloS One 6,e26914。 doi:10.1371 期刊.pone。 0026914
Labas, Y. A., Gurskaya, N. G., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Lukyanov, S. A., et al. (2002). Diversity and evolution of the green fluorescent protein family. Proc. Natl. Acad. Sci. 99, 4256-4261. doi: 10.1073 pnas. 062552299
Labas, Y.A.、Gurskaya, N.G.、Yanushevich, Y.G.、Fradkov, A.F.、Lukyanov, K.A.、Lukyanov, S.A. 等。 (2002)。绿色荧光蛋白家族的多样性和进化。过程。国家。阿卡德。科学。 99、4256-4261。 doi:10.1073 pnas。 062552299
LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R., et al. (2018). Systematic revision of symbiodiniaceae highlights th antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570-2580.e6 doi: j.cub.2018.07.008
LaJeunesse, T. C.、Parkinson, J. E.、Gabrielson, P. W.、Jeong, H. J.、Reimer, J. D.、Voolstra, C. R. 等人。 (2018)。对共生藻科的系统修订突出了珊瑚内共生体的古老性和多样性。电流。生物。 28, 2570-2580.e6 doi: j.cub.2018.07.008
Leal, M. C., Ferrier-Pagès, C., Calado, R., Thompson, M. E., Frischer, M. E., and Nejstgaard, J. C. (2014). Coral feeding on microalgae assessed with molecular trophic markers. Mol. Ecol. 23 (15), 3870-3876. doi: 10.1111/mec. 12486
Leal, M. C.、Ferrier-Pagès, C.、Calado, R.、Thompson, M. E.、Frischer, M. E. 和 Nejstgaard, J. C. (2014)。用分子营养标记评估以微藻为食的珊瑚。摩尔。生态。 23(15),3870-3876。 doi:10.1111/mec。 12486
Lesser, M. P., Slattery, M., and Mobley, C. D. (2018). Biodiversity and functiona ecology of mesophotic coral reefs. Annu. Rev. Ecol. Evol. Syst. 49, 49-71. doi: 10.1146 annurev-ecolsys-110617-062423
Lesser, M. P.、Slatery, M. 和 Mobley, C. D. (2018)。中光珊瑚礁的生物多样性和功能生态学。安努。埃科牧师。进化。系统。 49、49-71。 DOI: 10.1146 annurev-ecolsys-110617-062423
Leutenegger, A., D’Angelo, C., Matz, M. V., Denzel, A., Oswald, F., Salih, A., et al. (2007). It's cheap to be colorful. FEBS J. 274, 2496-2505. doi: 10.1111/j.1742 4658.2007.05785x
Leutenegger, A.、D’Angelo, C.、Matz, M. V.、Denzel, A.、Oswald, F.、Salih, A. 等人。 (2007)。色彩缤纷很便宜。 FEBS J. 274, 2496-2505。 doi:10.1111/j.1742 4658.2007.05785x
Levy, O., Appelbaum, L., Leggat, W., Gothlif, Y., Hayward, D. C., Miller, D. J., et al. (2007). Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science 318, 467-470. doi: 10.1126/science. 1145432
Levy, O.、Appelbaum, L.、Leggat, W.、Gothlif, Y.、Hayward, D. C.、Miller, D. J. 等人。 (2007)。来自简单多细胞动物珊瑚鹿角珊瑚的光响应隐花色素。科学 318, 467-470。 doi:10.1126/科学。 1145432
Lichtenberg, M., Larkum, A. W. D., and Kühl, M. (2016). Photosynthetic acclimation of symbiodinium in hospite depends on vertical position in the tissue of the scleractinian coral Montastrea curta. Front. Microbiol. 7. doi: 10.3389/ fmicb. 2016.00230
Lichtenberg, M.、Larkum, A. W. D. 和 Kühl, M. (2016)。寄宿处共生藻的光合适应取决于石珊瑚 Montastrea curta 组织中的垂直位置。正面。微生物。 7. doi:10.3389/fmicb。 2016.00230
Lukyanov, K. A., Fradkov, A. F., Gurskaya, N. G., Matz, M. V., Labas, Y. A., Savitsky A. P., et al. (2000). Natural animal coloration can be determined by a nonfluorescen green fluorescent protein homolog. J. Biol. Chem. 275, 25879-25882. doi: 10.1074 jbc.C000338200
Lukyanov, K. A.、Fradkov, A. F.、Gurskaya, N. G.、Matz, M. V.、Labas, Y. A.、Savitsky A. P. 等。 (2000)。天然动物的颜色可以通过非荧光绿色荧光蛋白同系物来确定。 J.Biol。化学。 275、25879-25882。 doi: 10.1074 jbc.C000338200
Lyndby, N. H., Holm, J. B., Wangpraseurt, D., Ferrier-Pagès, C., and Kühl, M (2019). Bio-optical properties and radiative energy budgets in fed and starved scleractinian corals (Pocillopora damicornis) during thermal bleaching. Marine Ecology Progress Series 629, 1-17. doi: 10.3354/meps13146
Lyndby, N. H.、Holm, J. B.、Wangpraseurt, D.、Ferrier-Pagès, C. 和 Kühl, M (2019)。热漂白期间进食和饥饿的石珊瑚(Pocillopora damicornis)的生物光学特性和辐射能量预算。海洋生态进展系列 629,1-17。 doi:10.3354/meps13146
Lyndby, N. H., Kühl, M., and Wangpraseurt, D. (2016). Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue. Sci. Rep. 6, 26599 doi: srep 26599
Lyndby, N. H.、Kühl, M. 和 Wangpraseurt, D. (2016)。珊瑚组织中绿色荧光蛋白类色素的热量产生和光散射。科学。代表 6, 26599 doi: srep 26599
Macel, M. L., Ristoratore, F., Locascio, A., Spagnuolo, A., Sordino, P., and D'Aniello, S. (2020). Sea As a color palette: the ecology and evolution of fluorescence. Zool. Lett. 6 9. doi: 10.1186/s40851-020-00161-9
Macel, M. L.、Ristoratore, F.、Locascio, A.、Spagnuolo, A.、Sordino, P. 和 D'Aniello, S. (2020)。海作为调色板:荧光的生态和演变。动物园。快报 6 9.doi:10.1186/s40851-020-00161-9
Mason, B. M., Koyanagi, M., Sugihara, T., Iwasaki, M., Slepak, V., Miller, D. J., et al. (2023). Multiple opsins in a reef-building coral, Acropora millepora. Sci. Rep. 13, 1628 doi:
Mason, B. M.、Koyanagi, M.、Sugihara, T.、Iwasaki, M.、Slepak, V.、Miller, D. J. 等人。 (2023)。造礁珊瑚(鹿角珊瑚)中存在多种视蛋白。科学。众议员 13, 1628 doi:
Mason, B., Schmale, M., Gibbs, P., Miller, M. W., Wang, Q., Levay, K., et al. (2012) Evidence for multiple phototransduction pathways in a reef-building coral. PloS One 7 e50371. doi: 10.1371/journal.pone.0050371
Mason, B.、Schmale, M.、Gibbs, P.、Miller, M. W.、Wang, Q.、Levay, K. 等人。 (2012) 造礁珊瑚中多种光转导途径的证据。 PloS One 7 e50371。 doi:10.1371/journal.pone.0050371
Matz, M. V., Fradkov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov M. L., et al. (1999). Fluorescent proteins from nonbioluminescent anthozoa species. Nat. Biotechnol. 17, 969-973. doi: 10.1038/13657
Matz, M.V.、Fradkov, A.F.、Labas, Y.A.、Savitsky, A.P.、Zaraisky, A.G.、Markelov M.L. 等人。 (1999)。来自非生物发光 anthozoa 物种的荧光蛋白。纳特。生物技术。 17、969-973。号码:10.1038/13657
Matz, M. V., Marshall, N. J., and Vorobyev, M. (2006). Are corals colorful? Photochem. Photobiol. 82, 345-350. doi: 10.1562/2005-08-18-RA-653
Matz, M. V.、Marshall, N. J. 和 Vorobyev, M. (2006)。珊瑚有颜色吗?光化学。光生物。 82、345-350。 doi:10.1562/2005-08-18-RA-653
Mayfield, A., Liu, P.-J., Wang, Y.-B., and Chen, C.-S. (2014). Decreased green fluorescent protein-like chromoprotein gene expression in specimens of the model reef-building coral Pocillopora damicornis undergoing high temperature induced bleaching. Platax. 2014-12-01, 1-23. doi: 10.29926/PLATAX 201412_2014.0001
Mayfield, A.、Liu, P.-J.、Wang, Y.-B. 和 Chen, C.-S.。 (2014)。在经历高温诱导白化的造礁珊瑚模型珊瑚 Pocillopora damicornis 样本中,绿色荧光蛋白样色蛋白基因表达减少。普拉塔克斯。 2014 年 12 月 1 日、1 月 23 日。编号:10.29926/PLATAX 201412_2014.0001
Mazel, C. H., Lesser, M. P., Gorbunov, M. Y., Barry, T. M., Farrell, J. H., Wyman, K D., et al. (2003). Green-fluorescent proteins in Caribbean corals. Limnol. Oceanogr. 48 402-411. doi: 10.4319/lo.2003.48.1_part_2.0402
Mazel, C. H.、Lesser, M. P.、Gorbunov, M. Y.、Barry, T. M.、Farrell, J. H.、Wyman, K D. 等人。 (2003)。加勒比珊瑚中的绿色荧光蛋白。利姆诺尔。海洋学家。 48402-411。 doi:10.4319/lo.2003.48.1_part_2.0402
Murthy, S., Picioreanu, C., and Kühl, M. (2023). Modeling the radiative, thermal and chemical microenvironment of 3D scanned corals. Front. Mar. Sci. 10, 1160208 doi: fmars.2023.1160208
Murthy, S.、Picioreanu, C. 和 Kühl, M. (2023)。对 3D 扫描珊瑚的辐射、热和化学微环境进行建模。正面。三月科学。 10, 1160208 doi: fmars.2023.1160208
Muscatine, L., Falkowski, P. G., Porter, J. W., Dubinsky, Z., and Smith, D. C. (1984) Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc Lond. B Biol. Sci. 222, 181-202. doi: rspb.1984.0058
Muscatine, L.、Falkowski, P. G.、Porter, J. W.、Dubinsky, Z. 和 Smith, D. C. (1984) 共生珊瑚 Stylophora pistillata 光合固定碳的命运。过程。 R. 苏克·伦敦。 B 生物。科学。 222、181-202。 doi: rspb.1984.0058
Nienhaus, G. U., and Wiedenmann, J. (2009). Structure, dynamics and optica properties of fluorescent proteins: perspectives for marker development ChemPhysChem 10, 1369-1379. doi: 10.1002/cphc.200800839
Nienhaus, G. U. 和 Wiedenmann, J. (2009)。荧光蛋白的结构、动力学和光学特性:标记物开发的前景 ChemPhysChem 10, 1369-1379。 DOI:10.1002/cphc.200800839
Oswald, F., Schmitt, F., Leutenegger, A., Ivanchenko, S., D'Angelo, C., Salih, A., et al (2007). Contributions of host and symbiont pigments to the coloration of reef corals FEBS J. 274, 1102-1122. doi: 10.1111/j.1742-4658.2007.05661.x
Oswald, F.、Schmitt, F.、Leutenegger, A.、Ivanchenko, S.、D'Angelo, C.、Salih, A. 等人 (2007)。宿主和共生体色素对珊瑚礁颜色的贡献 FEBS J. 274, 1102-1122。 doi:10.1111/j.1742-4658.2007.05661.x
Paley, A., and Bay, L. (2012). "Bleaching condition varies among Acropora millepora color morphs," in Proceedings of the 12th International Coral Reef Symposium, Cairns QLD. .
佩利,A. 和贝,L. (2012)。昆士兰州凯恩斯第 12 届国际珊瑚礁研讨会论文集中的“千叶鹿角珊瑚颜色变体的漂白情况各不相同”。
Phillips, G. N. (1997). Structure and dynamics of green fluorescent protein. Curr Opin. Struct. Biol. 7, 821-827. doi: 10.1016/S0959-440X(97)80153-4
菲利普斯,G.N.(1997)。绿色荧光蛋白的结构和动力学。当前意见。结构。生物。 7、821-827。编号:10.1016/S0959-440X(97)80153-4
Prescott, M., Ling, M., Beddoe, T., Oakley, A. J., Dove, S., Hoegh-Guldberg, O., et al (2003). The crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. Structure 11, 275-284. doi: 10.1016/S0969-2126(03)
Prescott, M.、Ling, M.、Beddoe, T.、Oakley, A. J.、Dove, S.、Hoegh-Guldberg, O. 等人 (2003)。波西洛孔素色素的 晶体结构揭示了非平面发色团构象。结构 11, 275-284。 doi: 10.1016/S0969-2126(03)
Quick, C., D'Angelo, C., and Wiedenmann, J. (2018). Trade-offs associated with photoprotective green fluorescent protein expression as potential drivers of balancing selection for color polymorphism in reef corals. Front. Mar. Sci. 5. doi: 10.3389 fmars.2018.00011
Quick, C.、D'Angelo, C. 和 Wiedenmann, J. (2018)。与光保护绿色荧光蛋白表达相关的权衡作为平衡珊瑚礁珊瑚颜色多态性选择的潜在驱动因素。正面。三月科学。 5.doi:10.3389 fmars.2018.00011
Rehman, A. U., Szabó, M., Deák, Z., Sass, L., Larkum, A., Ralph, P., et al. (2016) Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. New Phytol. 212, 472-484 doi: nph. 14056
Rehman, A. U.、Szabó, M.、Deák, Z.、Sass, L.、Larkum, A.、Ralph, P. 等。 (2016) 共生藻属 sp。细胞产生光诱导的细胞内和细胞外单线态氧,介导光合器官的光损伤,并有可能与珊瑚共生中的动物宿主相互作用。新植醇。 212, 472-484 doi: nph。 14056
Reynolds, J. M., Bruns, B. U., Fitt, W. K., and Schmidt, G. W. (2008). Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc. Natl. Acad. Sci. 105, 13674-13678. doi: 10.1073 pnas. 0805187105
Reynolds, J. M.、Bruns, B. U.、Fitt, W. K. 和 Schmidt, G. W. (2008)。浅水珊瑚和其他刺胞动物共生甲藻的光保护途径增强。过程。国家。阿卡德。科学。 105、13674-13678。 doi:10.1073 pnas。 0805187105
Roth, M. S. (2014). The engine of the reef: photobiology of the coral-algal symbiosis Front. Microbiol. 5. doi: 10.3389/fmicb.2014.00422
罗斯,硕士(2014)。珊瑚礁的引擎:珊瑚-藻类共生的光生物学前沿。微生物。 5. doi:10.3389/fmicb.2014.00422
Roth, M. S., and Deheyn, D. D. (2013). Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Sci. Rep. 3, 1421. doi: 10.1038/srep01421
Roth, M. S. 和 Deheyn, D. D. (2013)。冷应激和热应激对造礁珊瑚荧光的影响。科学。众议员 3, 1421.doi: 10.1038/srep01421
Roth, M., Fan, T.-Y., and Deheyn, D. (2013). Life history changes in coral fluorescence and the effects of light intensity on larval physiology and settlement in Seriatopora hystrix. PloS One 8, e59476. doi: 10.1371/journal.pone. 0059476
Roth, M.、Fan, T.-Y. 和 Deheyn, D. (2013)。珊瑚荧光的生活史变化以及光强度对 Seriatopora hystrix 幼虫生理和定居的影响。 PloS One 8,e59476。 doi:10.1371/journal.pone。 0059476
Roth, M. S., Latz, M. I., Goericke, R., and Deheyn, D. D. (2010). Green fluorescen protein regulation in the coral Acropora yongei during photoacclimation. J. Exp. Biol. 213, 3644-3655. doi:
Roth, M. S.、Latz, M. I.、Goericke, R. 和 Deheyn, D. D. (2010)。光驯化期间珊瑚鹿角珊瑚中绿色荧光蛋白的调节。 J.Exp。生物。 213、3644-3655。 doi:
Roth, M. S., Padilla-Gamiño, J. L., Pochon, X., Bidigare, R. R., Gates, R. D., Smith, C. M., et al. (2015). Fluorescent proteins in dominant mesophotic reef-building corals Mar. Ecol. Prog. Ser. 521, 63-79. doi: 10.3354/meps11108
Roth, M. S.、Padilla-Gamiño, J. L.、Pochon, X.、Bidigare, R. R.、Gates, R. D.、Smith, C. M. 等人。 (2015)。优势中光造礁珊瑚中的荧光蛋白 Mar. Ecol。程序。序列。 521、63-79。 doi:10.3354/meps11108
Rouzé, H., Galand, P. E., Medina, M., Bongaerts, P., Pichon, M., Pérez-Rosales, G. et al. (2021). Symbiotic associations of the deepest recorded photosynthetic scleractinian coral ( depth). ISME J. 15, 1564-1568. doi: 10.1038/s41396-020
Rouzé, H.、Galand, P. E.、Medina, M.、Bongaerts, P.、Pichon, M.、Pérez-Rosales, G. 等人。 (2021)。记录的最深光合石珊瑚的共生关系( 深度)。 ISME J. 15, 1564-1568。 doi: 10.1038/s41396-020
Salih, A. (2019). "Fluorescent proteins," in Fundamentals of fluorescence imaging (Singapore:Jenny Stanford Publishing), 22. doi: 10.1201/9781351129404-6
萨利赫,A.(2019)。 “荧光蛋白”,《荧光成像基础》(新加坡:Jenny Stanley 出版社),22。doi:10.1201/9781351129404-6
Salih, A., Cox, G. C., and Larkum, A. W. (2003). "Cellular organization and spectral diversity of GFP-like proteins in live coral cells studied by single and multiphoton imaging and microspectroscopy," in Multiphoton microscopy in the biomedical science III (SPIE), 194-200. doi: 10.1117/12.487618
Salih, A.、Cox, G. C. 和 Larkum, A. W. (2003)。 “通过单光子和多光子成像和显微光谱学研究活珊瑚细胞中 GFP 样蛋白的细胞组织和光谱多样性”,生物医学科学 III 多光子显微镜 (SPIE),194-200。号码:10.1117/12.487618
Salih, A., Larkum, A., Cox, G., Kühl, M., and Hoegh-Guldberg, O. (2000) Fluorescent pigments in corals are photoprotective. Nature 408, 850-853 doi:
Salih, A.、Larkum, A.、Cox, G.、Kühl, M. 和 Hoegh-Guldberg, O. (2000) 珊瑚中的荧光颜料具有光保护作用。自然 408, 850-853 doi:
Salih, A., Larkum, A. W., Cronin, T. W., Wiedenmann, J., Szymczak, R., and Cox, G C. (2004). "Biological properties of coral GFP-type proteins provide clues for engineering novel optical probes and biosensors," in Genetically engineered and optical probes for biomedical applications II (SPIE), 61-72. doi: 10.1117/12.548926
Salih, A.、Larkum, A. W.、Cronin, T. W.、Wiedenmann, J.、Szymczak, R. 和 Cox, G C. (2004)。 “珊瑚 GFP 型蛋白质的生物学特性为工程新型光学探针和生物传感器提供了线索”,《生物医学应用的基因工程和光学探针 II》(SPIE),61-72。号码:10.1117/12.548926
Satoh, N., Kinjo, K., Shintaku, K., Kezuka, D., Ishimori, H., Yokokura, A., et al. (2021). Color morphs of the coral Acropora tenuis show different responses to environmental stress and different expression profiles of fluorescent-protein genes G3 GenesGenomesGenetics 11, jkab018. doi: 10.1093/g3journal/jkab018
Satoh, N.、Kinjo, K.、Shintaku, K.、Kezuka, D.、Ishimori, H.、Yokokura, A. 等。 (2021)。珊瑚 Acropora tenuis 的颜色形态表现出对环境压力的不同反应以及荧光蛋白基因 G3 GenesGenomesGenetics 11, jkab018 的不同表达谱。 doi:10.1093/g3journal/jkab018
Schlichter, D., and Fricke, H. W. (1991). Mechanisms of amplification of photosynthetically active radiation in the symbiotic deep-water coral Leptoseris fragilis. Hydrobiologia 216, 389-394. doi: 10.1007/BF00026491
Schlichter, D. 和 Fricke, H. W. (1991)。共生深水珊瑚脆弱体光合有效辐射的放大机制。水生生物学 216, 389-394。号码:10.1007/BF00026491
Schlichter, D., Fricke, H. W., and Weber, W. (1986). Light harvesting by wavelength transformation in a symbiotic coral of the red Sea twilight zone. Mar. Biol. 91, 403-407. doi: BF00428634
Schlichter, D.、Fricke, H. W. 和 Weber, W. (1986)。红海暮光区共生珊瑚通过波长转换收集光。三月比奥尔。 91、403-407。 doi: BF00428634

Seemann, J., Sawall, Y., Auel, H., and Richter, C. (2013). The use of lipids and fatty acids to measure the trophic plasticity of the coral stylophora subseriata. Lipids 48, 275286. doi: